Unrooted phylogenetic networks are commonly used to represent evolutionary data in the presence of incompatibilities. While rooted phylogenetic networks offer a more explicit framework for depicting evolutionary histories involving reticulate events, they are reported less frequently, probably due to a lack of tools that are as easily applicable as those for unrooted networks. Here, we introduce PhyloFusion, a fast and user-friendly method for constructing rooted phylogenetic networks from sets of rooted phylogenetic trees. The resulting networks have the tree-child property. The algorithm accommodates trees with unresolved nodes -often resulting from the contraction of low-support edges- as well as some degree of missing taxa. We demonstrate its application to the analysis of functionally related gene groups and show that it can efficiently handle datasets comprising tens of trees or hundreds of taxa. An open source implementation of PhyloFusion is available as part of the SplitsTree app: https://www.github.com/husonlab/splitstree6 All data available here: https://doi.org/10.5061/dryad.k3j9kd5h5.
{"title":"PhyloFusion- Fast and easy fusion of rooted phylogenetic trees into rooted phylogenetic networks.","authors":"Louxin Zhang, Banu Cetinkaya, Daniel H Huson","doi":"10.1093/sysbio/syaf049","DOIUrl":"https://doi.org/10.1093/sysbio/syaf049","url":null,"abstract":"<p><p>Unrooted phylogenetic networks are commonly used to represent evolutionary data in the presence of incompatibilities. While rooted phylogenetic networks offer a more explicit framework for depicting evolutionary histories involving reticulate events, they are reported less frequently, probably due to a lack of tools that are as easily applicable as those for unrooted networks. Here, we introduce PhyloFusion, a fast and user-friendly method for constructing rooted phylogenetic networks from sets of rooted phylogenetic trees. The resulting networks have the tree-child property. The algorithm accommodates trees with unresolved nodes -often resulting from the contraction of low-support edges- as well as some degree of missing taxa. We demonstrate its application to the analysis of functionally related gene groups and show that it can efficiently handle datasets comprising tens of trees or hundreds of taxa. An open source implementation of PhyloFusion is available as part of the SplitsTree app: https://www.github.com/husonlab/splitstree6 All data available here: https://doi.org/10.5061/dryad.k3j9kd5h5.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144650538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Global Patterns of Taxonomic Uncertainty and its Impacts on Biodiversity Research.","authors":"","doi":"10.1093/sysbio/syaf045","DOIUrl":"https://doi.org/10.1093/sysbio/syaf045","url":null,"abstract":"","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"108 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joaquín Villamil,Mariana Morando,Luciano J Avila,Flávia M Lanna,Emanuel M Fonseca,Jack W Sites,Arley Camargo
Departures from the Multispecies Coalescent (MSC) assumptions could cause artefactual topologies and node height estimates, and therefore, trees inferred without MSC model fit testing could potentially misrepresent an accurate approximation of the evolutionary history of a group. The current implementation of MSC model testing for non-genomic level molecular markers cannot process trees estimated from BEAST 2, limiting its application for large datasets of sequence-based markers. Here we recode functions of the R package P2C2M to assess model fit to the MSC and apply this new implementation, which we named P2C2M2, to test the MSC model in a 16-loci dataset of 42 lizard species focused on the Liolaemus wiegmannii group. We found strong evidence of model departures in several loci, possibly due to historical gene flow, which could also be causing an unexpected position of the L. wiegmannii group within the L. montanus section of Eulaemus, when hybridization is not accounted for. The L. anomalus group is inferred as the closest to the L. wiegmannii group when gene flow is incorporated via a Multispecies Network Coalescent model, and a reticulation, suggesting historical gene flow between the L. wiegmannii and L. montanus groups is inferred, which has not been previously reported. We argue that there are at least three sources of discrepancy between the literature and the node ages estimated in our study: the use of strict molecular clocks without statistical justification, misplaced fossil calibrations, and the estimation of coalescent times instead of species divergence times. We encouraged systematists to routinely test the fit of the MSC model when estimating species trees using sequence-based markers, and to follow a phylogenetic network approach when both this test is significant and when historical gene flow is considered one plausible source of the departure from the MSC model.
{"title":"Revisiting the Multispecies Coalescent Model fit with an example from a complete molecular phylogeny of the Liolaemus wiegmannii species group (Squamata: Liolaemidae).","authors":"Joaquín Villamil,Mariana Morando,Luciano J Avila,Flávia M Lanna,Emanuel M Fonseca,Jack W Sites,Arley Camargo","doi":"10.1093/sysbio/syaf048","DOIUrl":"https://doi.org/10.1093/sysbio/syaf048","url":null,"abstract":"Departures from the Multispecies Coalescent (MSC) assumptions could cause artefactual topologies and node height estimates, and therefore, trees inferred without MSC model fit testing could potentially misrepresent an accurate approximation of the evolutionary history of a group. The current implementation of MSC model testing for non-genomic level molecular markers cannot process trees estimated from BEAST 2, limiting its application for large datasets of sequence-based markers. Here we recode functions of the R package P2C2M to assess model fit to the MSC and apply this new implementation, which we named P2C2M2, to test the MSC model in a 16-loci dataset of 42 lizard species focused on the Liolaemus wiegmannii group. We found strong evidence of model departures in several loci, possibly due to historical gene flow, which could also be causing an unexpected position of the L. wiegmannii group within the L. montanus section of Eulaemus, when hybridization is not accounted for. The L. anomalus group is inferred as the closest to the L. wiegmannii group when gene flow is incorporated via a Multispecies Network Coalescent model, and a reticulation, suggesting historical gene flow between the L. wiegmannii and L. montanus groups is inferred, which has not been previously reported. We argue that there are at least three sources of discrepancy between the literature and the node ages estimated in our study: the use of strict molecular clocks without statistical justification, misplaced fossil calibrations, and the estimation of coalescent times instead of species divergence times. We encouraged systematists to routinely test the fit of the MSC model when estimating species trees using sequence-based markers, and to follow a phylogenetic network approach when both this test is significant and when historical gene flow is considered one plausible source of the departure from the MSC model.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"697 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144594356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathieu Fourment, Matthew Macaulay, Christiaan J Swanepoel, Xiang Ji, Marc A Suchard, Frederick A Matsen Iv
Bayesian inference has predominantly relied on the Markov chain Monte Carlo (MCMC) algorithm for many years. However, MCMC is computationally laborious, especially for complex phylogenetic models of time trees. This bottleneck has led to the search for alternatives, such as variational Bayes, which can scale better to large datasets. In this paper, we introduce torchtree, a framework written in Python that allows developers to easily implement rich phylogenetic models and algorithms using a fixed tree topology. One can either use automatic differentiation, or leverage torchtree's plug-in system to compute gradients analytically for model components for which automatic differentiation is slow. We demonstrate that the torchtree variational inference framework performs similarly to BEAST in terms of speed, and delivers promising approximation results, though accuracy varies across scenarios. Furthermore, we explore the use of the forward KL divergence as an optimizing criterion for variational inference, which can handle discontinuous and non-differentiable models. Our experiments show that inference using the forward KL divergence is frequently faster per iteration compared to the evidence lower bound (ELBO) criterion, although the ELBO-based inference may converge faster in some cases. Overall, torchtree provides a flexible and efficient framework for phylogenetic model development and inference using PyTorch. phylogenetics, Bayesian inference, variational Bayes, PyTorch.
{"title":"torchtree: flexible phylogenetic model development and inference using PyTorch.","authors":"Mathieu Fourment, Matthew Macaulay, Christiaan J Swanepoel, Xiang Ji, Marc A Suchard, Frederick A Matsen Iv","doi":"10.1093/sysbio/syaf047","DOIUrl":"https://doi.org/10.1093/sysbio/syaf047","url":null,"abstract":"<p><p>Bayesian inference has predominantly relied on the Markov chain Monte Carlo (MCMC) algorithm for many years. However, MCMC is computationally laborious, especially for complex phylogenetic models of time trees. This bottleneck has led to the search for alternatives, such as variational Bayes, which can scale better to large datasets. In this paper, we introduce torchtree, a framework written in Python that allows developers to easily implement rich phylogenetic models and algorithms using a fixed tree topology. One can either use automatic differentiation, or leverage torchtree's plug-in system to compute gradients analytically for model components for which automatic differentiation is slow. We demonstrate that the torchtree variational inference framework performs similarly to BEAST in terms of speed, and delivers promising approximation results, though accuracy varies across scenarios. Furthermore, we explore the use of the forward KL divergence as an optimizing criterion for variational inference, which can handle discontinuous and non-differentiable models. Our experiments show that inference using the forward KL divergence is frequently faster per iteration compared to the evidence lower bound (ELBO) criterion, although the ELBO-based inference may converge faster in some cases. Overall, torchtree provides a flexible and efficient framework for phylogenetic model development and inference using PyTorch. phylogenetics, Bayesian inference, variational Bayes, PyTorch.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Serra Silva, Karen Siu-Ting, Christopher J Creevey, Davide Pisani, Mark Wilkinson
Missing data is a long standing issue in phylogenetic inference, which often results in high levels of taxonomic instability, obscuring otherwise well supported relationships. Multiple approaches have been developed to deal with the negative effects of ineffective overlap on tree resolution, often by identifying taxa for removal. Here we repurpose a heuristic method developed to identify unstable taxa in morphological data matrices, concatabominations, and combine it with a novel gene-tree jackknifing on matrix representation of trees to identify candidates for targeted sequencing. Using a multilocus caecilian dataset we illustrate the method's capacity to identify candidate taxa and loci for additional sequencing, compare the results to those of the mathematics-based gene sampling sufficiency approach and explore the terrace space associated with the multilocus dataset. We show that our approach yields tractable numbers of loci/taxa for targeted sequencing that successfully mitigate topological instability due to ineffective overlap, even when modest amounts of data are added.
{"title":"Coping with Ineffective Overlap in Multilocus Phylogenetics.","authors":"Ana Serra Silva, Karen Siu-Ting, Christopher J Creevey, Davide Pisani, Mark Wilkinson","doi":"10.1093/sysbio/syaf044","DOIUrl":"https://doi.org/10.1093/sysbio/syaf044","url":null,"abstract":"<p><p>Missing data is a long standing issue in phylogenetic inference, which often results in high levels of taxonomic instability, obscuring otherwise well supported relationships. Multiple approaches have been developed to deal with the negative effects of ineffective overlap on tree resolution, often by identifying taxa for removal. Here we repurpose a heuristic method developed to identify unstable taxa in morphological data matrices, concatabominations, and combine it with a novel gene-tree jackknifing on matrix representation of trees to identify candidates for targeted sequencing. Using a multilocus caecilian dataset we illustrate the method's capacity to identify candidate taxa and loci for additional sequencing, compare the results to those of the mathematics-based gene sampling sufficiency approach and explore the terrace space associated with the multilocus dataset. We show that our approach yields tractable numbers of loci/taxa for targeted sequencing that successfully mitigate topological instability due to ineffective overlap, even when modest amounts of data are added.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gil Yardeni, Michael H J Barfuss, Walter Till, Matthew R Thornton, Clara Groot Crego, Christian Lexer, Thibault Leroy, Ovidiu Paun
The recent rapid radiation of Tillandsia subgenus Tillandsia (Bromeliaceae) provides an attractive system to study the drivers and constraints of species diversification. This species-rich Neotropical monocot clade includes predominantly epiphytic species displaying vast phenotypic diversity. Recent in-depth phylogenomic work revealed that the subgenus originated within the last 7 MY, with one major expansion from South into Central America within the last 5 MY. However, disagreements between phylogenies and lack of resolution at shallow nodes suggest that hybridization may have occurred throughout the radiation, together with frequent incomplete lineage sorting and rapid gene family evolution. We used whole-genome resequencing data to explore the evolutionary history of representative ingroup species employing both tree-based and network approaches. Our results indicate that lineage co-occurrence does not predict relatedness and confirm significant deviations from a tree-like structure, coupled with pervasive gene tree discordance. Focusing on hybridization, ABBA-BABA and related statistics were used to infer the rates and relative timing of introgression, while topology weighting uncovered high heterogeneity of the phylogenetic signal along the genome. High rates of hybridization within and among subclades suggest that, contrary to previous hypotheses, the expansion of subgenus Tillandsia into Central America proceeded through several dispersal events, punctuated by episodes of diversification and gene flow. Network analysis revealed reticulation as a plausible propeller during radiation and establishment across different ecological niches. This work contributes a plant example of prevalent hybridization during rapid species diversification, supporting the hypothesis that interspecific gene flow facilitates explosive diversification.
{"title":"The explosive radiation of the Neotropical Tillandsia subgenus Tillandsia (Bromeliaceae) has been accompanied by pervasive hybridization.","authors":"Gil Yardeni, Michael H J Barfuss, Walter Till, Matthew R Thornton, Clara Groot Crego, Christian Lexer, Thibault Leroy, Ovidiu Paun","doi":"10.1093/sysbio/syaf039","DOIUrl":"https://doi.org/10.1093/sysbio/syaf039","url":null,"abstract":"<p><p>The recent rapid radiation of Tillandsia subgenus Tillandsia (Bromeliaceae) provides an attractive system to study the drivers and constraints of species diversification. This species-rich Neotropical monocot clade includes predominantly epiphytic species displaying vast phenotypic diversity. Recent in-depth phylogenomic work revealed that the subgenus originated within the last 7 MY, with one major expansion from South into Central America within the last 5 MY. However, disagreements between phylogenies and lack of resolution at shallow nodes suggest that hybridization may have occurred throughout the radiation, together with frequent incomplete lineage sorting and rapid gene family evolution. We used whole-genome resequencing data to explore the evolutionary history of representative ingroup species employing both tree-based and network approaches. Our results indicate that lineage co-occurrence does not predict relatedness and confirm significant deviations from a tree-like structure, coupled with pervasive gene tree discordance. Focusing on hybridization, ABBA-BABA and related statistics were used to infer the rates and relative timing of introgression, while topology weighting uncovered high heterogeneity of the phylogenetic signal along the genome. High rates of hybridization within and among subclades suggest that, contrary to previous hypotheses, the expansion of subgenus Tillandsia into Central America proceeded through several dispersal events, punctuated by episodes of diversification and gene flow. Network analysis revealed reticulation as a plausible propeller during radiation and establishment across different ecological niches. This work contributes a plant example of prevalent hybridization during rapid species diversification, supporting the hypothesis that interspecific gene flow facilitates explosive diversification.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144498008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lara M Ko¨sters, Kevin Karbstein, Martin Hofmann, Ladislav Hodaˇc, Patrick Ma¨der, Jana Wa¨ldchen
DNA analyses have revolutionized species identification and taxonomic work. Yet, persistent challenges arise from little differentiation among and considerable variation within species, particularly among closely related groups. While images are commonly used as an alternative modality for automated identification tasks, their usability is limited by the same concerns. An integrative strategy, fusing molecular and image data through machine learning, holds significant promise for fine-grained species identification. However, a systematic overview and rigorous statistical testing concerning molecular and image preprocessing and fusion techniques, including practical advice for biologists, are missing so far. We introduce a machine learning scheme that integrates both molecular and image data for species identification. Initially, we systematically assess and compare three different DNA arrangements (aligned, unaligned, SNP-reduced) and two encoding methods (fractional, ordinal). Additionally, artificial neural networks are used to extract visual and molecular features, and we propose strategies for fusing this information. Specifically, we investigate three strategies: I) fusing directly after feature extraction, II) fusing features that passed through a fully connected layer after feature extraction, and III) fusing the output scores of both unimodal models. We systematically and statistically evaluate these strategies for four eukaryotic datasets, including two plant (Asteraceae, Poaceae) and two animal families (Lycaenidae, Coccinellidae) using Leave-One-Out Cross-Validation (LOOCV). In addition, we developed an approach to understand molecular- and image-specific identification failure. Aligned sequences with nucleotides encoded as decimal number vectors achieved the highest identification accuracy among DNA data preprocessing techniques in all four datasets. Fusing molecular and visual features directly after feature extraction yielded the best results for three out of four datasets (52-99%).Overall, combining DNA with image data significantly increased accuracy in three out of four datasets, with plant datasets showing the most substantial improvement (Asteraceae: +19%, Poaceae: +13.6%). Even for Lycaenidae with high identification accuracy based on molecular data (>96%), a statistically significant improvement (+2.1%) was observed.Detailed analysis of confusion rates between and within genera shows that DNA alone tends to identify the genus correctly, but often fails to recognize the species. The failure to resolve species is alleviated by including image data in the training. This increase in resolution hints at a hierarchical role of modalities in which molecular data coarsely groups the specimens to then be guided towards a more fine-grained identification by the connected image. We systematically showed and explained, for the first time, that optimizing the preprocessing and integration of molecular and image data offers signific
{"title":"Data Fusion for Integrative Species Identification Using Deep Learning","authors":"Lara M Ko¨sters, Kevin Karbstein, Martin Hofmann, Ladislav Hodaˇc, Patrick Ma¨der, Jana Wa¨ldchen","doi":"10.1093/sysbio/syaf026","DOIUrl":"https://doi.org/10.1093/sysbio/syaf026","url":null,"abstract":"DNA analyses have revolutionized species identification and taxonomic work. Yet, persistent challenges arise from little differentiation among and considerable variation within species, particularly among closely related groups. While images are commonly used as an alternative modality for automated identification tasks, their usability is limited by the same concerns. An integrative strategy, fusing molecular and image data through machine learning, holds significant promise for fine-grained species identification. However, a systematic overview and rigorous statistical testing concerning molecular and image preprocessing and fusion techniques, including practical advice for biologists, are missing so far. We introduce a machine learning scheme that integrates both molecular and image data for species identification. Initially, we systematically assess and compare three different DNA arrangements (aligned, unaligned, SNP-reduced) and two encoding methods (fractional, ordinal). Additionally, artificial neural networks are used to extract visual and molecular features, and we propose strategies for fusing this information. Specifically, we investigate three strategies: I) fusing directly after feature extraction, II) fusing features that passed through a fully connected layer after feature extraction, and III) fusing the output scores of both unimodal models. We systematically and statistically evaluate these strategies for four eukaryotic datasets, including two plant (Asteraceae, Poaceae) and two animal families (Lycaenidae, Coccinellidae) using Leave-One-Out Cross-Validation (LOOCV). In addition, we developed an approach to understand molecular- and image-specific identification failure. Aligned sequences with nucleotides encoded as decimal number vectors achieved the highest identification accuracy among DNA data preprocessing techniques in all four datasets. Fusing molecular and visual features directly after feature extraction yielded the best results for three out of four datasets (52-99%).Overall, combining DNA with image data significantly increased accuracy in three out of four datasets, with plant datasets showing the most substantial improvement (Asteraceae: +19%, Poaceae: +13.6%). Even for Lycaenidae with high identification accuracy based on molecular data (&gt;96%), a statistically significant improvement (+2.1%) was observed.Detailed analysis of confusion rates between and within genera shows that DNA alone tends to identify the genus correctly, but often fails to recognize the species. The failure to resolve species is alleviated by including image data in the training. This increase in resolution hints at a hierarchical role of modalities in which molecular data coarsely groups the specimens to then be guided towards a more fine-grained identification by the connected image. We systematically showed and explained, for the first time, that optimizing the preprocessing and integration of molecular and image data offers signific","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"8 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144288200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas D Fernandes, Rogier E Hintzen, Samuel E D Thompson, Tatsiana Barychka, Derek Tittensor, Michael Harfoot, Tim Newbold, James Rosindell
The total number of species on earth and the rate at which new species are created are fundamental questions for ecology, evolution and conservation. These questions have typically been approached separately, despite their obvious interconnection. In this study, we approach both questions in conjunction, for all terrestrial animals. To do this, we combine two previously unconnected bodies of theory: general ecosystem models and individual-based ecological neutral theory. General ecosystem models provide us with estimated numbers of individual organisms, separated by functional group and body size. Neutral theory, applied within a guild of functionally similar individuals, connects species richness, speciation rate, and number of individual organisms. In combination, for terrestrial endotherms where species numbers are known, they provide us with estimates for speciation rates as a function of body size and diet class. Extrapolating the same rates to guilds of ectotherms enables us to estimate the species richness of those groups, including species yet to be described. We find that speciation rates per species per million years decrease with increasing body size. Rates are also higher for carnivores compared to omnivores or herbivores of the same body size. Our estimate for the total number of terrestrial species of animals is in the range 1.03-2.92 million species, a value consistent with estimates from previous studies, despite having used a fundamentally new approach. Perhaps what is most remarkable about these results is that they have been obtained using only limited data from larger endotherms and their speciation rates, with the predictive process being based on mechanistic theory. This work illustrates the potential of a new approach to classic eco-evolutionary questions, while also adding weight to existing predictions. As we now face an era of dramatic biological change, new methods will be needed to mechanistically model global biodiversity at the species and individual organism level. This will be a huge challenge but the combination of general ecosystem models and neutral theory that we introduce here is a way to tractably achieve it.
{"title":"Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories.","authors":"Lucas D Fernandes, Rogier E Hintzen, Samuel E D Thompson, Tatsiana Barychka, Derek Tittensor, Michael Harfoot, Tim Newbold, James Rosindell","doi":"10.1093/sysbio/syaf006","DOIUrl":"10.1093/sysbio/syaf006","url":null,"abstract":"<p><p>The total number of species on earth and the rate at which new species are created are fundamental questions for ecology, evolution and conservation. These questions have typically been approached separately, despite their obvious interconnection. In this study, we approach both questions in conjunction, for all terrestrial animals. To do this, we combine two previously unconnected bodies of theory: general ecosystem models and individual-based ecological neutral theory. General ecosystem models provide us with estimated numbers of individual organisms, separated by functional group and body size. Neutral theory, applied within a guild of functionally similar individuals, connects species richness, speciation rate, and number of individual organisms. In combination, for terrestrial endotherms where species numbers are known, they provide us with estimates for speciation rates as a function of body size and diet class. Extrapolating the same rates to guilds of ectotherms enables us to estimate the species richness of those groups, including species yet to be described. We find that speciation rates per species per million years decrease with increasing body size. Rates are also higher for carnivores compared to omnivores or herbivores of the same body size. Our estimate for the total number of terrestrial species of animals is in the range 1.03-2.92 million species, a value consistent with estimates from previous studies, despite having used a fundamentally new approach. Perhaps what is most remarkable about these results is that they have been obtained using only limited data from larger endotherms and their speciation rates, with the predictive process being based on mechanistic theory. This work illustrates the potential of a new approach to classic eco-evolutionary questions, while also adding weight to existing predictions. As we now face an era of dramatic biological change, new methods will be needed to mechanistically model global biodiversity at the species and individual organism level. This will be a huge challenge but the combination of general ecosystem models and neutral theory that we introduce here is a way to tractably achieve it.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"469-482"},"PeriodicalIF":6.1,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huan-Wen Peng, Yuan-Yuan Ling, Kun-Li Xiang, Andrey S Erst, Xiao-Qian Li, Lian Lian, Bing Liu, Tatyana V Erst, Rosa Del C Ortiz, Florian Jabbour, Wei Wang
-The interplay of key innovation and ecological opportunity is commonly recognized to be the catalyst for rapid radiation. Underground storage organs (USOs), as a vital ecological trait, are advantageous for the adaptation of plants to extreme environments, but receive less attention compared to aboveground organs. Repeated evolution of various USOs has occurred across the plant tree of life. However, whether repeated occurrences of a USO in different clades of a group can promote its replicated radiations in combination with the invasion of similar environments remains poorly known. Corydalis is a megadiverse genus in Papaveraceae and exhibits remarkable variations in USO morphology and biome occupancy. Here, we first generated a robust phylogeny for Corydalis with wide taxonomic and genomic coverage based on plastome and nuclear ribosomal DNA sequence data. By dating the branching events, reconstructing ancestral ranges, evaluating diversification dynamics, and inferring evolutionary patterns of USOs and biomes and their correlations, we then tested whether the interplay of USO evolution and biome shifts has driven rapid diversification of some Corydalis lineages. Our results indicate that Corydalis began to diversify in the Qinghai-Tibet Plateau (QTP) at ca. 41 Ma, and 88% of dispersals happened through forests, suggesting that forests served as important dispersal corridors for range expansion of the genus. The storage root has originated independently at least 6 times in Corydalis since the Miocene, and its acquisition could have operated as a key innovation toward the adaptation to the alpine biome in the QTP. Repeated evolution of this game-changing trait and invasions of alpine biome, in combination with geoclimatic changes, could have jointly driven independent radiations of the 2 clades of Corydalis in the QTP at ca. 6 Ma. Our study provides new insights into the joint contribution of USO repeated evolution and biome shifts to replicated radiations, hence increasing our ability to predict evolutionary trajectories in plants facing similar environmental pressures.
关键创新和生态机会的相互作用被普遍认为是快速辐射的催化剂。地下贮藏器官(USOs)是植物适应极端环境的重要生态性状,但与地上器官相比,受到的关注较少。各种USOs的重复进化发生在整个植物生命树中。然而,在一个群体的不同分支中反复出现的USO是否会促进其复制辐射,并结合类似环境的入侵,目前尚不清楚。紫堇属是罂粟科的一个超级多样性属,在USO形态和生物群落占有方面表现出显著的变化。在这里,我们首先基于质体体和核糖体DNA序列数据,建立了一个具有广泛分类和基因组覆盖的延胡索的强大系统发育。通过确定分支事件的年代,重建祖先范围,评估多样性动态,推断USO和生物群系的进化模式及其相关性,我们验证了USO进化和生物群系变化的相互作用是否驱动了一些延胡索谱系的快速多样化。结果表明,延胡索属植物在青藏高原的分布始于约41 Ma,其中88%的传播是通过森林进行的,表明森林是延胡索属植物扩展范围的重要传播通道。自中新世以来,延胡索属植物至少有6次独立起源,其获得可能是青藏高原适应高山生物群系的关键创新。这一改变游戏规则的特征的反复进化和高寒生物群系的入侵,再加上地理气候变化,可能共同驱动了大约6 Ma QTP中两个支的独立辐射。我们的研究为USO重复进化和生物群系变化对重复辐射的共同贡献提供了新的见解,从而提高了我们预测面临类似环境压力的植物进化轨迹的能力。[生物群系转变;多样化的利率;罂粟科;phylogenomics;青藏高原;地下贮藏器官。
{"title":"Repeated Evolution of Storage Root and Invasions of Alpine Biome Drove Replicated Radiations of the Megadiverse Corydalis (Papaveraceae) in the Qinghai-Tibet Plateau.","authors":"Huan-Wen Peng, Yuan-Yuan Ling, Kun-Li Xiang, Andrey S Erst, Xiao-Qian Li, Lian Lian, Bing Liu, Tatyana V Erst, Rosa Del C Ortiz, Florian Jabbour, Wei Wang","doi":"10.1093/sysbio/syaf014","DOIUrl":"10.1093/sysbio/syaf014","url":null,"abstract":"<p><p>-The interplay of key innovation and ecological opportunity is commonly recognized to be the catalyst for rapid radiation. Underground storage organs (USOs), as a vital ecological trait, are advantageous for the adaptation of plants to extreme environments, but receive less attention compared to aboveground organs. Repeated evolution of various USOs has occurred across the plant tree of life. However, whether repeated occurrences of a USO in different clades of a group can promote its replicated radiations in combination with the invasion of similar environments remains poorly known. Corydalis is a megadiverse genus in Papaveraceae and exhibits remarkable variations in USO morphology and biome occupancy. Here, we first generated a robust phylogeny for Corydalis with wide taxonomic and genomic coverage based on plastome and nuclear ribosomal DNA sequence data. By dating the branching events, reconstructing ancestral ranges, evaluating diversification dynamics, and inferring evolutionary patterns of USOs and biomes and their correlations, we then tested whether the interplay of USO evolution and biome shifts has driven rapid diversification of some Corydalis lineages. Our results indicate that Corydalis began to diversify in the Qinghai-Tibet Plateau (QTP) at ca. 41 Ma, and 88% of dispersals happened through forests, suggesting that forests served as important dispersal corridors for range expansion of the genus. The storage root has originated independently at least 6 times in Corydalis since the Miocene, and its acquisition could have operated as a key innovation toward the adaptation to the alpine biome in the QTP. Repeated evolution of this game-changing trait and invasions of alpine biome, in combination with geoclimatic changes, could have jointly driven independent radiations of the 2 clades of Corydalis in the QTP at ca. 6 Ma. Our study provides new insights into the joint contribution of USO repeated evolution and biome shifts to replicated radiations, hence increasing our ability to predict evolutionary trajectories in plants facing similar environmental pressures.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"359-372"},"PeriodicalIF":6.1,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Phylogenomic Discordance is Driven by Wide-Spread Introgression and Incomplete Lineage Sorting During Rapid Species Diversification Within Rattlesnakes (Viperidae: Crotalus and Sistrurus).","authors":"","doi":"10.1093/sysbio/syaf008","DOIUrl":"10.1093/sysbio/syaf008","url":null,"abstract":"","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"511"},"PeriodicalIF":6.1,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}