Intercellular communication in plants has evolved to occur via elongated cytoplasmic bridges, called plasmodesmata, that traverse the thick cell walls that surround plant cells. Historically, plasmodesmata have been assigned the mostly passive role of creating cytoplasmic continuity between plant cells enabling free transport of the wealth of small plant metabolites and growth hormones under 1 kDa. When it was discovered that plant viruses pirate plasmodesmata for movement of viral genomes during infection, it was proposed that viruses modified plasmodesmata for transport of very large molecules. Now, there is compelling evidence that plasmodesmata are inherently dynamic, rapidly altering their dimensions to increase their transport capabilities, upon contact with viral as well as developmentally important plant proteins. Further, the study of intercellular transport has prompted analyses of intracellular transport pathways, implicating the cytoskeleton as a major tracking system to plasmodesmata. Thus, plasmodesmata form a three-dimensional network of transportation channels and major checkpoints for information transfer. In the following, current knowledge about structure and function of these connective organelles, and about routing of molecules towards plasmodesmata, will be summarized.