首页 > 最新文献

Space Weather最新文献

英文 中文
Machine Learning-Based Emulator for the Physics-Based Simulation of Auroral Current System 基于机器学习的极光电流系统物理模拟器
IF 3.7 2区 地球科学 Pub Date : 2024-01-02 DOI: 10.1029/2023sw003720
Ryuho Kataoka, Aoi Nakamizo, Shinya Nakano, Shigeru Fujita
Using a machine learning technique called echo state network (ESN), we have developed an emulator to model the physics-based global magnetohydrodynamic simulation results of REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date and time, and the outputs are the time series of the ionospheric auroral current system in the form of two-dimensional (2D) patterns of field-aligned current, potential, and conductivity. We mediated a principal component analysis for a dimensionality reduction of the 2D map time series. In this study, we report the latest upgraded Surrogate Model for REPPU Auroral Ionosphere version 2 (SMRAI2) with significantly improved resolutions in time and space (5 min in time, ∼1° in latitude, and 4.5° in longitude), where the dipole tilt angle is also newly added as one of the input parameters to reproduce the seasonal dependence. The fundamental dependencies of the steady-state potential and field-aligned current patterns on the interplanetary magnetic field directions are consistent with those obtained from empirical models. Further, we show that the ESN-based emulator can output the AE index so that we can evaluate the performance of the dynamically changing results, comparing with the observed AE index. Since the ESN-based emulator runs a million times faster than the REPPU simulation, it is promising that we can utilize the emulator for the real-time space weather forecast of the auroral current system as well as to obtain large-number ensembles to achieve future data assimilation-based forecast.
我们利用一种称为回声状态网络(ESN)的机器学习技术,开发了一种仿真器,用于模拟 REPPU(REProduce Plasma Universe)代码基于物理学的全球磁流体动力学模拟结果。输入是带有日期和时间的太阳风时间序列,输出是电离层极光电流系统的时间序列,其形式为场对齐电流、电势和电导率的二维(2D)模式。我们通过主成分分析对二维地图时间序列进行了降维处理。在本研究中,我们报告了最新升级的 REPPU 极光电离层替代模型 2(SMRAI2),其时间和空间分辨率都有显著提高(时间 5 分钟,纬度 ∼ 1°,经度 4.5°),偶极子倾斜角也被新添加为输入参数之一,以再现季节依赖性。稳态电势和场对齐电流模式对行星际磁场方向的基本依赖关系与从经验模型中得到的结果一致。此外,我们还展示了基于 ESN 的仿真器可以输出 AE 指数,这样我们就可以将动态变化的结果与观测到的 AE 指数进行比较,从而评估其性能。由于基于 ESN 的模拟器的运行速度比 REPPU 仿真快一百万倍,我们有望利用该模拟器进行极光海流系统的实时空间天气预报,并获得大量集合,以实现未来基于数据同化的预报。
{"title":"Machine Learning-Based Emulator for the Physics-Based Simulation of Auroral Current System","authors":"Ryuho Kataoka, Aoi Nakamizo, Shinya Nakano, Shigeru Fujita","doi":"10.1029/2023sw003720","DOIUrl":"https://doi.org/10.1029/2023sw003720","url":null,"abstract":"Using a machine learning technique called echo state network (ESN), we have developed an emulator to model the physics-based global magnetohydrodynamic simulation results of REPPU (REProduce Plasma Universe) code. The inputs are the solar wind time series with date and time, and the outputs are the time series of the ionospheric auroral current system in the form of two-dimensional (2D) patterns of field-aligned current, potential, and conductivity. We mediated a principal component analysis for a dimensionality reduction of the 2D map time series. In this study, we report the latest upgraded Surrogate Model for REPPU Auroral Ionosphere version 2 (SMRAI2) with significantly improved resolutions in time and space (5 min in time, ∼1° in latitude, and 4.5° in longitude), where the dipole tilt angle is also newly added as one of the input parameters to reproduce the seasonal dependence. The fundamental dependencies of the steady-state potential and field-aligned current patterns on the interplanetary magnetic field directions are consistent with those obtained from empirical models. Further, we show that the ESN-based emulator can output the AE index so that we can evaluate the performance of the dynamically changing results, comparing with the observed AE index. Since the ESN-based emulator runs a million times faster than the REPPU simulation, it is promising that we can utilize the emulator for the real-time space weather forecast of the auroral current system as well as to obtain large-number ensembles to achieve future data assimilation-based forecast.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"46 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139079549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forward-Looking Study of Solar Maximum Impact in 2025: Effects of Satellite Navigation Failure on Aviation Network Operation in the Greater Bay Area, China 2025 年太阳活动最大影响的前瞻性研究:卫星导航故障对中国粤港澳大湾区航空网络运行的影响
IF 3.7 2区 地球科学 Pub Date : 2023-12-27 DOI: 10.1029/2023sw003678
Dabin Xue, Jian Yang, Zhizhao Liu, Wei Cong
Satellite navigation based on the Global Navigation Satellite System can provide aircraft with more precise guidance and increase flight efficiency. However, severe space weather events can cause satellite navigation failure due to the dramatic increase in total electron content and irregularities in the ionosphere. Consequently, ground navigation has to be used to replace satellite navigation, increasing aircraft separation standards and reducing airspace capacity. As a result, numerous flights may be delayed or even canceled, incurring significant financial losses. The occurrence peak of space weather events generally coincides with the 11-year-cycle solar maximum, and 2025 is expected to be the upcoming solar maximum. The Greater Bay Area (GBA), located in the equatorial ionization anomaly region of China, is particularly vulnerable to space weather impacts. To explore the effects of satellite navigation failure on flight operation, we conduct this looking-forward study and propose solution methods from the standpoint of Air Traffic Management, by simulating satellite navigation failure scenarios. Based on the projected flight volume in 2025 related to the GBA airports, simulation results show that the economic costs can be tens of millions of Euros, which is dependent on the duration of satellite navigation failure and the time interval of ground navigation-based landing. We believe that this study can be a benchmark for evaluating the potential economic effects of forthcoming space weather on flight operations.
基于全球导航卫星系统的卫星导航可为飞机提供更精确的制导,并提高飞行效率。然而,由于电子总含量急剧增加和电离层的不规则性,恶劣的空间天气事件会导致卫星导航失效。因此,必须使用地面导航来取代卫星导航,从而提高了飞机的间隔标准,降低了空域容量。因此,许多航班可能会延误甚至取消,造成重大经济损失。空间天气事件的发生高峰一般与 11 年周期的太阳最大值相吻合,预计 2025 年将是即将到来的太阳最大值。粤港澳大湾区位于中国赤道电离异常区,特别容易受到空间天气的影响。为探讨卫星导航失效对航班运行的影响,我们从空中交通管理的角度出发,通过模拟卫星导航失效场景,进行前瞻性研究并提出解决方法。模拟结果表明,基于 2025 年全球基地航班量的预测,经济损失可达数千万欧元,这取决于卫星导航故障的持续时间和基于地面导航的着陆时间间隔。我们相信,这项研究可以作为评估即将到来的空间天气对航班运行的潜在经济影响的基准。
{"title":"Forward-Looking Study of Solar Maximum Impact in 2025: Effects of Satellite Navigation Failure on Aviation Network Operation in the Greater Bay Area, China","authors":"Dabin Xue, Jian Yang, Zhizhao Liu, Wei Cong","doi":"10.1029/2023sw003678","DOIUrl":"https://doi.org/10.1029/2023sw003678","url":null,"abstract":"Satellite navigation based on the Global Navigation Satellite System can provide aircraft with more precise guidance and increase flight efficiency. However, severe space weather events can cause satellite navigation failure due to the dramatic increase in total electron content and irregularities in the ionosphere. Consequently, ground navigation has to be used to replace satellite navigation, increasing aircraft separation standards and reducing airspace capacity. As a result, numerous flights may be delayed or even canceled, incurring significant financial losses. The occurrence peak of space weather events generally coincides with the 11-year-cycle solar maximum, and 2025 is expected to be the upcoming solar maximum. The Greater Bay Area (GBA), located in the equatorial ionization anomaly region of China, is particularly vulnerable to space weather impacts. To explore the effects of satellite navigation failure on flight operation, we conduct this looking-forward study and propose solution methods from the standpoint of Air Traffic Management, by simulating satellite navigation failure scenarios. Based on the projected flight volume in 2025 related to the GBA airports, simulation results show that the economic costs can be tens of millions of Euros, which is dependent on the duration of satellite navigation failure and the time interval of ground navigation-based landing. We believe that this study can be a benchmark for evaluating the potential economic effects of forthcoming space weather on flight operations.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"27 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric Ionizations by Solar X-Rays, Solar Protons, and Radiation Belt Electrons in September 2017 Space Weather Event 2017 年 9 月空间天气事件中太阳 X 射线、太阳质子和辐射带电子对大气的电离作用
IF 3.7 2区 地球科学 Pub Date : 2023-12-27 DOI: 10.1029/2023sw003651
Kiyoka Murase, Ryuho Kataoka, Takanori Nishiyama, Kaoru Sato, Masaki Tsutsumi, Yoshimasa Tanaka, Yasunobu Ogawa, Tatsuhiko Sato
Energetic particles from space deposit their energies on the Earth's atmosphere and contribute to variations in the concentration of neutral components such as ozone which controls the atmospheric temperature balance. Comprehensive understandings of their global impact on the atmosphere require whole pictures of spatiotemporal ionization distributions due to them. We first attempt to evaluate and summarize the altitude profiles of ionization for the September 2017 space weather event with cutting-edge space-borne and ground-based observations of different types of particle inputs. In early September 2017, the Sun showed notable activity, including X-class flares and solar proton events. During this period, ground-based radar observations have confirmed atmospheric ionization events by energetic particle precipitations of solar flare X-rays, solar protons, and radiation belt electrons, the main sources of ionization into the Earth's atmosphere. We estimate the altitude profiles of the ionization rate by using the Particle and Heavy Ion Transport code System (PHITS) with the input of the particle fluxes obtained by satellites. The estimates are then compared with measurements of the ionization altitude, ionization intensity, and electron density by the radars in the polar region, such as the PANSY radar at Syowa Station and the EISCAT in Tromsø, Norway. We conclude that the PHITS simulation results reasonably reproduce (within the error of a factor of two) those ionizations measured by ground-based instruments with inputs of observed ionization sources by satellites.
来自太空的高能粒子将其能量沉积在地球大气层中,造成臭氧等中性成分浓度的变化,从而控制大气温度平衡。要全面了解它们对大气层的全球影响,就需要了解它们造成的时空电离分布的全貌。我们首先尝试通过对不同类型粒子输入的前沿天基和地基观测,评估和总结 2017 年 9 月空间天气事件的电离高度剖面。2017 年 9 月初,太阳出现了显著的活动,包括 X 级耀斑和太阳质子事件。在此期间,地基雷达观测证实了由太阳耀斑 X 射线、太阳质子和辐射带电子等高能粒子沉淀引起的大气电离事件,它们是进入地球大气层的主要电离源。我们利用粒子和重离子传输代码系统(PHITS),并输入卫星获得的粒子通量,对电离率的高度分布进行了估算。然后,将估算结果与极地地区雷达(如 Syowa 站的 PANSY 雷达和挪威特罗姆瑟的 EISCAT)对电离高度、电离强度和电子密度的测量结果进行比较。我们的结论是,PHITS 模拟结果合理地再现了地面仪器测量到的电离情况(误差在 2 倍以内),并输入了卫星观测到的电离源。
{"title":"Atmospheric Ionizations by Solar X-Rays, Solar Protons, and Radiation Belt Electrons in September 2017 Space Weather Event","authors":"Kiyoka Murase, Ryuho Kataoka, Takanori Nishiyama, Kaoru Sato, Masaki Tsutsumi, Yoshimasa Tanaka, Yasunobu Ogawa, Tatsuhiko Sato","doi":"10.1029/2023sw003651","DOIUrl":"https://doi.org/10.1029/2023sw003651","url":null,"abstract":"Energetic particles from space deposit their energies on the Earth's atmosphere and contribute to variations in the concentration of neutral components such as ozone which controls the atmospheric temperature balance. Comprehensive understandings of their global impact on the atmosphere require whole pictures of spatiotemporal ionization distributions due to them. We first attempt to evaluate and summarize the altitude profiles of ionization for the September 2017 space weather event with cutting-edge space-borne and ground-based observations of different types of particle inputs. In early September 2017, the Sun showed notable activity, including X-class flares and solar proton events. During this period, ground-based radar observations have confirmed atmospheric ionization events by energetic particle precipitations of solar flare X-rays, solar protons, and radiation belt electrons, the main sources of ionization into the Earth's atmosphere. We estimate the altitude profiles of the ionization rate by using the Particle and Heavy Ion Transport code System (PHITS) with the input of the particle fluxes obtained by satellites. The estimates are then compared with measurements of the ionization altitude, ionization intensity, and electron density by the radars in the polar region, such as the PANSY radar at Syowa Station and the EISCAT in Tromsø, Norway. We conclude that the PHITS simulation results reasonably reproduce (within the error of a factor of two) those ionizations measured by ground-based instruments with inputs of observed ionization sources by satellites.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"37 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139057710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the Geoelectric Field in Sweden Over Solar Cycles 23 and 24: Spatial and Temporal Variability During Strong GIC Events 太阳周期 23 和 24 期间的瑞典地电场分析:强烈 GIC 事件期间的空间和时间变异性
IF 3.7 2区 地球科学 Pub Date : 2023-12-27 DOI: 10.1029/2023sw003588
V. Lanabere, A. P. Dimmock, L. Rosenqvist, L. Juusola, A. Viljanen, A. Johlander, E. Odelstad
Geomagnetic storms can produce large perturbations on the Earth magnetic field. Through complex magnetosphere-ionosphere coupling, the geoelectric field (E) and geomagnetic field (B) are highly perturbed. The E is the physical driver of geomagnetically induced currents. However, a statistical study of the E in Sweden has never been done before. We combined geomagnetic data from the International Monitor for Auroral Geomagnetic Effects network in Northern Europe with a 3-D structure of Earth's electrical conductivity in Sweden as the input of a 1-D model to compute the E between 2000 and 2018. Northwestern Sweden presents statistically larger E magnitudes due to larger |dB/dt| variations in the north than in the south of Sweden and relative lower conductivity in the west compared to central and eastern Sweden. In contrast, the 15 strongest daily maximum |E| events present more frequently a maximum magnitude in central Sweden (62.25°N) and their relative strengths are not the same for all latitudes. These results highlight the different regional response to geomagnetic storms, which can be related to ground conductivity variability and the complex magnetosphere-ionosphere coupling mechanisms.
地磁暴会对地球磁场产生巨大的扰动。通过复杂的磁层-电离层耦合,地电场(E)和地磁场(B)受到高度扰动。地电场是地磁感应电流的物理驱动力。然而,瑞典从未对 E 进行过统计研究。我们将北欧极光地磁效应国际监测网的地磁数据与瑞典地球电导率的三维结构相结合,作为一维模型的输入,计算了 2000 年至 2018 年间的 E。与瑞典中部和东部相比,由于瑞典北部的 |dB/dt| 变化比南部大,且西部的电导率相对较低,因此瑞典西北部的 E 值在统计上较大。与此相反,15 个最强的日最大 E 事件中,瑞典中部(北纬 62.25°)出现最大 E 幅值的频率更高,而且各纬度的相对强度也不尽相同。这些结果突显了各地区对地磁暴的不同反应,这可能与地面传导性变化和复杂的磁层-电离层耦合机制有关。
{"title":"Analysis of the Geoelectric Field in Sweden Over Solar Cycles 23 and 24: Spatial and Temporal Variability During Strong GIC Events","authors":"V. Lanabere, A. P. Dimmock, L. Rosenqvist, L. Juusola, A. Viljanen, A. Johlander, E. Odelstad","doi":"10.1029/2023sw003588","DOIUrl":"https://doi.org/10.1029/2023sw003588","url":null,"abstract":"Geomagnetic storms can produce large perturbations on the Earth magnetic field. Through complex magnetosphere-ionosphere coupling, the geoelectric field (<b>E</b>) and geomagnetic field (<b>B</b>) are highly perturbed. The <b>E</b> is the physical driver of geomagnetically induced currents. However, a statistical study of the <b>E</b> in Sweden has never been done before. We combined geomagnetic data from the International Monitor for Auroral Geomagnetic Effects network in Northern Europe with a 3-D structure of Earth's electrical conductivity in Sweden as the input of a 1-D model to compute the <b>E</b> between 2000 and 2018. Northwestern Sweden presents statistically larger <b>E</b> magnitudes due to larger |<i>d</i><b>B</b>/<i>dt</i>| variations in the north than in the south of Sweden and relative lower conductivity in the west compared to central and eastern Sweden. In contrast, the 15 strongest daily maximum |<b>E</b>| events present more frequently a maximum magnitude in central Sweden (62.25°N) and their relative strengths are not the same for all latitudes. These results highlight the different regional response to geomagnetic storms, which can be related to ground conductivity variability and the complex magnetosphere-ionosphere coupling mechanisms.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Horizontal Spatial Correlation of the Ionospheric Day-To-Day Variations at Low Latitudes Based on GOLD Nmax Data 基于 GOLD Nmax 数据的低纬度电离层日间变化的水平空间相关性
IF 3.7 2区 地球科学 Pub Date : 2023-12-27 DOI: 10.1029/2023sw003627
Jiawen Chen, Jiahao Zhong, Yongqiang Hao, Xin Wan, Qiaoling Li, Zijing Tang, Xingyan Song, Hao Han, Kang Wang, Jiawei Kuai, Aojun Ren
Peak electron density data derived from GOLD measurements during 2018–2022 are used to analyze the magnitudes and correlations of ionospheric diurnal variability at low latitudes. The correlation distance describes the correlations between spatial locations and is defined in this paper as the angular separation at which the correlation coefficient decreases from 1 to 0.7. Variations in correlation distance with local time, season, magnetic latitude, solar activity, and geomagnetic activity are discussed in this study. The average value of the zonal correlation distance is approximately 8.55° and 3.56° for the meridional direction at low geomagnetic latitudes (magnetic latitudes <30°). The statistical results indicate that both zonal and meridional correlation distances vary little with local time premidnight, while they show pronounced seasonal and latitudinal variations. Both zonal and meridional correlation distances increase with increasing solar activity and decrease with enhancing geomagnetic activity. The EIA strength and gradient mainly modulate the distributions of correlation distances related to magnetic latitude, season, and solar flux level. An empirical model is constructed to describe the temporal and spatial variations in the correlation distance at low latitudes. The study of correlation distances would contribute to a better understanding of ionospheric variability and improvements in data assimilation.
利用2018-2022年期间GOLD测量得出的峰值电子密度数据分析低纬度电离层昼夜变化的幅度和相关性。相关距离描述了空间位置之间的相关性,本文将其定义为相关系数从1下降到0.7时的角间隔。本研究讨论了相关距离随当地时间、季节、磁纬度、太阳活动和地磁活动的变化。在低地磁纬度(磁纬度 <30°)地区,地带相关距离的平均值约为 8.55°,经向相关距离的平均值约为 3.56°。统计结果表明,日冕相关距离和经向相关距离随当地前夜时间的变化很小,但它们表现出明显的季节和纬度变化。日冕相关距离和子午相关距离都随太阳活动的增加而增加,随地磁活动的增强而减小。EIA强度和梯度主要调节与磁纬、季节和太阳通量水平相关的相关距离分布。建立了一个经验模型来描述低纬度地区相关距离的时空变化。对相关距离的研究将有助于更好地了解电离层的可变性和改进数据同化。
{"title":"Horizontal Spatial Correlation of the Ionospheric Day-To-Day Variations at Low Latitudes Based on GOLD Nmax Data","authors":"Jiawen Chen, Jiahao Zhong, Yongqiang Hao, Xin Wan, Qiaoling Li, Zijing Tang, Xingyan Song, Hao Han, Kang Wang, Jiawei Kuai, Aojun Ren","doi":"10.1029/2023sw003627","DOIUrl":"https://doi.org/10.1029/2023sw003627","url":null,"abstract":"Peak electron density data derived from GOLD measurements during 2018–2022 are used to analyze the magnitudes and correlations of ionospheric diurnal variability at low latitudes. The correlation distance describes the correlations between spatial locations and is defined in this paper as the angular separation at which the correlation coefficient decreases from 1 to 0.7. Variations in correlation distance with local time, season, magnetic latitude, solar activity, and geomagnetic activity are discussed in this study. The average value of the zonal correlation distance is approximately 8.55° and 3.56° for the meridional direction at low geomagnetic latitudes (magnetic latitudes &lt;30°). The statistical results indicate that both zonal and meridional correlation distances vary little with local time premidnight, while they show pronounced seasonal and latitudinal variations. Both zonal and meridional correlation distances increase with increasing solar activity and decrease with enhancing geomagnetic activity. The EIA strength and gradient mainly modulate the distributions of correlation distances related to magnetic latitude, season, and solar flux level. An empirical model is constructed to describe the temporal and spatial variations in the correlation distance at low latitudes. The study of correlation distances would contribute to a better understanding of ionospheric variability and improvements in data assimilation.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"76 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAM-SCB Runs on Request at CCMC RAM-SCB 应要求在 CCMC 运行
IF 3.7 2区 地球科学 Pub Date : 2023-12-26 DOI: 10.1029/2023sw003771
Steven K. Morley, Vania K. Jordanova, Yihua Zheng, Maksym Petrenko
The Ring current–Atmosphere interactions Model (RAM) with Self-Consistent magnetic (B) field (SCB) combines a large-scale kinetic model of ring current plasma with a three-dimensional (3-D) force-balanced model of the terrestrial magnetic field. RAM-SCB simulates the evolution of major ion species (H+, O+, and He+ by default) and electrons as a function of azimuth, radial distance, energy, and pitch angle. Simulation outputs include the Dst index, and pressure and differential flux of the modeled species, thus providing benefit as a science code and to inform surface charging hazard within the model domain. Version 2.2 of this open-source simulation code has now—as of 8 August 2023—been made available for Runs-On-Request via the Community Coordinated Modeling Center.
具有自洽磁场(B)的环流-大气相互作用模型(RAM)结合了环流等离子体的大规模动力学模型和地球磁场的三维(3-D)力平衡模型。RAM-SCB 模拟主要离子种类(默认为 H+、O+ 和 He+)和电子随方位角、径向距离、能量和俯仰角变化的过程。模拟输出包括 Dst 指数以及建模物种的压力和差分通量,因此可作为科学代码使用,并为模型域内的表面充电危险提供信息。截至 2023 年 8 月 8 日,该开源模拟代码的 2.2 版已可通过社区协调建模中心按要求运行。
{"title":"RAM-SCB Runs on Request at CCMC","authors":"Steven K. Morley, Vania K. Jordanova, Yihua Zheng, Maksym Petrenko","doi":"10.1029/2023sw003771","DOIUrl":"https://doi.org/10.1029/2023sw003771","url":null,"abstract":"The Ring current–Atmosphere interactions Model (RAM) with Self-Consistent magnetic (B) field (SCB) combines a large-scale kinetic model of ring current plasma with a three-dimensional (3-D) force-balanced model of the terrestrial magnetic field. RAM-SCB simulates the evolution of major ion species (H<sup>+</sup>, O<sup>+</sup>, and He<sup>+</sup> by default) and electrons as a function of azimuth, radial distance, energy, and pitch angle. Simulation outputs include the Dst index, and pressure and differential flux of the modeled species, thus providing benefit as a science code and to inform surface charging hazard within the model domain. Version 2.2 of this open-source simulation code has now—as of 8 August 2023—been made available for Runs-On-Request via the Community Coordinated Modeling Center.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"71 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Pipe to Soil Potentials From Geomagnetic Storms in Gas Pipelines in New Zealand 新西兰天然气管道地磁暴引起的管道到土壤电位建模
IF 3.7 2区 地球科学 Pub Date : 2023-12-19 DOI: 10.1029/2023sw003601
Tim Divett, Malcolm Ingham, Gemma Richardson, Mark Sigley, Craig J. Rodger
Gas pipelines can experience elevated pipe to soil potentials (PSPs) during geomagnetic disturbances due to the induced geoelectric field. Gas pipeline operators use cathodic protection to keep PSPs between −0.85 and −1.2 V to prevent corrosion of the steel pipes and disbondment of the protective coating from the pipes. We have developed a model of the gas pipelines in the North Island of New Zealand to identify whether a hazard exists to these pipelines and how big this hazard is. We used a transmission line representation to model the pipelines and a nodal admittance matrix method to calculate the PSPs at nodes up to 5 km apart along the pipelines. We used this model to calculate PSPs resulting from an idealized 100 mVkm−1 electric field, initially to the north and east. The calculated PSPs are highest are at the ends of the pipelines in the direction of the applied electric field vector. The calculated PSP follows a characteristic curve along the length of the pipelines that matches theory, with deviations due to branchlines and changes in pipeline direction. The modeling shows that the PSP magnitudes are sensitive to the branchline coating conductance with higher coating conductances decreasing the PSPs at most locations. Enhanced PSPs produce the highest risk of disbondment and corrosion occurring, and hence this modeling provides insights into the network locations most at risk.
在地磁扰动期间,由于感应地电场的作用,天然气管道会出现管道与土壤电位(PSP)升高的现象。天然气管道运营商使用阴极保护将 PSP 保持在 -0.85 至 -1.2 V 之间,以防止钢管腐蚀和管道保护层脱落。我们为新西兰北岛的天然气管道开发了一个模型,以确定这些管道是否存在危险以及这种危险有多大。我们使用输电线表示法对管道进行建模,并使用节点导纳矩阵法计算管道沿线最多相距 5 千米的节点处的 PSP。我们使用该模型计算了由理想化的 100 mVkm-1 电场产生的 PSP,该电场最初向北和向东。计算得出的最大 PSP 值位于外加电场矢量方向的管道两端。计算得出的 PSP 沿管道长度方向呈现一条与理论相符的特征曲线,但由于分支线和管道方向的变化而出现偏差。建模结果表明,PSP 幅值对支线涂层电导率很敏感,涂层电导率越高,大多数位置的 PSP 就越小。增强的 PSP 会产生最高的脱粘和腐蚀风险,因此该建模可帮助我们深入了解风险最高的管网位置。
{"title":"Modeling Pipe to Soil Potentials From Geomagnetic Storms in Gas Pipelines in New Zealand","authors":"Tim Divett, Malcolm Ingham, Gemma Richardson, Mark Sigley, Craig J. Rodger","doi":"10.1029/2023sw003601","DOIUrl":"https://doi.org/10.1029/2023sw003601","url":null,"abstract":"Gas pipelines can experience elevated pipe to soil potentials (PSPs) during geomagnetic disturbances due to the induced geoelectric field. Gas pipeline operators use cathodic protection to keep PSPs between −0.85 and −1.2 V to prevent corrosion of the steel pipes and disbondment of the protective coating from the pipes. We have developed a model of the gas pipelines in the North Island of New Zealand to identify whether a hazard exists to these pipelines and how big this hazard is. We used a transmission line representation to model the pipelines and a nodal admittance matrix method to calculate the PSPs at nodes up to 5 km apart along the pipelines. We used this model to calculate PSPs resulting from an idealized 100 mVkm<sup>−1</sup> electric field, initially to the north and east. The calculated PSPs are highest are at the ends of the pipelines in the direction of the applied electric field vector. The calculated PSP follows a characteristic curve along the length of the pipelines that matches theory, with deviations due to branchlines and changes in pipeline direction. The modeling shows that the PSP magnitudes are sensitive to the branchline coating conductance with higher coating conductances decreasing the PSPs at most locations. Enhanced PSPs produce the highest risk of disbondment and corrosion occurring, and hence this modeling provides insights into the network locations most at risk.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138824138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radio Absorption in the Nightside Ionosphere of Mars During Solar Energetic Particle Events 太阳高能粒子事件期间火星夜侧电离层的无线电吸收
IF 3.7 2区 地球科学 Pub Date : 2023-12-19 DOI: 10.1029/2023sw003755
Y. Harada, Y. Nakamura, B. Sánchez-Cano, M. Lester, N. Terada, F. Leblanc
Characterization, understanding, and prediction of the Martian radio environment are of increasing importance to the forthcoming human exploration of Mars. Here we investigate 3–5 MHz radio absorption in the nightside ionosphere of Mars caused by enhanced ionization at <100 km altitudes during solar energetic particle (SEP) events. We conduct a quantitative analysis of radio absorption and SEP flux data that have been accumulated by two spacecraft currently orbiting Mars, thereby demonstrating that radio absorption is clearly correlated with SEP fluxes. A comparison of the observations with radio absorption properties predicted by a numerical model indicates that the relative temporal changes, radio frequency dependence, and SEP energy dependence of the observed radio absorption are in agreement with the model prediction. Meanwhile, the model systematically overestimates the radio absorption in the ionosphere by a factor of 3.7. We explore several sources of uncertainty, including the electron-neutral collision frequency, absolute sensitivity of the SEP instrument, and limited transport of SEPs to the atmosphere, but the ultimate cause of the systematic discrepancy between the measured and modeled radio absorption is yet to be identified. Further efforts should be put into the development of a comprehensive and observationally validated model of radio absorption in the Martian ionosphere to assist the future crew and spacecraft activities on the surface of Mars.
火星无线电环境的特征描述、了解和预测对于即将进行的人类火星探测越来越重要。在此,我们研究了太阳高能粒子(SEP)事件期间,火星夜侧电离层中因 100 公里高度电离增强而产生的 3-5 MHz 无线电吸收。我们对目前环绕火星运行的两个航天器积累的无线电吸收和太阳能量粒子通量数据进行了定量分析,从而证明无线电吸收与太阳能量粒子通量明显相关。将观测结果与数值模型预测的射电吸收特性进行比较后发现,观测到的射电吸收的相对时间变化、射电频率依赖性和SEP能量依赖性与模型预测一致。同时,模型系统地高估了电离层的射电吸收,高估了 3.7 倍。我们探讨了不确定性的几个来源,包括电子-中性碰撞频率、SEP 仪器的绝对灵敏度、SEP 对大气的有限传输等,但测量到的无线电吸收与模型的系统性差异的最终原因仍有待确定。应进一步努力开发一个全面的、经过观测验证的火星电离层无线电吸收模型,以帮助未来的乘员和航天器在火星表面开展活动。
{"title":"Radio Absorption in the Nightside Ionosphere of Mars During Solar Energetic Particle Events","authors":"Y. Harada, Y. Nakamura, B. Sánchez-Cano, M. Lester, N. Terada, F. Leblanc","doi":"10.1029/2023sw003755","DOIUrl":"https://doi.org/10.1029/2023sw003755","url":null,"abstract":"Characterization, understanding, and prediction of the Martian radio environment are of increasing importance to the forthcoming human exploration of Mars. Here we investigate 3–5 MHz radio absorption in the nightside ionosphere of Mars caused by enhanced ionization at &lt;100 km altitudes during solar energetic particle (SEP) events. We conduct a quantitative analysis of radio absorption and SEP flux data that have been accumulated by two spacecraft currently orbiting Mars, thereby demonstrating that radio absorption is clearly correlated with SEP fluxes. A comparison of the observations with radio absorption properties predicted by a numerical model indicates that the relative temporal changes, radio frequency dependence, and SEP energy dependence of the observed radio absorption are in agreement with the model prediction. Meanwhile, the model systematically overestimates the radio absorption in the ionosphere by a factor of 3.7. We explore several sources of uncertainty, including the electron-neutral collision frequency, absolute sensitivity of the SEP instrument, and limited transport of SEPs to the atmosphere, but the ultimate cause of the systematic discrepancy between the measured and modeled radio absorption is yet to be identified. Further efforts should be put into the development of a comprehensive and observationally validated model of radio absorption in the Martian ionosphere to assist the future crew and spacecraft activities on the surface of Mars.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138824204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topside Electron Density Modeling Using Neural Network and Empirical Model Predictions 利用神经网络和经验模型预测进行顶层电子密度建模
IF 3.7 2区 地球科学 Pub Date : 2023-12-19 DOI: 10.1029/2023sw003501
S. Dutta, M. B. Cohen
We model the electron density in the topside of the ionosphere with an improved machine learning (ML) model and compare it to existing empirical models, specifically the International Reference Ionosphere (IRI) and the Empirical-Canadian High Arctic Ionospheric Model (E-CHAIM). In prior work, an artificial neural network (NN) was developed and trained on two solar cycles worth of Defense Meteorological Satellite Program data (113 satellite-years), along with global drivers and indices to predict topside electron density. In this paper, we highlight improvements made to this NN, and present a detailed comparison of the new model to E-CHAIM and IRI as a function of location, geomagnetic condition, time of year, and solar local time. We discuss precision and accuracy metrics to better understand model strengths and weaknesses. The updated neural network shows improved mid-latitude performance with absolute errors lower than the IRI by 2.5 × 109 to 2.5 × 1010 e/m3, modestly improved performance in disturbed geomagnetic conditions with absolute errors reduced by about 2.5 × 109 e/m3 at high Kp compared to the IRI, and high Kp percentage errors reduced by >50% when compared to E-CHAIM.
我们用改进的机器学习(ML)模型来模拟电离层顶部的电子密度,并将其与现有的经验模型,特别是国际参考电离层(IRI)和经验-加拿大北极高电离层模型(E-CHAIM)进行比较。在之前的工作中,我们开发了一个人工神经网络(NN),并根据两个太阳周期的国防气象卫星计划数据(113 个卫星年)以及全球驱动因素和指数对其进行了训练,以预测顶部电子密度。在本文中,我们将重点介绍对 NN 所做的改进,并详细比较新模型与 E-CHAIM 和 IRI 在位置、地磁条件、年度时间和太阳当地时间方面的函数关系。我们讨论了精度和准确度指标,以更好地了解模型的优缺点。更新后的神经网络改善了中纬度的性能,绝对误差比 IRI 低 2.5 × 109 到 2.5 × 1010 e-/m3,在干扰地磁条件下的性能略有改善,与 IRI 相比,在高 Kp 时绝对误差减少了约 2.5 × 109 e-/m3,与 E-CHAIM 相比,高 Kp 百分比误差减少了 50%。
{"title":"Topside Electron Density Modeling Using Neural Network and Empirical Model Predictions","authors":"S. Dutta, M. B. Cohen","doi":"10.1029/2023sw003501","DOIUrl":"https://doi.org/10.1029/2023sw003501","url":null,"abstract":"We model the electron density in the topside of the ionosphere with an improved machine learning (ML) model and compare it to existing empirical models, specifically the International Reference Ionosphere (IRI) and the Empirical-Canadian High Arctic Ionospheric Model (E-CHAIM). In prior work, an artificial neural network (NN) was developed and trained on two solar cycles worth of Defense Meteorological Satellite Program data (113 satellite-years), along with global drivers and indices to predict topside electron density. In this paper, we highlight improvements made to this NN, and present a detailed comparison of the new model to E-CHAIM and IRI as a function of location, geomagnetic condition, time of year, and solar local time. We discuss precision and accuracy metrics to better understand model strengths and weaknesses. The updated neural network shows improved mid-latitude performance with absolute errors lower than the IRI by 2.5 × 10<sup>9</sup> to 2.5 × 10<sup>10</sup> e<sup>−</sup>/m<sup>3</sup>, modestly improved performance in disturbed geomagnetic conditions with absolute errors reduced by about 2.5 × 10<sup>9</sup> e<sup>−</sup>/m<sup>3</sup> at high Kp compared to the IRI, and high Kp percentage errors reduced by &gt;50% when compared to E-CHAIM.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"40 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space Weather in the Popular Media, and the Opportunities the Upcoming Solar Maximum Brings 大众媒体中的太空天气,以及即将到来的太阳活动高峰带来的机遇
IF 3.7 2区 地球科学 Pub Date : 2023-12-15 DOI: 10.1029/2023sw003819
Brett A. Carter, Noé Lugaz, Steven K. Morley, Jennifer Gannon, Shasha Zou, Huixin Liu
The media interest/coverage of space weather has been increasing as we approach solar maximum and the private space industry has grown significantly since the last significant solar maximum in 2000–2002. It is not uncommon for space weather media coverage to use hyperbole with frequent references to the infamous “Carrington event.” The implications of associating each of the many upcoming moderate-to-severe storms with the Carrington event are discussed, and we encourage the curbing of hyperbole whenever possible. While there is an excellent but small cohort of space weather researchers actively engaging with the media, we urge more (particularly early-to-mid career) to take advantage of media training resources and to join in. We also call for these efforts to be broadly supported by peers and institutions for the benefit of space weather as a discipline.
随着太阳极大期的临近,媒体对空间天气的兴趣/报道不断增加,自 2000-2002 年上一次太阳极大期以来,私营航天工业也有了显著发展。空间天气媒体报道经常使用夸张的手法,经常提到臭名昭著的 "卡林顿事件"。我们讨论了将即将到来的中到强风暴与卡林顿事件联系在一起的含义,并鼓励尽可能抑制夸张的说法。虽然有一小部分优秀的空间天气研究人员在积极与媒体接触,但我们敦促更多的研究人员(尤其是职业生涯初期到中期的研究人员)利用媒体培训资源并加入进来。我们还呼吁这些努力得到同行和机构的广泛支持,以促进空间气象学科的发展。
{"title":"Space Weather in the Popular Media, and the Opportunities the Upcoming Solar Maximum Brings","authors":"Brett A. Carter, Noé Lugaz, Steven K. Morley, Jennifer Gannon, Shasha Zou, Huixin Liu","doi":"10.1029/2023sw003819","DOIUrl":"https://doi.org/10.1029/2023sw003819","url":null,"abstract":"The media interest/coverage of space weather has been increasing as we approach solar maximum and the private space industry has grown significantly since the last significant solar maximum in 2000–2002. It is not uncommon for space weather media coverage to use hyperbole with frequent references to the infamous “Carrington event.” The implications of associating each of the many upcoming moderate-to-severe storms with the Carrington event are discussed, and we encourage the curbing of hyperbole whenever possible. While there is an excellent but small cohort of space weather researchers actively engaging with the media, we urge more (particularly early-to-mid career) to take advantage of media training resources and to join in. We also call for these efforts to be broadly supported by peers and institutions for the benefit of space weather as a discipline.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"34 3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Space Weather
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1