首页 > 最新文献

Space Weather最新文献

英文 中文
Investigation of the Physical Mechanisms of the Formation and Evolution of Equatorial Plasma Bubbles During a Moderate Storm on 17 September 2021 2021 年 9 月 17 日中等强度风暴期间赤道等离子体气泡形成和演变的物理机制研究
IF 3.7 2区 地球科学 Pub Date : 2023-12-15 DOI: 10.1029/2023sw003673
Kun Wu, Liying Qian, Wenbin Wang, Xuguang Cai, Joseph M. Mclnerney
We investigate in detail the occurrence and evolution of ionospheric equatorial plasma bubbles (EPBs) during a moderate storm on 17 September 2021, using Global-scale Observations of the Limb and Disk (GOLD) observations and Whole Atmosphere Community Climate Model-eXtended (WACCM-X) simulations. GOLD observations show that there were no EPBs on 16 September before the storm but EPBs occurred after the storm commencement on 17 September. The EPBs extended to ∼30° magnetic latitude. A diagnostic analysis of WACCM-X simulations reveals that the rapid enhancement of prompt penetration electric fields (PPEFs) after the sudden storm commencement is the main reason that triggered the occurrence of the EPBs. Further quantitative analysis shows that vertical plasma drifts, which are enhanced by the PPEF, played a dominant role in strengthening the Rayleigh-Taylor instability, leading to the occurrence of the EPBs and the large latitudinal extension of the EPBs to ∼30° magnetic latitude during the night of 17 September.
我们利用全球尺度肢盘观测(GOLD)和全大气层群气候模式-扩展版(WACCM-X)模拟,详细研究了 2021 年 9 月 17 日中等强度风暴期间电离层赤道等离子体气泡(EPB)的发生和演变情况。GOLD 观测结果表明,9 月 16 日风暴前没有 EPB,但 9 月 17 日风暴开始后出现了 EPB。EPB 扩展到了∼30°的磁纬度。对 WACCM-X 模拟的诊断分析表明,风暴突然开始后快速穿透电场(PPEFs)的快速增强是引发 EPBs 出现的主要原因。进一步的定量分析表明,等离子体垂直漂移在加强雷利-泰勒不稳定性方面发挥了主导作用,从而导致了 EPB 的发生,并在 9 月 17 日夜间将 EPB 的纬度大幅扩展到了磁纬 30°。
{"title":"Investigation of the Physical Mechanisms of the Formation and Evolution of Equatorial Plasma Bubbles During a Moderate Storm on 17 September 2021","authors":"Kun Wu, Liying Qian, Wenbin Wang, Xuguang Cai, Joseph M. Mclnerney","doi":"10.1029/2023sw003673","DOIUrl":"https://doi.org/10.1029/2023sw003673","url":null,"abstract":"We investigate in detail the occurrence and evolution of ionospheric equatorial plasma bubbles (EPBs) during a moderate storm on 17 September 2021, using Global-scale Observations of the Limb and Disk (GOLD) observations and Whole Atmosphere Community Climate Model-eXtended (WACCM-X) simulations. GOLD observations show that there were no EPBs on 16 September before the storm but EPBs occurred after the storm commencement on 17 September. The EPBs extended to ∼30° magnetic latitude. A diagnostic analysis of WACCM-X simulations reveals that the rapid enhancement of prompt penetration electric fields (PPEFs) after the sudden storm commencement is the main reason that triggered the occurrence of the EPBs. Further quantitative analysis shows that vertical plasma drifts, which are enhanced by the PPEF, played a dominant role in strengthening the Rayleigh-Taylor instability, leading to the occurrence of the EPBs and the large latitudinal extension of the EPBs to ∼30° magnetic latitude during the night of 17 September.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"27 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validating Ionospheric Models Against Technologically Relevant Metrics 根据技术相关指标验证电离层模型
IF 3.7 2区 地球科学 Pub Date : 2023-12-15 DOI: 10.1029/2023sw003590
A. T. Chartier, J. Steele, G. Sugar, D. R. Themens, S. K. Vines, J. D. Huba
New, open access tools have been developed to validate ionospheric models in terms of technologically relevant metrics. These are ionospheric errors on GPS 3D position, HF ham radio communications, and peak F-region density. To demonstrate these tools, we have used output from Sami is Another Model of the Ionosphere (SAMI3) driven by high-latitude electric potentials derived from Active Magnetosphere and Planetary Electrodynamics Response Experiment, covering the first available month of operation using Iridium-NEXT data (March 2019). Output of this model is now available for visualization and download via https://sami3.jhuapl.edu. The GPS test indicates SAMI3 reduces ionospheric errors on 3D position solutions from 1.9 m with no model to 1.6 m on average (maximum error: 14.2 m without correction, 13.9 m with correction). SAMI3 predicts 55.5% of reported amateur radio links between 2–30 MHz and 500–2,000 km. Autoscaled and then machine learning “cleaned” Digisonde NmF2 data indicate a 1.0 × 1011 el. m3 median positive bias in SAMI3 (equivalent to a 27% overestimation). The positive NmF2 bias is largest during the daytime, which may explain the relatively good performance in predicting HF links then. The underlying data sources and software used here are publicly available, so that interested groups may apply these tests to other models and time intervals.
已开发出新的开放式工具,用于根据技术相关指标验证电离层模型。这些指标是电离层对全球定位系统三维定位、高频火腿无线电通信和峰值 F 区密度的误差。为了演示这些工具,我们使用了萨米是电离层的另一个模型(SAMI3)的输出,该模型由主动磁层和行星电动力学响应实验得出的高纬度电势驱动,覆盖了使用铱星-NEXT数据运行的第一个可用月份(2019年3月)。该模型的输出现在可通过 https://sami3.jhuapl.edu 进行可视化和下载。GPS 测试表明,SAMI3 将电离层对 3D 定位解决方案的误差从无模型时的 1.9 米减少到平均 1.6 米(最大误差:无修正时 14.2 米,有修正时 13.9 米)。SAMI3 预测了 55.5% 报告的 2-30 MHz 和 500-2,000 km 之间的业余无线电链路。经过自动缩放和机器学习 "净化 "的 Digisonde NmF2 数据表明,SAMI3 的正偏差中值为 1.0 × 1011 el. m3(相当于高估 27%)。NmF2 的正偏差在白天最大,这可能是白天预测高频链路性能相对较好的原因。这里使用的基础数据源和软件都是公开的,因此有兴趣的团体可以将这些测试应用于其他模型和时间间隔。
{"title":"Validating Ionospheric Models Against Technologically Relevant Metrics","authors":"A. T. Chartier, J. Steele, G. Sugar, D. R. Themens, S. K. Vines, J. D. Huba","doi":"10.1029/2023sw003590","DOIUrl":"https://doi.org/10.1029/2023sw003590","url":null,"abstract":"New, open access tools have been developed to validate ionospheric models in terms of technologically relevant metrics. These are ionospheric errors on GPS 3D position, HF ham radio communications, and peak F-region density. To demonstrate these tools, we have used output from Sami is Another Model of the Ionosphere (SAMI3) driven by high-latitude electric potentials derived from Active Magnetosphere and Planetary Electrodynamics Response Experiment, covering the first available month of operation using Iridium-NEXT data (March 2019). Output of this model is now available for visualization and download via https://sami3.jhuapl.edu. The GPS test indicates SAMI3 reduces ionospheric errors on 3D position solutions from 1.9 m with no model to 1.6 m on average (maximum error: 14.2 m without correction, 13.9 m with correction). SAMI3 predicts 55.5% of reported amateur radio links between 2–30 MHz and 500–2,000 km. Autoscaled and then machine learning “cleaned” Digisonde NmF2 data indicate a 1.0 × 10<sup>11</sup> el. m<sup>3</sup> median positive bias in SAMI3 (equivalent to a 27% overestimation). The positive NmF2 bias is largest during the daytime, which may explain the relatively good performance in predicting HF links then. The underlying data sources and software used here are publicly available, so that interested groups may apply these tests to other models and time intervals.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"37 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Surrogate Model for Studying Solar Energetic Particle Transport and the Seed Population 研究太阳高能粒子传输和种子群的替代模型
IF 3.7 2区 地球科学 Pub Date : 2023-12-12 DOI: 10.1029/2023sw003593
Atilim Guneş Baydin, Bala Poduval, Nathan A. Schwadron
The high energy particles originating from the Sun, known as solar energetic particles (SEPs), contribute significantly to the space radiation environment, posing serious threats to astronauts and scientific instruments on board spacecraft. The mechanism that accelerates the SEPs to the observed energy ranges, their transport in the inner heliosphere, and the influence of suprathermal seed particle spectrum are open questions in heliophysics. Accurate predictions of the occurrences of SEP events well in advance are necessary to mitigate their adverse effects but prediction based on first principle models still remains a challenge. In this scenario, adopting a machine learning approach to SEP modeling and prediction is desirable. However, the lack of a balanced database of SEP events restrains this approach. We addressed this limitation by generating large data sets of synthetic SEP events sampled from the physics-based model, Energetic Particle Radiation Environment Module (EPREM). Using this data, we developed neural networks-based surrogate models to study the seed population parameter space. Our models, EPREM-S, run thousands to millions of times faster (depending on computer hardware), making simulation-based inference workflows practicable in SEP studies while providing predictive uncertainty estimates using a deep ensemble approach.
源自太阳的高能粒子,即太阳高能粒子,对空间辐射环境的影响很大,对宇航员和航天器上的科学仪器构成严重威胁。加速sep到观测能量范围的机制、它们在日球层内部的输运以及超热种子粒子谱的影响是太阳物理学中尚未解决的问题。提前准确预测SEP事件的发生是必要的,以减轻其不利影响,但基于第一性原理模型的预测仍然是一个挑战。在这种情况下,采用机器学习方法进行SEP建模和预测是可取的。然而,缺乏一个平衡的SEP事件数据库限制了这种方法。我们通过生成从基于物理的模型高能粒子辐射环境模块(EPREM)中采样的合成SEP事件的大型数据集来解决这一限制。利用这些数据,我们建立了基于神经网络的代理模型来研究种子种群参数空间。我们的模型EPREM-S运行速度快数千到数百万倍(取决于计算机硬件),使基于模拟的推理工作流程在SEP研究中可行,同时使用深度集成方法提供预测不确定性估计。
{"title":"A Surrogate Model for Studying Solar Energetic Particle Transport and the Seed Population","authors":"Atilim Guneş Baydin, Bala Poduval, Nathan A. Schwadron","doi":"10.1029/2023sw003593","DOIUrl":"https://doi.org/10.1029/2023sw003593","url":null,"abstract":"The high energy particles originating from the Sun, known as solar energetic particles (SEPs), contribute significantly to the space radiation environment, posing serious threats to astronauts and scientific instruments on board spacecraft. The mechanism that accelerates the SEPs to the observed energy ranges, their transport in the inner heliosphere, and the influence of suprathermal seed particle spectrum are open questions in heliophysics. Accurate predictions of the occurrences of SEP events well in advance are necessary to mitigate their adverse effects but prediction based on first principle models still remains a challenge. In this scenario, adopting a machine learning approach to SEP modeling and prediction is desirable. However, the lack of a balanced database of SEP events restrains this approach. We addressed this limitation by generating large data sets of synthetic SEP events sampled from the physics-based model, Energetic Particle Radiation Environment Module (EPREM). Using this data, we developed neural networks-based surrogate models to study the seed population parameter space. Our models, EPREM-S, run thousands to millions of times faster (depending on computer hardware), making simulation-based inference workflows practicable in SEP studies while providing predictive uncertainty estimates using a deep ensemble approach.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"286 1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138629176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geomagnetic Storm Effects on the LEO Proton Flux During Solar Energetic Particle Events 太阳高能粒子事件期间地磁风暴对低地球轨道质子通量的影响
IF 3.7 2区 地球科学 Pub Date : 2023-12-11 DOI: 10.1029/2023sw003664
Kirolosse M. Girgis, Tohru Hada, Akimasa Yoshikawa, Shuichi Matsukiyo, Viviane Pierrard, Susan W. Samwel
During a few solar energetic particle (SEP) events, solar protons were trapped within the geomagnetic field and reached the outer edge of the inner radiation belt. We reproduced this phenomenon by modeling the proton flux distribution at the Low-Earth Orbit (LEO) for different geomagnetic conditions during solar particle events. We developed a three-dimensional relativistic test particle simulation code to compute the 70–180 MeV solar proton Lorentz trajectories in low L-shell range from 1 to 3. The Tsyganenko model (T01) generated the background static magnetic field with the IGRF (v12) model. We have selected three Dst index values: −7, −150, and −210 nT, to define quiet time, strong, and severe geomagnetic storms and to generate the corresponding inner magnetic field configurations. Our results showed that the simulated solar proton flux was more enhanced in the high-latitude regions and more expanded toward the lower latitude range as long as the geomagnetic storm was intensified. Satellite observations and geomagnetic cutoff rigidities confirmed the numerical results. Furthermore, the LEO proton flux distribution was deformed, so the structure of the proton flux inside the South Atlantic Anomaly (SAA) became longitudinally extended as the Dst index decreased. Moreover, we have assessed the corresponding radiation environment of the LEO mission. We realized that, for a higher inclined LEO mission during an intense geomagnetic storm (Dst = −210 nT), the probability of the occurrence of the Single Event Upset (SEU) rates increased by 19% and the estimated accumulated absorbed radiation doses increased by 17% in comparison with quiet conditions.
在几次太阳高能粒子(SEP)事件中,太阳质子被困在地磁场内,并到达了内辐射带的外缘。我们通过模拟太阳粒子事件期间不同地磁条件下低地轨道(LEO)的质子通量分布,再现了这一现象。我们开发了一个三维相对论测试粒子模拟代码,以计算低 L 壳范围从 1 到 3 的 70-180 MeV 太阳质子洛伦兹轨迹。我们选择了三个 Dst 指数值:我们选择了三个 Dst 指数值:-7、-150 和 -210 nT,来定义静止时间、强地磁暴和严重地磁暴,并生成相应的内磁场配置。结果表明,只要地磁暴加强,模拟的太阳质子通量在高纬度地区就会增强,并向低纬度范围扩展。卫星观测和地磁截止刚度证实了数值结果。此外,低地轨道质子通量分布发生了变形,因此随着 Dst 指数的降低,南大西洋异常(SAA)内部的质子通量结构变得纵向延伸。此外,我们还评估了低地轨道任务的相应辐射环境。我们意识到,在强烈地磁暴期间(Dst = -210nT),对于倾斜度较大的低地球轨道飞行任务来说,与安静状态相比,发生单次事件骤变(SEU)的概率增加了 19%,估计的累积吸收辐射剂量增加了 17%。
{"title":"Geomagnetic Storm Effects on the LEO Proton Flux During Solar Energetic Particle Events","authors":"Kirolosse M. Girgis, Tohru Hada, Akimasa Yoshikawa, Shuichi Matsukiyo, Viviane Pierrard, Susan W. Samwel","doi":"10.1029/2023sw003664","DOIUrl":"https://doi.org/10.1029/2023sw003664","url":null,"abstract":"During a few solar energetic particle (SEP) events, solar protons were trapped within the geomagnetic field and reached the outer edge of the inner radiation belt. We reproduced this phenomenon by modeling the proton flux distribution at the Low-Earth Orbit (LEO) for different geomagnetic conditions during solar particle events. We developed a three-dimensional relativistic test particle simulation code to compute the 70–180 MeV solar proton Lorentz trajectories in low <i>L</i>-shell range from 1 to 3. The Tsyganenko model (T01) generated the background static magnetic field with the IGRF (v12) model. We have selected three <i>Dst</i> index values: −7, −150, and −210 nT, to define quiet time, strong, and severe geomagnetic storms and to generate the corresponding inner magnetic field configurations. Our results showed that the simulated solar proton flux was more enhanced in the high-latitude regions and more expanded toward the lower latitude range as long as the geomagnetic storm was intensified. Satellite observations and geomagnetic cutoff rigidities confirmed the numerical results. Furthermore, the LEO proton flux distribution was deformed, so the structure of the proton flux inside the South Atlantic Anomaly (SAA) became longitudinally extended as the <i>Dst</i> index decreased. Moreover, we have assessed the corresponding radiation environment of the LEO mission. We realized that, for a higher inclined LEO mission during an intense geomagnetic storm (<i>Dst</i> = −210 nT), the probability of the occurrence of the Single Event Upset (SEU) rates increased by 19% and the estimated accumulated absorbed radiation doses increased by 17% in comparison with quiet conditions.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"67 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling “Wrong Side” Failures Caused by Geomagnetically Induced Currents in Electrified Railway Signaling Systems in the UK 英国电气化铁路信号系统地磁诱导电流导致的 "错边 "故障建模
IF 3.7 2区 地球科学 Pub Date : 2023-12-11 DOI: 10.1029/2023sw003625
C. J. Patterson, J. A. Wild, D. H. Boteler
The majority of studies into space weather impacts on ground-based systems focus on power supply networks and oil and gas pipelines. The effects on railway signaling infrastructure remain a sparsely covered aspect even though these systems are known to have experienced adverse effects in the past as a result of geomagnetic activity. This study extends recent modeling of geomagnetic effects on DC signaling for AC-electrified railways in the UK that analyzed “right side” failures in which green signals are turned to red. The extended model reported here allows the study of “wrong side” failures where red signals are turned green: a failure mode that is potentially more dangerous. Railway lines using track circuit signaling, like those modeled in this study, are separated into a number of individual blocks. This study shows that a relay is most susceptible to “wrong side” failure when a train is at the end of a track circuit block. Assuming that each train is positioned at the end of the block it is occupying, the results show that the geoelectric field threshold at which “wrong side” failures can occur is lower than for “right side” failures. This misoperation field level occurs on a timescale of once every 10 or 20 years. We also show that the estimated electric field caused by a 1-in-100 years event could cause a significant number of “wrong side” failures at multiple points along the railway lines studied, although this depends on the number of trains on the line at that time.
关于空间气象对地面系统影响的研究大多侧重于供电网络和油气管道。对铁路信号基础设施的影响仍然是一个很少涉及的方面,尽管已知这些系统过去曾因地磁活动而受到不利影响。本研究扩展了最近对英国交流电气化铁路直流信号的地磁影响建模,该建模分析了绿色信号变为红色的 "右侧 "故障。本文报告的扩展模型允许研究红色信号变为绿色信号的 "错误侧 "故障:这是一种潜在危险性更大的故障模式。使用轨道电路信号系统的铁路线路,如本研究中的模型,被分成许多单独的区块。本研究表明,当列车位于轨道电路区块的末端时,继电器最容易发生 "错边 "故障。假设每列列车都位于其所占用区块的末端,结果表明发生 "错边 "故障的地电场阈值低于发生 "右边 "故障的阈值。这种错动场水平每 10 年或 20 年出现一次。我们还表明,100 年一遇的事件造成的估计电场可在所研究的铁路线沿线的多个点造成大量 "错边 "故障,尽管这取决于当时铁路线上的列车数量。
{"title":"Modeling “Wrong Side” Failures Caused by Geomagnetically Induced Currents in Electrified Railway Signaling Systems in the UK","authors":"C. J. Patterson, J. A. Wild, D. H. Boteler","doi":"10.1029/2023sw003625","DOIUrl":"https://doi.org/10.1029/2023sw003625","url":null,"abstract":"The majority of studies into space weather impacts on ground-based systems focus on power supply networks and oil and gas pipelines. The effects on railway signaling infrastructure remain a sparsely covered aspect even though these systems are known to have experienced adverse effects in the past as a result of geomagnetic activity. This study extends recent modeling of geomagnetic effects on DC signaling for AC-electrified railways in the UK that analyzed “right side” failures in which green signals are turned to red. The extended model reported here allows the study of “wrong side” failures where red signals are turned green: a failure mode that is potentially more dangerous. Railway lines using track circuit signaling, like those modeled in this study, are separated into a number of individual blocks. This study shows that a relay is most susceptible to “wrong side” failure when a train is at the end of a track circuit block. Assuming that each train is positioned at the end of the block it is occupying, the results show that the geoelectric field threshold at which “wrong side” failures can occur is lower than for “right side” failures. This misoperation field level occurs on a timescale of once every 10 or 20 years. We also show that the estimated electric field caused by a 1-in-100 years event could cause a significant number of “wrong side” failures at multiple points along the railway lines studied, although this depends on the number of trains on the line at that time.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Geomagnetically Induced Currents in High-Voltage Power Lines for the Territory of Kazakhstan 估算哈萨克斯坦境内高压电线的地磁诱导电流
IF 3.7 2区 地球科学 Pub Date : 2023-12-08 DOI: 10.1029/2023sw003639
A. B. Andreyev, S. N. Mukasheva, V. I. Kapytin, O. I. Sokolova
Extreme solar events, such as powerful solar flares are accompanied by the release of strong solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere causes geomagnetic storms, which trigger geomagnetic effects measurable in the ionosphere, upper atmosphere, and on and in the ground. During extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs), which can cause dramatic effects on man-made technological systems, including transmission lines and pipelines. In countries with large territories such as Kazakhstan, long power lines contribute to high values of induced currents during periods of extreme geoeffective solar events. It is of interest to estimate the values of GICs in an extensive network of power lines on the territory of Kazakhstan. However, there are no estimations of induced currents in power lines in Kazakhstan, and most estimation techniques are made difficult because of absence of field measurements of Earth conductivity. This study aims to model geoelectric fields on the surface of the Earth for Kazakhstan and to estimate the values of the GICs in 500 kV power lines. This study also compares between two methods for calculating induced voltages in power lines: one based on linear paths and the other based on curvilinear paths between substations of transmission power lines.
极端太阳事件,如强烈的太阳耀斑,伴随着强烈的太阳扰动,如日冕物质抛射(CMEs)的释放。日冕物质抛射对地球磁层的影响会导致地磁暴,引发电离层、高层大气、地面和地下可测量到的地磁效应。在极端情况下,瞬息万变的地磁场会产生强烈的地磁感应电流(GIC),对输电线和管道等人造技术系统造成巨大影响。在哈萨克斯坦等幅员辽阔的国家,长长的输电线在太阳极端地磁效应事件期间会产生很高的感应电流值。估算哈萨克斯坦境内庞大的输电线网络中的 GIC 值很有意义。然而,目前还没有对哈萨克斯坦境内电力线路中的感应电流进行估算,而且由于缺乏对地球电导率的实地测量,大多数估算技术都很困难。本研究旨在为哈萨克斯坦的地球表面地质电场建模,并估算 500 kV 输电线的 GIC 值。本研究还比较了计算输电线路感应电压的两种方法:一种基于线性路径,另一种基于输电线路变电站之间的曲线路径。
{"title":"Estimating Geomagnetically Induced Currents in High-Voltage Power Lines for the Territory of Kazakhstan","authors":"A. B. Andreyev, S. N. Mukasheva, V. I. Kapytin, O. I. Sokolova","doi":"10.1029/2023sw003639","DOIUrl":"https://doi.org/10.1029/2023sw003639","url":null,"abstract":"Extreme solar events, such as powerful solar flares are accompanied by the release of strong solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere causes geomagnetic storms, which trigger geomagnetic effects measurable in the ionosphere, upper atmosphere, and on and in the ground. During extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs), which can cause dramatic effects on man-made technological systems, including transmission lines and pipelines. In countries with large territories such as Kazakhstan, long power lines contribute to high values of induced currents during periods of extreme geoeffective solar events. It is of interest to estimate the values of GICs in an extensive network of power lines on the territory of Kazakhstan. However, there are no estimations of induced currents in power lines in Kazakhstan, and most estimation techniques are made difficult because of absence of field measurements of Earth conductivity. This study aims to model geoelectric fields on the surface of the Earth for Kazakhstan and to estimate the values of the GICs in 500 kV power lines. This study also compares between two methods for calculating induced voltages in power lines: one based on linear paths and the other based on curvilinear paths between substations of transmission power lines.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138562114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Analysis of a Strong Constraint 4DVar and 4DEnVar on Regional Ionosphere Imaging 区域电离层成像的强约束 4DVar 和 4DEnVar 性能分析
IF 3.7 2区 地球科学 Pub Date : 2023-12-08 DOI: 10.1029/2023sw003584
Nicholas Ssessanga, Wojciech Jacek Miloch, Lasse Boy Novock Clausen, Daria Kotova
Data assimilation (DA) techniques have recently gained traction in the ionospheric community, particularly at regional operational centers where more precise data are becoming prevalent. At center stage is the argument over which technique or scheme merits realization. At 4DSpace, we have in-house developed and assessed the performance of two regional flavors of short-term forecast strong constraint four-dimensional (4D, space and time) variational (SC4DVar) DA schemes; the orthodox incremental (SC4DVar-Inc) and ensemble-based (SC4DEnVar) approach. SC4DVar-Inc is bottled-necked by expensive Tangent Linear Models (TLMs) and model Ad-joints (MAs), while SC4DEnVar design mitigates these limitations. Both schemes initialize from the same background (IRI-2016), and electron densities forward propagated (30-min) by a Gauss Markov filter- the densities take on a log-normal distribution to assert the mandatory ionosphere density positive definiteness. Preliminary assimilation is performed only with ubiquitous Global Navigation Satellite System observables from ground-based receivers, with a focus on moderately stable mid-latitudes, specifically the Japanese archipelago and neighboring areas. Using a simulation analysis, we find that under model space localization, 30 member Ensembles are sufficient for regional SC4DEnVar. Verification of reconstructions is with independent observations from ground-based ionosonde and satellite radio occultations: the performance of both schemes is fairly adequate during the quiet period when the background has a better estimation of the hmF2. SC4DVar-Inc is slightly better over areas densely populated with measurements, but SC4DEnVar estimates the overall 3D ionosphere picture better, particularly in remote areas and during severe conditions. These results warrant SC4DEnVar as a better candidate for precise short-time regional forecasts.
数据同化(DA)技术最近在电离层界得到了广泛应用,特别是在区域业务中心,因为在那里更精确的数据越来越普遍。目前的核心问题是哪种技术或方案值得实现。在4DSpace,我们内部开发并评估了两种区域性短期预报强约束四维(4D,空间和时间)变异(SC4DVar)DA方案的性能;正统的增量(SC4DVar-Inc)和基于集合(SC4DEnVar)的方法。SC4DVar-Inc 因昂贵的正切线性模型 (TLM) 和模型 Ad-joints (MA) 而陷入瓶颈,而 SC4DEnVar 的设计则缓解了这些限制。两种方案都从相同的背景(IRI-2016)初始化,电子密度通过高斯马尔可夫滤波器向前传播(30 分钟)--密度采用对数正态分布,以保证电离层密度的强制性正确定性。初步同化仅利用来自地面接收器的无处不在的全球导航卫星系统观测数据进行,重点是中等稳定的中纬度地区,特别是日本列岛和邻近地区。通过模拟分析,我们发现在模式空间定位的情况下,30 个成员集合足以用于区域 SC4DEnVar。通过地面电离层探测仪和卫星无线电掩星的独立观测验证了重建结果:在本底对 hmF2 有较好估计的宁静期,两种方案的性能都相当充分。在测量数据密集的地区,SC4DVar-Inc 略胜一筹,但 SC4DEnVar 对整个三维电离层图像的估计更好,特别是在偏远地区和恶劣条件下。这些结果证明 SC4DEnVar 更适合用于精确的短时区域预报。
{"title":"Performance Analysis of a Strong Constraint 4DVar and 4DEnVar on Regional Ionosphere Imaging","authors":"Nicholas Ssessanga, Wojciech Jacek Miloch, Lasse Boy Novock Clausen, Daria Kotova","doi":"10.1029/2023sw003584","DOIUrl":"https://doi.org/10.1029/2023sw003584","url":null,"abstract":"Data assimilation (DA) techniques have recently gained traction in the ionospheric community, particularly at regional operational centers where more precise data are becoming prevalent. At center stage is the argument over which technique or scheme merits realization. At 4DSpace, we have in-house developed and assessed the performance of two regional flavors of short-term forecast strong constraint four-dimensional (4D, space and time) variational (SC4DVar) DA schemes; the orthodox incremental (SC4DVar-Inc) and ensemble-based (SC4DEnVar) approach. SC4DVar-Inc is bottled-necked by expensive Tangent Linear Models (TLMs) and model Ad-joints (MAs), while SC4DEnVar design mitigates these limitations. Both schemes initialize from the same background (IRI-2016), and electron densities forward propagated (30-min) by a Gauss Markov filter- the densities take on a log-normal distribution to assert the mandatory ionosphere density positive definiteness. Preliminary assimilation is performed only with ubiquitous Global Navigation Satellite System observables from ground-based receivers, with a focus on moderately stable mid-latitudes, specifically the Japanese archipelago and neighboring areas. Using a simulation analysis, we find that under model space localization, 30 member Ensembles are sufficient for regional SC4DEnVar. Verification of reconstructions is with independent observations from ground-based ionosonde and satellite radio occultations: the performance of both schemes is fairly adequate during the quiet period when the background has a better estimation of the hmF2. SC4DVar-Inc is slightly better over areas densely populated with measurements, but SC4DEnVar estimates the overall 3D ionosphere picture better, particularly in remote areas and during severe conditions. These results warrant SC4DEnVar as a better candidate for precise short-time regional forecasts.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"40 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138566285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence of Large Geomagnetically Induced Currents Within the EPRI SUNBURST Monitoring Network 在 EPRI SUNBURST 监测网络内出现的大型地磁诱导电流
IF 3.7 2区 地球科学 Pub Date : 2023-12-08 DOI: 10.1029/2023sw003532
Chigomezyo M. Ngwira, Robert Arritt, Charles Perry, James M. Weygand, Rishi Sharma
Space weather, a natural hazard, can adversely impact human technological assets. High-voltage electric power transmission grids constitute one of the most critical technological systems vulnerable to space weather driven geomagnetically induced currents (GICs). One of the major challenges pertaining to the study of GICs over the continental United States has been the availability of GIC measurements, which are critical for validation of geoelectric field and power flow models, for example. In this study, we analyze GIC measurements collected at 17 Electrical Power Research Institute (EPRI) SUNBURST transformer locations across the United States for which a GIC value of 10 A or greater was recorded. This data set includes 52 individual geomagnetic storms with Kp index 6 and above during the period from 2010 to 2021. The analysis confirms that there is a good correlation between the number of geomagnetic storms per year and the number of recorded GIC events. Our results also show that about 76% of the top 17 GIC events are associated with the storm main phase, while only 24% are attributed to storm sudden commencements. In addition, it is shown, for the first time, that mid-latitude positive bays can cause large GICs over the continental United States. Finally, this study shows that the largest measured GIC event in the data set was associated with a localized intense dB/dt structure, which could be attributed to substorm activity.
空间天气是一种自然灾害,可对人类技术资产造成不利影响。高压输电网是易受空间天气驱动的地磁感应电流(GICs)影响的最关键技术系统之一。研究美国大陆地磁场感应电流的主要挑战之一是地磁场感应电流测量数据的可用性,这对于验证地电场和电力流模型等至关重要。在本研究中,我们分析了在美国 17 个电力研究所 (EPRI) SUNBURST 变压器位置收集到的 GIC 测量数据,这些位置记录的 GIC 值达到或超过 10 A。该数据集包括 2010 年至 2021 年期间 Kp 指数为 6 及以上的 52 个地磁暴。分析证实,每年的地磁暴数量与记录的 GIC 事件数量之间存在良好的相关性。我们的结果还显示,在排名前 17 位的 GIC 事件中,约 76% 与风暴主阶段有关,只有 24% 与风暴突然开始有关。此外,研究还首次表明,中纬度正海湾会在美国大陆上空造成大的 GIC。最后,这项研究表明,数据集中测量到的最大 GIC 事件与局部强烈的 dB/dt 结构有关,这可归因于亚暴活动。
{"title":"Occurrence of Large Geomagnetically Induced Currents Within the EPRI SUNBURST Monitoring Network","authors":"Chigomezyo M. Ngwira, Robert Arritt, Charles Perry, James M. Weygand, Rishi Sharma","doi":"10.1029/2023sw003532","DOIUrl":"https://doi.org/10.1029/2023sw003532","url":null,"abstract":"Space weather, a natural hazard, can adversely impact human technological assets. High-voltage electric power transmission grids constitute one of the most critical technological systems vulnerable to space weather driven geomagnetically induced currents (GICs). One of the major challenges pertaining to the study of GICs over the continental United States has been the availability of GIC measurements, which are critical for validation of geoelectric field and power flow models, for example. In this study, we analyze GIC measurements collected at 17 Electrical Power Research Institute (EPRI) SUNBURST transformer locations across the United States for which a GIC value of 10 A or greater was recorded. This data set includes 52 individual geomagnetic storms with Kp index 6 and above during the period from 2010 to 2021. The analysis confirms that there is a good correlation between the number of geomagnetic storms per year and the number of recorded GIC events. Our results also show that about 76% of the top 17 GIC events are associated with the storm main phase, while only 24% are attributed to storm sudden commencements. In addition, it is shown, for the first time, that mid-latitude positive bays can cause large GICs over the continental United States. Finally, this study shows that the largest measured GIC event in the data set was associated with a localized intense dB/dt structure, which could be attributed to substorm activity.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138562270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Empirical Model of Ionospheric Total Electron Content Based on Tide-Like Signature Modeling 基于潮汐样特征建模的电离层总电子含量经验模型
IF 3.7 2区 地球科学 Pub Date : 2023-12-07 DOI: 10.1029/2023sw003564
Haibing Ruan, Jiuhou Lei, Jianyong Lu, Fen Tang
Accurate modeling of the total electron content (TEC) benefits scientific research and practical application. In this study, the global ionospheric maps from the Center for Orbit Determination of Europe (CODE) covering the years 2000–2021 are utilized to develop an empirical model of TEC by superposing the tide-like components in the ionosphere. The tide-like components, including the migrating and non-migrating ones, are first derived from the daily CODE TEC data. Then, the sine and cosine components of a tide-like signature are separately decomposed into the basic modes as a function of the modified inclination latitude with the principle component analysis, and the temporal evolution is regressed to the solar radiation dependence and interannual variation. As such, the climatological behavior of tidal amplitudes and phases could be well parameterized, and the developed model is capable of reproducing the global TEC patterns. The modeled TEC agrees well with the CODE input data with zero systematic error and a low root mean square error of 3.849 TECu, demonstrating a good model performance. This developed model, associated with the parametric tide-like signatures, could serve as a background for future investigations of the ionospheric responses to the forcing from below or above.
电子总含量(TEC)的精确建模有利于科学研究和实际应用。在本研究中,利用欧洲轨道测定中心(CODE)提供的 2000-2021 年全球电离层地图,通过叠加电离层中的类潮成分,建立了一个 TEC 经验模型。首先从 CODE 的每日 TEC 数据中得出类潮成分,包括迁移和非迁移成分。然后,利用原理成分分析法将类潮特征的正弦和余弦成分分别分解为与修正倾角纬度函数相关的基本模式,并将其时间演变与太阳辐射相关性和年际变化进行回归。因此,潮汐振幅和相位的气候学行为可以很好地参数化,所建立的模式能够再现全球 TEC 模式。模拟的 TEC 与 CODE 输入数据非常吻合,系统误差为零,均方根误差为 3.849 TECu,显示了模型的良好性能。所建立的这一模型与类似潮汐的参数特征相关联,可作为今后研究电离层对来自下方或上方的强迫的响应的背景。
{"title":"An Empirical Model of Ionospheric Total Electron Content Based on Tide-Like Signature Modeling","authors":"Haibing Ruan, Jiuhou Lei, Jianyong Lu, Fen Tang","doi":"10.1029/2023sw003564","DOIUrl":"https://doi.org/10.1029/2023sw003564","url":null,"abstract":"Accurate modeling of the total electron content (TEC) benefits scientific research and practical application. In this study, the global ionospheric maps from the Center for Orbit Determination of Europe (CODE) covering the years 2000–2021 are utilized to develop an empirical model of TEC by superposing the tide-like components in the ionosphere. The tide-like components, including the migrating and non-migrating ones, are first derived from the daily CODE TEC data. Then, the sine and cosine components of a tide-like signature are separately decomposed into the basic modes as a function of the modified inclination latitude with the principle component analysis, and the temporal evolution is regressed to the solar radiation dependence and interannual variation. As such, the climatological behavior of tidal amplitudes and phases could be well parameterized, and the developed model is capable of reproducing the global TEC patterns. The modeled TEC agrees well with the CODE input data with zero systematic error and a low root mean square error of 3.849 TECu, demonstrating a good model performance. This developed model, associated with the parametric tide-like signatures, could serve as a background for future investigations of the ionospheric responses to the forcing from below or above.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"29 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138561752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Global Ionospheric Total Electron Content (TEC) Based on SAM-ConvLSTM Model 基于 SAM-ConvLSTM 模型的全球电离层总电子含量 (TEC) 预测
IF 3.7 2区 地球科学 Pub Date : 2023-12-07 DOI: 10.1029/2023sw003707
Hanze Luo, Yingkui Gong, Si Chen, Cheng Yu, Guang Yang, Fengzheng Yu, Ziyue Hu, Xiangwei Tian
This paper first applies a prediction model based on self-attention memory ConvLSTM (SAM-ConvLSTM) to predict the global ionospheric total electron content (TEC) maps with up to 1 day of lead time. We choose the global ionospheric TEC maps released by the Center for Orbit Determination in Europe (CODE) as the training data set covering the period from 1999 to 2022. Besides that, we put several space environment data as additional multivariate-features into the framework of the prediction model to enhance its forecasting ability. In order to confirm the efficiency of the proposed model, the other two prediction models based on convolutional long short-term memory (LSTM) are used for comparison. The three models are trained and evaluated on the same data set. Results show that the proposed SAM-ConvLSTM prediction model performs more accurately than the other two models, and more stably under space weather events. In order to assess the generalization capabilities of the proposed model amidst severe space weather occurrences, we selected the period of 22–25 April 2023, characterized by a potent geomagnetic storm, for experimental validation. Subsequently, we employed the 1-day predicted global TEC products from the Center for Operational Products and Services (COPG) and the SAM-ConvLSTM model to evaluate their respective forecasting prowess. The results show that the SAM-ConvLSTM prediction model achieves lower prediction error. In one word, the ionospheric TEC prediction model proposed in this paper can establish the ionosphere TEC of spatio-temporal data association for a long time, and realize high precision of prediction performance.
本文首先应用基于自注意记忆 ConvLSTM(SAM-ConvLSTM)的预测模型来预测全球电离层电子总含量(TEC)地图,预测时间最长可达 1 天。我们选择欧洲轨道测定中心(CODE)发布的全球电离层总电子含量图作为训练数据集,时间跨度为 1999 年至 2022 年。此外,我们还将一些空间环境数据作为附加的多元特征纳入预测模型框架,以增强其预测能力。为了证实所提模型的效率,我们还使用了另外两个基于卷积长短期记忆(LSTM)的预测模型进行比较。这三个模型在相同的数据集上进行了训练和评估。结果表明,所提出的 SAM-ConvLSTM 预测模型比其他两个模型更准确,在空间天气事件中的表现也更稳定。为了评估所提出的模型在恶劣空间天气事件中的泛化能力,我们选择了 2023 年 4 月 22 日至 25 日这一强烈地磁暴时期进行实验验证。随后,我们利用运行产品和服务中心(COGG)的 1 天全球 TEC 预测产品和 SAM-ConvLSTM 模型来评估它们各自的预报能力。结果表明,SAM-ConvLSTM 预测模型的预测误差较小。总之,本文提出的电离层 TEC 预报模型可以建立电离层 TEC 的长时间时空数据关联,实现高精度的预报性能。
{"title":"Prediction of Global Ionospheric Total Electron Content (TEC) Based on SAM-ConvLSTM Model","authors":"Hanze Luo, Yingkui Gong, Si Chen, Cheng Yu, Guang Yang, Fengzheng Yu, Ziyue Hu, Xiangwei Tian","doi":"10.1029/2023sw003707","DOIUrl":"https://doi.org/10.1029/2023sw003707","url":null,"abstract":"This paper first applies a prediction model based on self-attention memory ConvLSTM (SAM-ConvLSTM) to predict the global ionospheric total electron content (TEC) maps with up to 1 day of lead time. We choose the global ionospheric TEC maps released by the Center for Orbit Determination in Europe (CODE) as the training data set covering the period from 1999 to 2022. Besides that, we put several space environment data as additional multivariate-features into the framework of the prediction model to enhance its forecasting ability. In order to confirm the efficiency of the proposed model, the other two prediction models based on convolutional long short-term memory (LSTM) are used for comparison. The three models are trained and evaluated on the same data set. Results show that the proposed SAM-ConvLSTM prediction model performs more accurately than the other two models, and more stably under space weather events. In order to assess the generalization capabilities of the proposed model amidst severe space weather occurrences, we selected the period of 22–25 April 2023, characterized by a potent geomagnetic storm, for experimental validation. Subsequently, we employed the 1-day predicted global TEC products from the Center for Operational Products and Services (COPG) and the SAM-ConvLSTM model to evaluate their respective forecasting prowess. The results show that the SAM-ConvLSTM prediction model achieves lower prediction error. In one word, the ionospheric TEC prediction model proposed in this paper can establish the ionosphere TEC of spatio-temporal data association for a long time, and realize high precision of prediction performance.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138566273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Space Weather
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1