Pub Date : 2024-07-09DOI: 10.3847/1538-4365/ad4a5c
N. H. Bian, Gang Li
Lagrangian perspectives on the small-scale structure of anisotropic Alfvénic turbulence are adopted. We are interested in relating the statistical properties of the Eulerian field increments evaluated along the fluid particle trajectories, in the direction perpendicular to the guiding magnetic field and along the magnetic field lines. We establish the basis for a unified multifractal phenomenology of Eulerian and Lagrangian Alfvénic turbulence. The critical balance condition is generalized to structure functions of an order different than 2. A Lagrangian perspective is not only useful for investigating the small-scale structure of Alfvénic turbulence, it is also tailored to the modeling of large-scale turbulent transport. Therefore, we develop Lagrangian stochastic models for the dispersion of fluid particles and magnetic field lines in the solar wind. The transport models are based on the integrated Ornstein–Uhlenbeck process that is not Markov, yielding smooth stochastic fluid particle trajectories and magnetic field lines. Brownian diffusion is recovered by tending the integral scale parameter to zero while keeping the diffusivity finite.
{"title":"Lagrangian Perspectives on the Small-scale Structure of Alfvénic Turbulence and Stochastic Models for the Dispersion of Fluid Particles and Magnetic Field Lines in the Solar Wind","authors":"N. H. Bian, Gang Li","doi":"10.3847/1538-4365/ad4a5c","DOIUrl":"https://doi.org/10.3847/1538-4365/ad4a5c","url":null,"abstract":"Lagrangian perspectives on the small-scale structure of anisotropic Alfvénic turbulence are adopted. We are interested in relating the statistical properties of the Eulerian field increments evaluated along the fluid particle trajectories, in the direction perpendicular to the guiding magnetic field and along the magnetic field lines. We establish the basis for a unified multifractal phenomenology of Eulerian and Lagrangian Alfvénic turbulence. The critical balance condition is generalized to structure functions of an order different than 2. A Lagrangian perspective is not only useful for investigating the small-scale structure of Alfvénic turbulence, it is also tailored to the modeling of large-scale turbulent transport. Therefore, we develop Lagrangian stochastic models for the dispersion of fluid particles and magnetic field lines in the solar wind. The transport models are based on the integrated Ornstein–Uhlenbeck process that is not Markov, yielding smooth stochastic fluid particle trajectories and magnetic field lines. Brownian diffusion is recovered by tending the integral scale parameter to zero while keeping the diffusivity finite.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.3847/1538-4365/ad4a6f
Jihye Hong, Timothy C. Beers, Young Sun Lee, Yang Huang, Yutaka Hirai, Jonathan Cabrera Garcia, Derek Shank, Shuai Xu, Haibo Yuan, Mohammad K. Mardini, Thomas Catapano, Gang Zhao, Zhou Fan, Jie Zheng, Wei Wang, Kefeng Tan, Jingkun Zhao, Chun Li
Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys such as Sloan Digital Sky Survey/SEGUE and LAMOST. Here we report on an effort to identify likely members of the Galactic disk system among the very metal-poor (VMP; [Fe/H] ≤ −2) and extremely metal-poor (EMP; [Fe/H] ≤ −3) stars. Our analysis is based on an initial sample of ∼11.5 million stars with full space motions selected from the SkyMapper Southern Survey (SMSS) and Stellar Abundance and Galactic Evolution Survey (SAGES). After applying a number of quality cuts to obtain the best available metallicity and dynamical estimates, we analyze a total of ∼5.86 million stars in the combined SMSS/SAGES sample. We employ two techniques that, depending on the method, identify between 876 and 1476 VMP stars (6.9%−11.7% of all VMP stars) and between 40 and 59 EMP stars (12.4%−18.3% of all EMP stars) that appear to be members of the Galactic disk system on highly prograde orbits (v