Pub Date : 2024-11-20DOI: 10.1016/s1474-4422(24)00402-2
Gerard Mayà, Alex Iranzo, Carles Gaig, Raquel Sánchez-Valle, Monica Serradell, Laura Molina-Porcel, Joan Santamaria, Ellen Gelpi, Iban Aldecoa
<h3>Background</h3>Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) is thought to be an early stage of α-synuclein-related neurodegenerative diseases. Nevertheless, the definitive identification of its biological substrate can be determined only by post-mortem neuropathology. We aimed to describe the post-mortem neuropathology of individuals with IRBD who developed or did not develop a neurodegenerative disease before death.<h3>Methods</h3>In this case series at the Hospital Clinic de Barcelona, Barcelona, Spain, we examined post-mortem brain tissue and spinal cords from individuals diagnosed with IRBD by video polysomnography who became donors to the Neurological Tissue Bank between May 28, 2005, and March 23, 2023. We performed post-mortem neuropathology to assess the presence and distribution of neuronal loss, gliosis, and protein aggregates using antibodies against α-synuclein, amyloid β, phosphorylated tau, three-repeat and four-repeat tau isoforms, and TDP-43. Comparative statistical analyses were not done because of the small sample size, but differences observed across the nuclei and brain structures were described.<h3>Findings</h3>The brains and spinal cords of 20 individuals with IRBD were examined (19 [95%] men, one [5%] woman). Their clinical antemortem diagnoses were of IRBD without any other neurological disorder in three (15%), Parkinson's disease without dementia in two (10%), Parkinson's disease dementia (PDD) in three (15%), and dementia with Lewy bodies (DLB) in 12 (60%) individuals. Post-mortem neuropathological diagnoses were Lewy body disease in 19 (95%) and multiple system atrophy (MSA) in one (5%). All participants with Lewy body disease and MSA showed neuronal loss, gliosis, and α-synuclein deposits in neurons and astrocytes. In all participants, α-synuclein was found in the structures that regulate REM sleep atonia (eg, subcoeruleus nucleus, gigantocellular reticular nucleus, laterodorsal tegmentum, and amygdala). Coexistent pathologies were found in all participants, including Alzheimer's disease pathology (amyloid β plaques and neurofibrillary tangles) in 14 (70%), ageing-related tau astrogliopathy in 12 (60%), cerebral amyloid angiopathy in 11 (55%), argyrophilic grain disease in four (20%), limbic-predominant age-related TDP-43 encephalopathy in four (20%), and early changes indicative of progressive supranuclear palsy in three (15%). In individuals with IRBD without any other neurological disorder and in those who developed Parkinson's disease without dementia, α-synuclein was found in the brainstem and limbic system and rarely in the cortex, whereas coexisting proteinopathies were few and showed mild pathological burden. In contrast, in individuals who developed PDD or DLB, α-synuclein had diffuse distribution in the brainstem, limbic system, and cortex, and multiple comorbid pathologies were common, particularly those related to Alzheimer's disease.<h3>Interpretation</h3>Although limited by a re
{"title":"Post-mortem neuropathology of idiopathic rapid eye movement sleep behaviour disorder: a case series","authors":"Gerard Mayà, Alex Iranzo, Carles Gaig, Raquel Sánchez-Valle, Monica Serradell, Laura Molina-Porcel, Joan Santamaria, Ellen Gelpi, Iban Aldecoa","doi":"10.1016/s1474-4422(24)00402-2","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00402-2","url":null,"abstract":"<h3>Background</h3>Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) is thought to be an early stage of α-synuclein-related neurodegenerative diseases. Nevertheless, the definitive identification of its biological substrate can be determined only by post-mortem neuropathology. We aimed to describe the post-mortem neuropathology of individuals with IRBD who developed or did not develop a neurodegenerative disease before death.<h3>Methods</h3>In this case series at the Hospital Clinic de Barcelona, Barcelona, Spain, we examined post-mortem brain tissue and spinal cords from individuals diagnosed with IRBD by video polysomnography who became donors to the Neurological Tissue Bank between May 28, 2005, and March 23, 2023. We performed post-mortem neuropathology to assess the presence and distribution of neuronal loss, gliosis, and protein aggregates using antibodies against α-synuclein, amyloid β, phosphorylated tau, three-repeat and four-repeat tau isoforms, and TDP-43. Comparative statistical analyses were not done because of the small sample size, but differences observed across the nuclei and brain structures were described.<h3>Findings</h3>The brains and spinal cords of 20 individuals with IRBD were examined (19 [95%] men, one [5%] woman). Their clinical antemortem diagnoses were of IRBD without any other neurological disorder in three (15%), Parkinson's disease without dementia in two (10%), Parkinson's disease dementia (PDD) in three (15%), and dementia with Lewy bodies (DLB) in 12 (60%) individuals. Post-mortem neuropathological diagnoses were Lewy body disease in 19 (95%) and multiple system atrophy (MSA) in one (5%). All participants with Lewy body disease and MSA showed neuronal loss, gliosis, and α-synuclein deposits in neurons and astrocytes. In all participants, α-synuclein was found in the structures that regulate REM sleep atonia (eg, subcoeruleus nucleus, gigantocellular reticular nucleus, laterodorsal tegmentum, and amygdala). Coexistent pathologies were found in all participants, including Alzheimer's disease pathology (amyloid β plaques and neurofibrillary tangles) in 14 (70%), ageing-related tau astrogliopathy in 12 (60%), cerebral amyloid angiopathy in 11 (55%), argyrophilic grain disease in four (20%), limbic-predominant age-related TDP-43 encephalopathy in four (20%), and early changes indicative of progressive supranuclear palsy in three (15%). In individuals with IRBD without any other neurological disorder and in those who developed Parkinson's disease without dementia, α-synuclein was found in the brainstem and limbic system and rarely in the cortex, whereas coexisting proteinopathies were few and showed mild pathological burden. In contrast, in individuals who developed PDD or DLB, α-synuclein had diffuse distribution in the brainstem, limbic system, and cortex, and multiple comorbid pathologies were common, particularly those related to Alzheimer's disease.<h3>Interpretation</h3>Although limited by a re","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/s1474-4422(24)00396-x
Florian Krismer, Alessandra Fanciulli, Wassilios G Meissner, Elizabeth A Coon, Gregor K Wenning
Multiple system atrophy is an adult-onset, sporadic, and progressive neurodegenerative disease. People with this disorder report a wide range of motor and non-motor symptoms. Overlap in the clinical presentation of multiple system atrophy with other movement disorders (eg, Parkinson's disease and progressive supranuclear palsy) is a concern for accurate and timely diagnosis. Over the past 5 years, progress has been made in understanding key pathophysiological events in multiple system atrophy, including the seeding of α-synuclein inclusions and the detection of disease-specific α-synuclein strains. Diagnostic criteria were revised in 2022 with the intention to improve the accuracy of a diagnosis of multiple system atrophy, particularly for early disease stages. Early signals of efficacy in clinical trials have indicated the potential for disease-modifying therapies for multiple system atrophy, although no trial has yet provided unequivocal evidence of neuroprotection in this rare disease. The advances in pathophysiology could play a part in biomarker discovery for early diagnosis as well as in the development of disease-modifying therapies.
{"title":"Multiple system atrophy: advances in pathophysiology, diagnosis, and treatment","authors":"Florian Krismer, Alessandra Fanciulli, Wassilios G Meissner, Elizabeth A Coon, Gregor K Wenning","doi":"10.1016/s1474-4422(24)00396-x","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00396-x","url":null,"abstract":"Multiple system atrophy is an adult-onset, sporadic, and progressive neurodegenerative disease. People with this disorder report a wide range of motor and non-motor symptoms. Overlap in the clinical presentation of multiple system atrophy with other movement disorders (eg, Parkinson's disease and progressive supranuclear palsy) is a concern for accurate and timely diagnosis. Over the past 5 years, progress has been made in understanding key pathophysiological events in multiple system atrophy, including the seeding of α-synuclein inclusions and the detection of disease-specific α-synuclein strains. Diagnostic criteria were revised in 2022 with the intention to improve the accuracy of a diagnosis of multiple system atrophy, particularly for early disease stages. Early signals of efficacy in clinical trials have indicated the potential for disease-modifying therapies for multiple system atrophy, although no trial has yet provided unequivocal evidence of neuroprotection in this rare disease. The advances in pathophysiology could play a part in biomarker discovery for early diagnosis as well as in the development of disease-modifying therapies.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"108 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/s1474-4422(24)00439-3
Alejandro A Rabinstein
No Abstract
无摘要
{"title":"Ischaemic brain oedema remains a major unmet need","authors":"Alejandro A Rabinstein","doi":"10.1016/s1474-4422(24)00439-3","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00439-3","url":null,"abstract":"No Abstract","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/s1474-4422(24)00427-7
Massimo Leone
No Abstract
无摘要
{"title":"Globalisation of the pharmacological treatment of migraine","authors":"Massimo Leone","doi":"10.1016/s1474-4422(24)00427-7","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00427-7","url":null,"abstract":"No Abstract","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/s1474-4422(24)00451-4
Marcus V Della Coletta, Helio A G Teive, Andrew Lees
No Abstract
无摘要
{"title":"200 years since the death of James Parkinson","authors":"Marcus V Della Coletta, Helio A G Teive, Andrew Lees","doi":"10.1016/s1474-4422(24)00451-4","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00451-4","url":null,"abstract":"No Abstract","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"99 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/s1474-4422(24)00378-8
Shen-Yang Lim, Ai Huey Tan, Azlina Ahmad-Annuar, Njideka Ulunma Okubadejo, Katja Lohmann, Huw R Morris, Tzi Shin Toh, Yi Wen Tay, Lara M Lange, Sara Bandres-Ciga, Ignacio Mata, Jia Nee Foo, Esther Sammler, Joshua Chin Ern Ooi, Alastair J Noyce, Natascha Bahr, Wei Luo, Rajeev Ojha, Andrew B Singleton, Cornelis Blauwendraat, Christine Klein
Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
{"title":"Uncovering the genetic basis of Parkinson's disease globally: from discoveries to the clinic","authors":"Shen-Yang Lim, Ai Huey Tan, Azlina Ahmad-Annuar, Njideka Ulunma Okubadejo, Katja Lohmann, Huw R Morris, Tzi Shin Toh, Yi Wen Tay, Lara M Lange, Sara Bandres-Ciga, Ignacio Mata, Jia Nee Foo, Esther Sammler, Joshua Chin Ern Ooi, Alastair J Noyce, Natascha Bahr, Wei Luo, Rajeev Ojha, Andrew B Singleton, Cornelis Blauwendraat, Christine Klein","doi":"10.1016/s1474-4422(24)00378-8","DOIUrl":"https://doi.org/10.1016/s1474-4422(24)00378-8","url":null,"abstract":"Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.","PeriodicalId":22676,"journal":{"name":"The Lancet Neurology","volume":"107 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}