Hans-Peter Piepho, Laurence V. Madden, Emlyn R. Williams
Methods of network meta-analysis (NMA) can be classified as arm-based and contrast-based approaches. There are several arm-based approaches, and some of these have been criticized because they recover inter-study information and hence do not obey the principle of concurrent control. Here, we point out that recovery of inter-study information in arm-based NMA can be prevented by fitting a fixed main effect for studies. Advantages of arm-based NMA are discussed.
{"title":"The use of fixed study main effects in arm-based network meta-analysis","authors":"Hans-Peter Piepho, Laurence V. Madden, Emlyn R. Williams","doi":"10.1002/jrsm.1721","DOIUrl":"10.1002/jrsm.1721","url":null,"abstract":"<p>Methods of network meta-analysis (NMA) can be classified as arm-based and contrast-based approaches. There are several arm-based approaches, and some of these have been criticized because they recover inter-study information and hence do not obey the principle of concurrent control. Here, we point out that recovery of inter-study information in arm-based NMA can be prevented by fitting a fixed main effect for studies. Advantages of arm-based NMA are discussed.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 5","pages":"747-750"},"PeriodicalIF":5.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1721","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Population-adjusted indirect comparisons, developed in the 2010s, enable comparisons between two treatments in different studies by balancing patient characteristics in the case where individual patient-level data (IPD) are available for only one study. Health technology assessment (HTA) bodies increasingly rely on these methods to inform funding decisions, typically using unanchored indirect comparisons (i.e., without a common comparator), due to the need to evaluate comparative efficacy and safety for single-arm trials. Unanchored matching-adjusted indirect comparison (MAIC) and unanchored simulated treatment comparison (STC) are currently the only two approaches available for population-adjusted indirect comparisons based on single-arm trials. However, there is a notable underutilisation of unanchored STC in HTA, largely due to a lack of understanding of its implementation. We therefore develop a novel way to implement unanchored STC by incorporating standardisation/marginalisation and the NORmal To Anything (NORTA) algorithm for sampling covariates. This methodology aims to derive a suitable marginal treatment effect without aggregation bias for HTA evaluations. We use a non-parametric bootstrap and propose separately calculating the standard error for the IPD study and the comparator study to ensure the appropriate quantification of the uncertainty associated with the estimated treatment effect. The performance of our proposed unanchored STC approach is evaluated through a comprehensive simulation study focused on binary outcomes. Our findings demonstrate that the proposed approach is asymptotically unbiased. We argue that unanchored STC should be considered when conducting unanchored indirect comparisons with single-arm studies, presenting a robust approach for HTA decision-making.
{"title":"Advancing unanchored simulated treatment comparisons: A novel implementation and simulation study","authors":"Shijie Ren, Sa Ren, Nicky J. Welton, Mark Strong","doi":"10.1002/jrsm.1718","DOIUrl":"10.1002/jrsm.1718","url":null,"abstract":"<p>Population-adjusted indirect comparisons, developed in the 2010s, enable comparisons between two treatments in different studies by balancing patient characteristics in the case where individual patient-level data (IPD) are available for only one study. Health technology assessment (HTA) bodies increasingly rely on these methods to inform funding decisions, typically using unanchored indirect comparisons (i.e., without a common comparator), due to the need to evaluate comparative efficacy and safety for single-arm trials. Unanchored matching-adjusted indirect comparison (MAIC) and unanchored simulated treatment comparison (STC) are currently the only two approaches available for population-adjusted indirect comparisons based on single-arm trials. However, there is a notable underutilisation of unanchored STC in HTA, largely due to a lack of understanding of its implementation. We therefore develop a novel way to implement unanchored STC by incorporating standardisation/marginalisation and the NORmal To Anything (NORTA) algorithm for sampling covariates. This methodology aims to derive a suitable marginal treatment effect without aggregation bias for HTA evaluations. We use a non-parametric bootstrap and propose separately calculating the standard error for the IPD study and the comparator study to ensure the appropriate quantification of the uncertainty associated with the estimated treatment effect. The performance of our proposed unanchored STC approach is evaluated through a comprehensive simulation study focused on binary outcomes. Our findings demonstrate that the proposed approach is asymptotically unbiased. We argue that unanchored STC should be considered when conducting unanchored indirect comparisons with single-arm studies, presenting a robust approach for HTA decision-making.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"657-670"},"PeriodicalIF":5.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing–remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.
{"title":"Combining randomized and non-randomized data to predict heterogeneous effects of competing treatments","authors":"Konstantina Chalkou, Tasnim Hamza, Pascal Benkert, Jens Kuhle, Chiara Zecca, Gabrielle Simoneau, Fabio Pellegrini, Andrea Manca, Matthias Egger, Georgia Salanti","doi":"10.1002/jrsm.1717","DOIUrl":"10.1002/jrsm.1717","url":null,"abstract":"<p>Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing–remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"641-656"},"PeriodicalIF":5.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}