Jie Guo, Qinghua Gao, Fei Gao, Chuancheng Jia, Xuefeng Guo
Compared with aggregate spin behavior, single-molecule spin behavior can be accurately understood, controlled, and applied at the level of basic building blocks. The potential of single-molecule electronic and nuclear spins for monitoring and control represents a beacon of promise for the advancement of molecular spin devices, which are fabricated by connecting a single molecule between two electrodes. Metal complexes, celebrated for their superior magnetic attributes, are widely used in the devices to explore spin effects. Moreover, single-molecule electrical techniques with high signal-to-noise ratio, temporal resolution, and reliability help to understand the spin characteristics. In this review, the focus is on the devices with metal complexes, especially single-molecule magnets, and systematically present experimental and theoretical state of the art of this field at the single-molecule level, including the fundamental concepts of the electronic and nuclear spin and their basic spin effects. Then, several experimental methods developed to regulate the spin characteristics of metal complexes at single-molecule level are introduced, as well as the corresponding intrinsic mechanisms. A brief discussion is provided on the comprehensive applications and the considerable challenges of single-molecule spin devices in detail, along with a prospect on the potential future directions of this field.
{"title":"Understanding the Spin of Metal Complexes from a Single-Molecule Perspective.","authors":"Jie Guo, Qinghua Gao, Fei Gao, Chuancheng Jia, Xuefeng Guo","doi":"10.1002/smtd.202401302","DOIUrl":"https://doi.org/10.1002/smtd.202401302","url":null,"abstract":"<p><p>Compared with aggregate spin behavior, single-molecule spin behavior can be accurately understood, controlled, and applied at the level of basic building blocks. The potential of single-molecule electronic and nuclear spins for monitoring and control represents a beacon of promise for the advancement of molecular spin devices, which are fabricated by connecting a single molecule between two electrodes. Metal complexes, celebrated for their superior magnetic attributes, are widely used in the devices to explore spin effects. Moreover, single-molecule electrical techniques with high signal-to-noise ratio, temporal resolution, and reliability help to understand the spin characteristics. In this review, the focus is on the devices with metal complexes, especially single-molecule magnets, and systematically present experimental and theoretical state of the art of this field at the single-molecule level, including the fundamental concepts of the electronic and nuclear spin and their basic spin effects. Then, several experimental methods developed to regulate the spin characteristics of metal complexes at single-molecule level are introduced, as well as the corresponding intrinsic mechanisms. A brief discussion is provided on the comprehensive applications and the considerable challenges of single-molecule spin devices in detail, along with a prospect on the potential future directions of this field.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401302"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiaomu Wang, Peng Wang, Yandong Wang, Yang Xu, Haocheng Xu, Kai Xi
Covalent organic frameworks (COFs) aerogels solve the restrictions on processability and application caused by the insolubility and non-fusibility of powders while avoiding the inaccessibility of pore structures by dense stacking. At the current start-up stage where COFs aerogels are scarce and difficult to synthesize, design of generalized synthetic methods play an indispensable role in guiding and developing COFs aerogels. Moreover, evolving the functionality of COF aerogels is equal vital, which achieves higher performance and broader practical applications. In this work, for the first time, processable BrCOFs aerogels have been synthesized without vacuum by seven kind polar solvents, which realizes general preparation of BrCOFs aerogels. It is extremely friendly to the inapplicability for some scenarios. Furthermore, by Suzuki-Miyaura cross-coupling reaction, BrCOFs aerogels are endows with cyano groups (-CN), trifluoromethyl (-CF3) and methyl sulfonyl (-SO2-CH3) efficiently. As a proof-of-concept, BrCOFs-SO2-CH3 aerogels served as a quasi-solid electrolyte for lithium-metal batteries (LMBs), which effectively enhance the performance of batteries.
{"title":"A Versatile Method for Preparation of BrCOFs Aerogels and Efficient Functionalization via Suzuki-Miyaura Reaction.","authors":"Qiaomu Wang, Peng Wang, Yandong Wang, Yang Xu, Haocheng Xu, Kai Xi","doi":"10.1002/smtd.202401373","DOIUrl":"https://doi.org/10.1002/smtd.202401373","url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) aerogels solve the restrictions on processability and application caused by the insolubility and non-fusibility of powders while avoiding the inaccessibility of pore structures by dense stacking. At the current start-up stage where COFs aerogels are scarce and difficult to synthesize, design of generalized synthetic methods play an indispensable role in guiding and developing COFs aerogels. Moreover, evolving the functionality of COF aerogels is equal vital, which achieves higher performance and broader practical applications. In this work, for the first time, processable BrCOFs aerogels have been synthesized without vacuum by seven kind polar solvents, which realizes general preparation of BrCOFs aerogels. It is extremely friendly to the inapplicability for some scenarios. Furthermore, by Suzuki-Miyaura cross-coupling reaction, BrCOFs aerogels are endows with cyano groups (-CN), trifluoromethyl (-CF<sub>3</sub>) and methyl sulfonyl (-SO<sub>2</sub>-CH<sub>3</sub>) efficiently. As a proof-of-concept, BrCOFs-SO<sub>2</sub>-CH<sub>3</sub> aerogels served as a quasi-solid electrolyte for lithium-metal batteries (LMBs), which effectively enhance the performance of batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401373"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linke Huang, Zachary Gariepy, Ethan Halpren, Li Du, Chung Hsuan Shan, Chuncheng Yang, Zhi Wen Chen, Chandra Veer Singh
The complex compositional space of high entropy alloys (HEAs) has shown a great potential to reduce the cost and further increase the catalytic activity for hydrogen evolution reaction (HER) by compositional optimization. Without uncovering the specifics of the HER mechanism on a given HEA surface, it is unfeasible to apply compositional modifications to enhance the performance and save costs. In this work, a combination of density functional theory and Bayesian machine learning is used to demonstrate the unique catalytic mechanism of IrPdPtRhRu HEA catalysts for HER. At high coverage of underpotential-deposited hydrogen, a d-band investigation of the active sites of the HEA surface is conducted to elucidate the superior catalytic performance through electronic interactions between elements. At low coverage, a novel Bayesian learning with oversampling approach is then outlined to optimize the HEA composition for performance improvement and cost reduction. This approach proves more efficacious and efficient and yields higher-quality structures with less training set bias compared with neural-network optimization. The proposed HEA optimization theoretically outperforms benchmark Pt catalysts' overpotential by ≈40% at a 15% reduced synthesis cost comparing to the equiatomic ratio HEA.
高熵合金(HEAs)的成分空间非常复杂,通过成分优化,可以降低成本并进一步提高氢进化反应(HER)的催化活性。如果不揭示给定 HEA 表面上 HER 机制的具体细节,就不可能通过成分改性来提高性能和节约成本。本研究结合密度泛函理论和贝叶斯机器学习,证明了 IrPdPtRhRu HEA 催化剂对 HER 的独特催化机理。在低电位沉积氢的高覆盖率条件下,对 HEA 表面的活性位点进行了 d 带研究,通过元素之间的电子相互作用阐明了其卓越的催化性能。在低覆盖率的情况下,采用新颖的贝叶斯学习和超采样方法来优化 HEA 的组成,从而提高性能并降低成本。事实证明,与神经网络优化相比,这种方法更有效、更高效,能产生更高质量的结构,同时减少训练集偏差。与等原子比 HEA 相比,拟议的 HEA 优化理论上比基准铂催化剂的过电位高出≈40%,而合成成本却降低了 15%。
{"title":"Bayesian Learning Aided Theoretical Optimization of IrPdPtRhRu High Entropy Alloy Catalysts for the Hydrogen Evolution Reaction.","authors":"Linke Huang, Zachary Gariepy, Ethan Halpren, Li Du, Chung Hsuan Shan, Chuncheng Yang, Zhi Wen Chen, Chandra Veer Singh","doi":"10.1002/smtd.202401224","DOIUrl":"https://doi.org/10.1002/smtd.202401224","url":null,"abstract":"<p><p>The complex compositional space of high entropy alloys (HEAs) has shown a great potential to reduce the cost and further increase the catalytic activity for hydrogen evolution reaction (HER) by compositional optimization. Without uncovering the specifics of the HER mechanism on a given HEA surface, it is unfeasible to apply compositional modifications to enhance the performance and save costs. In this work, a combination of density functional theory and Bayesian machine learning is used to demonstrate the unique catalytic mechanism of IrPdPtRhRu HEA catalysts for HER. At high coverage of underpotential-deposited hydrogen, a d-band investigation of the active sites of the HEA surface is conducted to elucidate the superior catalytic performance through electronic interactions between elements. At low coverage, a novel Bayesian learning with oversampling approach is then outlined to optimize the HEA composition for performance improvement and cost reduction. This approach proves more efficacious and efficient and yields higher-quality structures with less training set bias compared with neural-network optimization. The proposed HEA optimization theoretically outperforms benchmark Pt catalysts' overpotential by ≈40% at a 15% reduced synthesis cost comparing to the equiatomic ratio HEA.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401224"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar-driven water evaporation is considered as the sustainable approach to alleviate freshwater resource crisis through direct use of solar energy. However, it is still challenging to achieve the multifunctional solar evaporators equipped with both high evaporation and purification performance to handle practical complex wastewater. Here, a simple and cost-effective multifunctional 3D solar evaporator is prepared by alternately decorating the commercial sponge with FeOOH quantum dots (FQDs) supported MXene sheets composites and chitosan hydrogel coatings for enabling the solar water evaporation and organic wastewater photodegradation simultaneously. MXene composites allow the solar evaporator with excellent photothermal conversion performance, the hydrophilic chitosan hydrogel coated interconnecting skeleton structures of sponge serve as the mass transfer and water transport channels. The Fenton-catalytic FQDs anchored on the MXene sheets surface accept the photo-generated electrons of MXene sheets to induce the organic pollutant photo-Fenton degradation reaction under sunlight irradiation. The resulting evaporator possesses both excellent water evaporation rate of 2.54 kg m-2 h-1 and high degradation efficiency (99.24% for methylene blue), coupled with durable salt-resisting performance during long-term seawater desalination (20 wt.% NaCl). This work provides a simple and feasible strategy for designing multifunctional solar evaporators to meet the potential application scenarios in practice.
{"title":"FeOOH Quantum Dots Assembled MXene-Decorated 3D Photothermal Evaporator for Synergy Application in Solar Evaporation and Fenton Degradation.","authors":"Yifan Liu, Deke Li, Guangyi Tian, Chenggong Xu, Xionggang Chen, Jinxia Huang, Zhiguang Guo","doi":"10.1002/smtd.202401541","DOIUrl":"https://doi.org/10.1002/smtd.202401541","url":null,"abstract":"<p><p>Solar-driven water evaporation is considered as the sustainable approach to alleviate freshwater resource crisis through direct use of solar energy. However, it is still challenging to achieve the multifunctional solar evaporators equipped with both high evaporation and purification performance to handle practical complex wastewater. Here, a simple and cost-effective multifunctional 3D solar evaporator is prepared by alternately decorating the commercial sponge with FeOOH quantum dots (FQDs) supported MXene sheets composites and chitosan hydrogel coatings for enabling the solar water evaporation and organic wastewater photodegradation simultaneously. MXene composites allow the solar evaporator with excellent photothermal conversion performance, the hydrophilic chitosan hydrogel coated interconnecting skeleton structures of sponge serve as the mass transfer and water transport channels. The Fenton-catalytic FQDs anchored on the MXene sheets surface accept the photo-generated electrons of MXene sheets to induce the organic pollutant photo-Fenton degradation reaction under sunlight irradiation. The resulting evaporator possesses both excellent water evaporation rate of 2.54 kg m<sup>-2</sup> h<sup>-1</sup> and high degradation efficiency (99.24% for methylene blue), coupled with durable salt-resisting performance during long-term seawater desalination (20 wt.% NaCl). This work provides a simple and feasible strategy for designing multifunctional solar evaporators to meet the potential application scenarios in practice.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401541"},"PeriodicalIF":10.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junzhen Ren, Shaoqing Zhang, Huixue Li, Jianqiu Wang, Lijiao Ma, Zhihao Chen, Tao Wang, Tao Zhang, Jianhui Hou
To address the high-cost issue that impedes the large-scale fabrication and industrialization of organic solar cells (OSCs), it is crucial to design low-cost photovoltaic materials with simplified synthesis procedures. In this study, a novel fully non-fused acceptor, ATVT-BO, featuring a triisopropylbenzene-substituted (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit as the central core is designed and synthesized. A control acceptor, A4T-BO, with the same alkyl chains but a bithiophene central core, is also synthesized for comparison. Theoretical calculations and practical measurements reveal that compared to A4T-BO, the insertion of an ethylene bond in ATVT-BO enhances the molecular planarity and reduces the aromaticity, leading to enhanced π-electron delocalization and thus improved electron mobility and a red-shifted optical absorption spectrum. The 3D molecular packing mode of ATVT-BO, characterized by tight intermolecular interactions, also promotes efficient charge transport in OSCs. Consequently, when paired with the low-cost polymer PTVT-T, featuring an ester-substituted TVT structure, as the photoactive layer, the PTVT-T:ATVT-BO-based device achieves a remarkable power conversion efficiency of 14.8%, distinctly higher than that of PTVT-T:A4T-BO-based cell. The result highlights the significant potential of TVT units in creating both low-cost polymer donors and fully non-fused acceptors, which opens up new possibilities for designing low-cost photoactive materials in OSCs.
{"title":"TVT-Based New Building Block with Enhanced π-Electron Delocalization for Efficient Non-Fused Photovoltaic Acceptor.","authors":"Junzhen Ren, Shaoqing Zhang, Huixue Li, Jianqiu Wang, Lijiao Ma, Zhihao Chen, Tao Wang, Tao Zhang, Jianhui Hou","doi":"10.1002/smtd.202401511","DOIUrl":"https://doi.org/10.1002/smtd.202401511","url":null,"abstract":"<p><p>To address the high-cost issue that impedes the large-scale fabrication and industrialization of organic solar cells (OSCs), it is crucial to design low-cost photovoltaic materials with simplified synthesis procedures. In this study, a novel fully non-fused acceptor, ATVT-BO, featuring a triisopropylbenzene-substituted (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit as the central core is designed and synthesized. A control acceptor, A4T-BO, with the same alkyl chains but a bithiophene central core, is also synthesized for comparison. Theoretical calculations and practical measurements reveal that compared to A4T-BO, the insertion of an ethylene bond in ATVT-BO enhances the molecular planarity and reduces the aromaticity, leading to enhanced π-electron delocalization and thus improved electron mobility and a red-shifted optical absorption spectrum. The 3D molecular packing mode of ATVT-BO, characterized by tight intermolecular interactions, also promotes efficient charge transport in OSCs. Consequently, when paired with the low-cost polymer PTVT-T, featuring an ester-substituted TVT structure, as the photoactive layer, the PTVT-T:ATVT-BO-based device achieves a remarkable power conversion efficiency of 14.8%, distinctly higher than that of PTVT-T:A4T-BO-based cell. The result highlights the significant potential of TVT units in creating both low-cost polymer donors and fully non-fused acceptors, which opens up new possibilities for designing low-cost photoactive materials in OSCs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401511"},"PeriodicalIF":10.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jongbum Kim, Minsu Kim, Seungho Yu, Jihee Yu, Chanjong Yu, Taehwan Kim, Nahyeon Lee, Yun Ho Ahn, Yun Ho Kim, Sungmi Yoo, Ki Chul Kim, Dae Woo Kim, Kiwon Eum
Filler morphology control is critical for enhancing the gas separation performance of mixed matrix membranes (MMMs). A vertical transport channel using the crystal twinning phenomenon is designed on the zeolitic imidazolate framework (ZIF) nanoplate. Twinned ZIF-8 (TZIF-8) nanoplate is prepared by controlling the shape of ZIF-L from nanosheet to twinned flake, followed by conversion into the ZIF-8 phase. With the addition of TZIF-8 in 6FDA-DAM polymer, propylene/propane selectivity is dramatically enhanced, showing propylene permeability of 40 Barrer and propylene/propane selectivity of 82. The separation performance surpasses the performance of MMMs reported so far, and the selectivity is comparable to that of polycrystalline ZIF-8 membranes. A transport mechanism study using mathematical models implies that the percolated twin fillers create rapid and selective gas channels for desired molecules and substantial tortuous pathways for undesired molecules.
{"title":"Twinned Metal-Organic Framework Nanoplates for Hydrocarbon Separation Membranes.","authors":"Jongbum Kim, Minsu Kim, Seungho Yu, Jihee Yu, Chanjong Yu, Taehwan Kim, Nahyeon Lee, Yun Ho Ahn, Yun Ho Kim, Sungmi Yoo, Ki Chul Kim, Dae Woo Kim, Kiwon Eum","doi":"10.1002/smtd.202401248","DOIUrl":"https://doi.org/10.1002/smtd.202401248","url":null,"abstract":"<p><p>Filler morphology control is critical for enhancing the gas separation performance of mixed matrix membranes (MMMs). A vertical transport channel using the crystal twinning phenomenon is designed on the zeolitic imidazolate framework (ZIF) nanoplate. Twinned ZIF-8 (TZIF-8) nanoplate is prepared by controlling the shape of ZIF-L from nanosheet to twinned flake, followed by conversion into the ZIF-8 phase. With the addition of TZIF-8 in 6FDA-DAM polymer, propylene/propane selectivity is dramatically enhanced, showing propylene permeability of 40 Barrer and propylene/propane selectivity of 82. The separation performance surpasses the performance of MMMs reported so far, and the selectivity is comparable to that of polycrystalline ZIF-8 membranes. A transport mechanism study using mathematical models implies that the percolated twin fillers create rapid and selective gas channels for desired molecules and substantial tortuous pathways for undesired molecules.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401248"},"PeriodicalIF":10.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The past decades have witnessed the significant development and practical interest of in vivo biomedical imaging technologies and optical materials in the second-near infrared (NIR-II, 1000-1700 nm) window. Imaging with the extended emission wavelength toward the long-wavelength end (NIR-IIb, 1500-1700 nm) further offers micrometer imaging resolution and centimeter tissue penetration depth by taking advantage of the much-reduced photon scattering and near-zero tissue autofluorescence background, which have become a very hot research area. This review focuses on the recent advances in the development of lanthanide-based NIR-IIb probes for in vivo biomedical applications. The progress including ratiometric imaging, multiplexed imaging for wide-field and microscopy, lifetime multiplexing and sensing, persistent luminescence, and multimodal imaging is summarized. Challenges and future directions concerning the investigation of the photophysical and photochemical properties of NIR-IIb probes, the selection of near-infrared cameras as well as the potential extension of the NIR-IIb imaging sub-window are pointed out. This review will inspire readers who have a strong interest in developing optical imaging technology and long-wavelength fluorescence probes for high-contrast in vivo biomedical applications.
{"title":"Advances in Lanthanide-Based NIR-IIb Probes for In Vivo Biomedical Imaging.","authors":"Jiaxin Wu, Zi-Han Chen, Yang Xie, Yong Fan","doi":"10.1002/smtd.202401462","DOIUrl":"https://doi.org/10.1002/smtd.202401462","url":null,"abstract":"<p><p>The past decades have witnessed the significant development and practical interest of in vivo biomedical imaging technologies and optical materials in the second-near infrared (NIR-II, 1000-1700 nm) window. Imaging with the extended emission wavelength toward the long-wavelength end (NIR-IIb, 1500-1700 nm) further offers micrometer imaging resolution and centimeter tissue penetration depth by taking advantage of the much-reduced photon scattering and near-zero tissue autofluorescence background, which have become a very hot research area. This review focuses on the recent advances in the development of lanthanide-based NIR-IIb probes for in vivo biomedical applications. The progress including ratiometric imaging, multiplexed imaging for wide-field and microscopy, lifetime multiplexing and sensing, persistent luminescence, and multimodal imaging is summarized. Challenges and future directions concerning the investigation of the photophysical and photochemical properties of NIR-IIb probes, the selection of near-infrared cameras as well as the potential extension of the NIR-IIb imaging sub-window are pointed out. This review will inspire readers who have a strong interest in developing optical imaging technology and long-wavelength fluorescence probes for high-contrast in vivo biomedical applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401462"},"PeriodicalIF":10.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthetic Janus micro/nanomotors can efficiently convert ambient energy into asymmetrical self-propulsive force, overcoming random thermal fluctuations and enabling autonomous migration. Further modifications to the motors can equip them with different functional modules to meet different needs. However, developing a versatile and high-yield fabrication method for multifunctional Janus micromotors remains challenging. In this study, a modular fabrication approach for micromotors with a particle-tip structure based on the self-focusing lithography induced by an array of TiO2 microspheres is presented. By adjusting the tip composition or loading, precise programming of motor functionality is achieved, allowing for various capabilities such as photoredox reaction-induced propulsion, fluorescent imaging, electric and magnetic navigation. Furthermore, the flexibility of this fabrication method by selectively loading materials onto two tips is demonstrated to achieve multifunctionality within a micromotor unit. This study proposes a straightforward and versatile approach for modular functional micromotors.
{"title":"Modular Micromotor Fabrication with Self-Focusing Lithography.","authors":"Qingxin Guo, Binglin Zeng, Yingnan Cao, Xiaofeng Li, Jingyuan Chen, Wei Wang, Jinyao Tang","doi":"10.1002/smtd.202401388","DOIUrl":"https://doi.org/10.1002/smtd.202401388","url":null,"abstract":"<p><p>Synthetic Janus micro/nanomotors can efficiently convert ambient energy into asymmetrical self-propulsive force, overcoming random thermal fluctuations and enabling autonomous migration. Further modifications to the motors can equip them with different functional modules to meet different needs. However, developing a versatile and high-yield fabrication method for multifunctional Janus micromotors remains challenging. In this study, a modular fabrication approach for micromotors with a particle-tip structure based on the self-focusing lithography induced by an array of TiO<sub>2</sub> microspheres is presented. By adjusting the tip composition or loading, precise programming of motor functionality is achieved, allowing for various capabilities such as photoredox reaction-induced propulsion, fluorescent imaging, electric and magnetic navigation. Furthermore, the flexibility of this fabrication method by selectively loading materials onto two tips is demonstrated to achieve multifunctionality within a micromotor unit. This study proposes a straightforward and versatile approach for modular functional micromotors.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401388"},"PeriodicalIF":10.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Near-infrared II (NIR-II, 900-1880 nm) fluorescence confocal microscopy offers high spatial resolution and extensive in vivo imaging capabilities. However, conventional confocal microscopy requires precise pinhole positioning, posing challenges due to the small size of the pinhole and invisible NIR-II fluorescence. To simplify this, a fiber optical wavelength division multiplexer (WDM) replaces dichroic mirrors and traditional pinholes for excitation and fluorescence beams, allowing NIR-IIb (1500-1700 nm) fluorescence and excitation light to be coupled into the same optical fiber. This streamlined system seamlessly integrates key components-excitation light, detector, and scanning microscopy-via optical fibers. Compared to traditional NIR-II confocal systems, the fiber optical WDM configuration offers simplicity and ease of adjustment. Notably, this simplified system successfully achieves optical sectioning imaging of mouse cerebral blood vessels up to 1000 µm in depth. It can discern tiny blood vessels (diameter: 4.57 µm) at 800 µm depth with a signal-to-background ratio (SBR) of 5.34. Additionally, it clearly visualizes liver vessels, which are typically challenging to image, down to a depth of 300 µm.
近红外 II(NIR-II,900-1880 纳米)荧光共聚焦显微镜具有高空间分辨率和广泛的活体成像能力。然而,传统的共聚焦显微镜需要精确的针孔定位,由于针孔尺寸较小,且近红外 II 荧光不可见,这给共聚焦显微镜带来了挑战。为了简化这一过程,光纤波分复用器(WDM)取代了激发光和荧光光束的二向色镜和传统针孔,使近红外-IIb(1500-1700 nm)荧光和激发光耦合到同一根光纤中。这种精简的系统通过光纤将激发光、检测器和扫描显微镜等关键部件无缝集成在一起。与传统的近红外 II 共聚焦系统相比,光纤波分复用器配置简单,易于调整。值得注意的是,这一简化系统成功实现了深度达 1000 微米的小鼠脑血管光学切片成像。它能辨别 800 微米深度的微小血管(直径:4.57 微米),信噪比(SBR)为 5.34。此外,它还能清晰地显示肝脏血管,而肝脏血管的成像深度通常很难达到 300 微米。
{"title":"From Optical Fiber Communications to Bioimaging: Wavelength Division Multiplexing Technology for Simplified in vivo Large-depth NIR-IIb Fluorescence Confocal Microscopy.","authors":"Xuanjie Mou, Tianxiang Wu, Yunlong Zhao, Mubin He, Yalun Wang, Mingxi Zhang, Jun Qian","doi":"10.1002/smtd.202401426","DOIUrl":"https://doi.org/10.1002/smtd.202401426","url":null,"abstract":"<p><p>Near-infrared II (NIR-II, 900-1880 nm) fluorescence confocal microscopy offers high spatial resolution and extensive in vivo imaging capabilities. However, conventional confocal microscopy requires precise pinhole positioning, posing challenges due to the small size of the pinhole and invisible NIR-II fluorescence. To simplify this, a fiber optical wavelength division multiplexer (WDM) replaces dichroic mirrors and traditional pinholes for excitation and fluorescence beams, allowing NIR-IIb (1500-1700 nm) fluorescence and excitation light to be coupled into the same optical fiber. This streamlined system seamlessly integrates key components-excitation light, detector, and scanning microscopy-via optical fibers. Compared to traditional NIR-II confocal systems, the fiber optical WDM configuration offers simplicity and ease of adjustment. Notably, this simplified system successfully achieves optical sectioning imaging of mouse cerebral blood vessels up to 1000 µm in depth. It can discern tiny blood vessels (diameter: 4.57 µm) at 800 µm depth with a signal-to-background ratio (SBR) of 5.34. Additionally, it clearly visualizes liver vessels, which are typically challenging to image, down to a depth of 300 µm.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401426"},"PeriodicalIF":10.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rechargeable zinc-ion batteries are considered an ideal energy storage system due to their low cost and nonflammable aqueous electrolyte. However, dendrite growth, hydrogen evolution reaction, and self-corrosion of zinc anode brought about serious safety risks including short circuits and electrode expansion. Therefore, a modified host-design strategy with a 3D porous structure and bulk-phase penetrated zincophilic interface is proposed to boost the stability and lifetime of the Zn anode. The porous Zn substrate is constructed by universal HCl etching and the uniform and tight Sn-penetrated zincophilic interface is formed by effective electron beam evaporation (EBE). The porous substrate can uniform zinc ion flux and the Sn coating could effectively improve zinc ion deposition behavior, thus inhibiting the risk of dendrites growth and side reaction. As a result, the 3D Zn substrate with Sn interface (3D Zn@Sn) exhibits prolonged galvanostatic cycling performance up to 4500 h with a low polarization of ≈25 mV (1 mA cm-2, 1 mAh cm-2) in the symmetric cell. The full cell assembled with KVOH@Ti could maintain a high specific capacity of 148.6 mAh g-1 after 500 galvanostatic cycles (10 A g-1). This work proposed an improved electrode design to realize the high performance of zinc ion batteries.
可充电锌离子电池因其低成本和不易燃的水性电解质而被视为理想的储能系统。然而,锌阳极的枝晶生长、氢进化反应和自腐蚀带来了严重的安全隐患,包括短路和电极膨胀。因此,为了提高锌阳极的稳定性和使用寿命,我们提出了一种具有三维多孔结构和体相渗透亲锌界面的改进型宿主设计策略。多孔锌基底是通过通用盐酸蚀刻法构建的,而均匀、紧密的锡穿透亲锌界面则是通过有效的电子束蒸发(EBE)形成的。多孔基底能使锌离子通量均匀,锡涂层能有效改善锌离子沉积行为,从而抑制枝晶生长和副反应的风险。因此,带锡界面的三维锌基底(3D Zn@Sn)在对称电池中表现出长达 4500 小时的低极化(1 mA cm-2,1 mAh cm-2)电静循环性能。使用 KVOH@Ti 组装的全电池在 500 次电静电循环(10 A g-1)后仍能保持 148.6 mAh g-1 的高比容量。这项研究提出了一种改进的电极设计,以实现锌离子电池的高性能。
{"title":"Sn Penetrated Zincophilic Interface Design in Porous Zn Substrate for High Performance Zn-Ion Battery.","authors":"Wangyang Han, Yihong Tan, Liping Ni, Ximei Sun, Kunzhen Li, Leilei Lu, Hui Zhang","doi":"10.1002/smtd.202401499","DOIUrl":"https://doi.org/10.1002/smtd.202401499","url":null,"abstract":"<p><p>Rechargeable zinc-ion batteries are considered an ideal energy storage system due to their low cost and nonflammable aqueous electrolyte. However, dendrite growth, hydrogen evolution reaction, and self-corrosion of zinc anode brought about serious safety risks including short circuits and electrode expansion. Therefore, a modified host-design strategy with a 3D porous structure and bulk-phase penetrated zincophilic interface is proposed to boost the stability and lifetime of the Zn anode. The porous Zn substrate is constructed by universal HCl etching and the uniform and tight Sn-penetrated zincophilic interface is formed by effective electron beam evaporation (EBE). The porous substrate can uniform zinc ion flux and the Sn coating could effectively improve zinc ion deposition behavior, thus inhibiting the risk of dendrites growth and side reaction. As a result, the 3D Zn substrate with Sn interface (3D Zn@Sn) exhibits prolonged galvanostatic cycling performance up to 4500 h with a low polarization of ≈25 mV (1 mA cm<sup>-2</sup>, 1 mAh cm<sup>-2</sup>) in the symmetric cell. The full cell assembled with KVOH@Ti could maintain a high specific capacity of 148.6 mAh g<sup>-1</sup> after 500 galvanostatic cycles (10 A g<sup>-1</sup>). This work proposed an improved electrode design to realize the high performance of zinc ion batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401499"},"PeriodicalIF":10.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}