首页 > 最新文献

Small Methods最新文献

英文 中文
Screening of Vibrational Spectroscopic Voltage Indicator by Stimulated Raman Scattering Microscopy.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202402124
Jingyuan Li, Ninghui Shao, Yongqing Zhang, Xingxin Liu, Hanbin Zhang, Liangfei Tian, Kiryl D Piatkevich, Delong Zhang, Hyeon Jeong Lee

Genetically encoded voltage indicators (GEVIs) have significantly advanced voltage imaging, offering spatial details at cellular and subcellular levels not easily accessible with electrophysiology. In addition to fluorescence imaging, certain chemical bond vibrations are sensitive to membrane potential changes, presenting an alternative imaging strategy; however, challenges in signal sensitivity and membrane specificity highlight the need to develop vibrational spectroscopic GEVIs (vGEVIs) in mammalian cells. To address this need, a vGEVI screening approach is developed that employs hyperspectral stimulated Raman scattering (hSRS) imaging synchronized with an induced transmembrane voltage (ITV) stimulation, revealing unique spectroscopic signatures of sensors expressed on membranes. Specifically, by screening various rhodopsin-based voltage sensors in live mammalian cells, a characteristic peak associated with retinal bound to the sensor is identified in one of the GEVIs, Archon, which exhibited a 70 cm-1 red shift relative to the membrane-bound retinal. Notably, this peak is responsive to changes in membrane potential. Overall, hSRS-ITV presents a promising platform for screening vGEVIs, paving the way for advancements in vibrational spectroscopic voltage imaging.

{"title":"Screening of Vibrational Spectroscopic Voltage Indicator by Stimulated Raman Scattering Microscopy.","authors":"Jingyuan Li, Ninghui Shao, Yongqing Zhang, Xingxin Liu, Hanbin Zhang, Liangfei Tian, Kiryl D Piatkevich, Delong Zhang, Hyeon Jeong Lee","doi":"10.1002/smtd.202402124","DOIUrl":"https://doi.org/10.1002/smtd.202402124","url":null,"abstract":"<p><p>Genetically encoded voltage indicators (GEVIs) have significantly advanced voltage imaging, offering spatial details at cellular and subcellular levels not easily accessible with electrophysiology. In addition to fluorescence imaging, certain chemical bond vibrations are sensitive to membrane potential changes, presenting an alternative imaging strategy; however, challenges in signal sensitivity and membrane specificity highlight the need to develop vibrational spectroscopic GEVIs (vGEVIs) in mammalian cells. To address this need, a vGEVI screening approach is developed that employs hyperspectral stimulated Raman scattering (hSRS) imaging synchronized with an induced transmembrane voltage (ITV) stimulation, revealing unique spectroscopic signatures of sensors expressed on membranes. Specifically, by screening various rhodopsin-based voltage sensors in live mammalian cells, a characteristic peak associated with retinal bound to the sensor is identified in one of the GEVIs, Archon, which exhibited a 70 cm<sup>-1</sup> red shift relative to the membrane-bound retinal. Notably, this peak is responsive to changes in membrane potential. Overall, hSRS-ITV presents a promising platform for screening vGEVIs, paving the way for advancements in vibrational spectroscopic voltage imaging.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402124"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Measurement of the Local Electrocaloric Effect in 2D α-In2Se3 by Scanning Electrocaloric Thermometry.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202401715
Jean Spièce, Valentin Fonck, Charalambos Evangeli, Phil S Dobson, Jonathan M R Weaver, Pascal Gehring

The electrocaloric effect refers to the temperature change in a material when an electric field is applied or removed. Significant breakthroughs revealed its potential for solid-state cooling technologies in past decades. These devices offer a sustainable alternative to traditional vapor compression refrigeration, with advantages such as compactness, silent operation, and the absence of moving parts or refrigerants. Electrocaloric effects are typically studied using indirect methods based on polarization data, which suffer from inaccuracies related to assumptions about heat capacity. Direct methods, although more precise, require device fabrication and face challenges in studying meso- or nanoscale systems, like 2D materials, and materials with non-uniform polarization textures where high spatial resolution is required. In this study, a novel technique, Scanning Electrocaloric Thermometry, is introduced for characterizing the local electrocaloric effect in nanomaterials. This approach achieves high spatial resolution by locally applying electric fields and by simultaneously measuring the resulting temperature change. By employing AC excitation, the measurement sensitivity is further enhanced and the electrocaloric effect is disentangled from other heating mechanisms such as Joule heating and dielectric losses. The effectiveness of the method is demonstrated by examining electrocaloric and heat dissipation phenomena in 2D In2Se3 micrometer-sized flakes poly(vinylidene fluoride-trifluoroethylene) films.

{"title":"Direct Measurement of the Local Electrocaloric Effect in 2D α-In<sub>2</sub>Se<sub>3</sub> by Scanning Electrocaloric Thermometry.","authors":"Jean Spièce, Valentin Fonck, Charalambos Evangeli, Phil S Dobson, Jonathan M R Weaver, Pascal Gehring","doi":"10.1002/smtd.202401715","DOIUrl":"https://doi.org/10.1002/smtd.202401715","url":null,"abstract":"<p><p>The electrocaloric effect refers to the temperature change in a material when an electric field is applied or removed. Significant breakthroughs revealed its potential for solid-state cooling technologies in past decades. These devices offer a sustainable alternative to traditional vapor compression refrigeration, with advantages such as compactness, silent operation, and the absence of moving parts or refrigerants. Electrocaloric effects are typically studied using indirect methods based on polarization data, which suffer from inaccuracies related to assumptions about heat capacity. Direct methods, although more precise, require device fabrication and face challenges in studying meso- or nanoscale systems, like 2D materials, and materials with non-uniform polarization textures where high spatial resolution is required. In this study, a novel technique, Scanning Electrocaloric Thermometry, is introduced for characterizing the local electrocaloric effect in nanomaterials. This approach achieves high spatial resolution by locally applying electric fields and by simultaneously measuring the resulting temperature change. By employing AC excitation, the measurement sensitivity is further enhanced and the electrocaloric effect is disentangled from other heating mechanisms such as Joule heating and dielectric losses. The effectiveness of the method is demonstrated by examining electrocaloric and heat dissipation phenomena in 2D In<sub>2</sub>Se<sub>3</sub> micrometer-sized flakes poly(vinylidene fluoride-trifluoroethylene) films.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401715"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fluorinated Zinc-based Metal-Organic Framework for Efficient Separation of Butane Isomers via Pore Engineering.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202500027
Shuang Ni, Yi-Tao Li, Xi Xu, Siyu Hou, Xingqiang Lü, Qing-Yuan Yang

Separating n-butane/iso-butane is a challenging and energy-intensive task in the petrochemical industry. There have been only several adsorbents reported for C4 paraffins separation while they are confronted in real-world applications with either poor selectivity or low n-butane uptake capacity. In this study, a fluorinated zinc-based metal-organic framework (MOF), Znpyc-CF3, derived from Znpyc-CH3 is developed, which has fluorine-containing functional groups on the pore surface that can enhance the interaction with the linear n-butane. Remarkably, this fluorinated porous material demonstrates both high n-butane uptake (55.5 cm3 g⁻¹) and excellent selectivity (IAST selectivity = 187) at ambient temperature. Multicycle breakthrough experiments confirmed its practical performance for real gas mixtures. Znpyc-CF3 exhibits outstanding stability, maintaining its structural integrity after repeated sorption cycles and dynamic breakthrough tests under both dry and highly humid conditions. The preferential adsorption mechanism of n-butane is further elucidated through Grand Canonical Monte Carlo (GCMC) simulations and Density Functional Theory (DFT) calculations. Overall, this research presents an efficient and stable adsorbent for the separation of butane isomers.

{"title":"A Fluorinated Zinc-based Metal-Organic Framework for Efficient Separation of Butane Isomers via Pore Engineering.","authors":"Shuang Ni, Yi-Tao Li, Xi Xu, Siyu Hou, Xingqiang Lü, Qing-Yuan Yang","doi":"10.1002/smtd.202500027","DOIUrl":"https://doi.org/10.1002/smtd.202500027","url":null,"abstract":"<p><p>Separating n-butane/iso-butane is a challenging and energy-intensive task in the petrochemical industry. There have been only several adsorbents reported for C4 paraffins separation while they are confronted in real-world applications with either poor selectivity or low n-butane uptake capacity. In this study, a fluorinated zinc-based metal-organic framework (MOF), Znpyc-CF<sub>3</sub>, derived from Znpyc-CH<sub>3</sub> is developed, which has fluorine-containing functional groups on the pore surface that can enhance the interaction with the linear n-butane. Remarkably, this fluorinated porous material demonstrates both high n-butane uptake (55.5 cm<sup>3</sup> g⁻¹) and excellent selectivity (IAST selectivity = 187) at ambient temperature. Multicycle breakthrough experiments confirmed its practical performance for real gas mixtures. Znpyc-CF<sub>3</sub> exhibits outstanding stability, maintaining its structural integrity after repeated sorption cycles and dynamic breakthrough tests under both dry and highly humid conditions. The preferential adsorption mechanism of n-butane is further elucidated through Grand Canonical Monte Carlo (GCMC) simulations and Density Functional Theory (DFT) calculations. Overall, this research presents an efficient and stable adsorbent for the separation of butane isomers.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500027"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition Modulation of Cs2ZrCl6-based Scintillator Film via Vapor Deposition for Large-Area X-Ray Imaging.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202500273
Hao Wang, Shuai Zhang, Zhiguo Xia

Metal halide scintillators for X-ray imaging have shown remarkable potential, however, achieving large-area film has been hindered by challenges in materials design and fabrication methods, particularly regarding composition uniformity for high-resolution imaging applications. Here, a multi-source vapor deposition (MSVD) method is employed to realize the facile composition modulation by designing MA+ and Br- (MA+ = methylammonium) co-doped Cs2ZrCl6 (MCZCB) and further synthesizing a uniform and large-area scintillator film. The incorporation of MA+ and Br- ions, with their slightly larger ionic radius, induces lattice distortion, enhancing the self-trapped excitons (STEs) luminescence of the MCZCB and significantly boosting the photoluminescence quantum yield (PLQY) from 70% in pristine Cs2ZrCl6 (CZC) to an impressive 95%. Finally, a large-area of 100 cm2 and 95% visible light transparent scintillator film is fabricated, achieving a spatial resolution of 25.1 lp mm-1. This result demonstrates that MSVD technology is promising as a practical strategy for fabricating large-area X-ray imaging film.

{"title":"Composition Modulation of Cs<sub>2</sub>ZrCl<sub>6</sub>-based Scintillator Film via Vapor Deposition for Large-Area X-Ray Imaging.","authors":"Hao Wang, Shuai Zhang, Zhiguo Xia","doi":"10.1002/smtd.202500273","DOIUrl":"https://doi.org/10.1002/smtd.202500273","url":null,"abstract":"<p><p>Metal halide scintillators for X-ray imaging have shown remarkable potential, however, achieving large-area film has been hindered by challenges in materials design and fabrication methods, particularly regarding composition uniformity for high-resolution imaging applications. Here, a multi-source vapor deposition (MSVD) method is employed to realize the facile composition modulation by designing MA<sup>+</sup> and Br<sup>-</sup> (MA<sup>+</sup> = methylammonium) co-doped Cs<sub>2</sub>ZrCl<sub>6</sub> (MCZCB) and further synthesizing a uniform and large-area scintillator film. The incorporation of MA<sup>+</sup> and Br<sup>-</sup> ions, with their slightly larger ionic radius, induces lattice distortion, enhancing the self-trapped excitons (STEs) luminescence of the MCZCB and significantly boosting the photoluminescence quantum yield (PLQY) from 70% in pristine Cs<sub>2</sub>ZrCl<sub>6</sub> (CZC) to an impressive 95%. Finally, a large-area of 100 cm<sup>2</sup> and 95% visible light transparent scintillator film is fabricated, achieving a spatial resolution of 25.1 lp mm<sup>-1</sup>. This result demonstrates that MSVD technology is promising as a practical strategy for fabricating large-area X-ray imaging film.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500273"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Electrostatic Dual-Carbon-Fiber Microgrippers for Precise 2D Patterning and 3D Stacking of Single Microparticles.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202401878
MinMing Zai, Tursunay Yibibulla, Mohsin Shah, Lan Ai, Yang Yang, Sibt Ul Hassan, Lizhen Hou, Shiliang Wang

This study presents the development of electrostatic dual-carbon-fiber (CF) microgrippers for the precise manipulation of single SiO2 microparticles (diameters >3 µm) at low operating voltages of 5 to 15 V. Theoretical calculations and finite element analysis (FEA) simulations demonstrate that the microgrippers utilize a non-uniform electric field generated by dual CF electrodes to create a dielectrophoresis force for the pick-and-place manipulation of microparticle. After the removal of dielectrophoresis force by turning off the voltage, particle release is facilitated by van der Waals forces from the substrate surface. This approach eliminates the need for additional corona discharge fields or vibrational separators for particle release, ensuring accurate 2D patterning and 3D stacking of SiO2 microparticles. The microgrippers show significant potential for applications in the individual separation and assembly of microparticles, such as lunar soil and interstellar dust, as well as single-cell extraction and positioning. Additionally, the developed microgrippers offer broad utility in micro/nano-manufacturing, micro/nano-electronic circuits, physics, chemistry, and biomedicine.

{"title":"Development of Electrostatic Dual-Carbon-Fiber Microgrippers for Precise 2D Patterning and 3D Stacking of Single Microparticles.","authors":"MinMing Zai, Tursunay Yibibulla, Mohsin Shah, Lan Ai, Yang Yang, Sibt Ul Hassan, Lizhen Hou, Shiliang Wang","doi":"10.1002/smtd.202401878","DOIUrl":"https://doi.org/10.1002/smtd.202401878","url":null,"abstract":"<p><p>This study presents the development of electrostatic dual-carbon-fiber (CF) microgrippers for the precise manipulation of single SiO<sub>2</sub> microparticles (diameters >3 µm) at low operating voltages of 5 to 15 V. Theoretical calculations and finite element analysis (FEA) simulations demonstrate that the microgrippers utilize a non-uniform electric field generated by dual CF electrodes to create a dielectrophoresis force for the pick-and-place manipulation of microparticle. After the removal of dielectrophoresis force by turning off the voltage, particle release is facilitated by van der Waals forces from the substrate surface. This approach eliminates the need for additional corona discharge fields or vibrational separators for particle release, ensuring accurate 2D patterning and 3D stacking of SiO<sub>2</sub> microparticles. The microgrippers show significant potential for applications in the individual separation and assembly of microparticles, such as lunar soil and interstellar dust, as well as single-cell extraction and positioning. Additionally, the developed microgrippers offer broad utility in micro/nano-manufacturing, micro/nano-electronic circuits, physics, chemistry, and biomedicine.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401878"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dielectric Integrations and Advanced Interface Engineering for 2D Field-Effect Transistors.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202402187
Fuyuan Zhang, Junchi Song, Yujia Yan, Feng Wang, Pengyu Zhang, Yuchen Cai, Zhengqiao Li, Yuhan Zhu, Yanrong Wang, Shuhui Li, Xueying Zhan, Kai Xu, Zhenxing Wang

As silicon-based transistors approach their physical limits, the challenge of further increasing chip integration intensifies. 2D semiconductors, with their atomically thin thickness, ultraflat surfaces, and van der Waals (vdW) integration capability, are seen as a key candidate for sub-1 nm nodes in the post-Moore era. However, the low dielectric integration quality, including discontinuity and substantial leakage currents due to the lack of nucleation sites during deposition, interfacial states causing serious charge scattering, uncontrolled threshold shifts, and bad uniformity from dielectric doping and damage, have become critical barriers to their real applications. This review focuses on this challenge and the possible solutions. The functions of dielectric materials in transistors and their criteria for 2D devices are first elucidated. The methods for high-quality dielectric integration with 2D channels, such as surface pretreatment, using 2D materials with native oxides, buffer layer insertion, vdW dielectric transfer, and new dielectric materials, are then reviewed. Additionally, the dielectric integration for advanced 3D integration of 2D materials is also discussed. Finally, this paper is concluded with a comparative summary and outlook, highlighting the importance of interfacial state control, dielectric integration for 2D p-type channels, and compatibility with silicon processes.

{"title":"Dielectric Integrations and Advanced Interface Engineering for 2D Field-Effect Transistors.","authors":"Fuyuan Zhang, Junchi Song, Yujia Yan, Feng Wang, Pengyu Zhang, Yuchen Cai, Zhengqiao Li, Yuhan Zhu, Yanrong Wang, Shuhui Li, Xueying Zhan, Kai Xu, Zhenxing Wang","doi":"10.1002/smtd.202402187","DOIUrl":"https://doi.org/10.1002/smtd.202402187","url":null,"abstract":"<p><p>As silicon-based transistors approach their physical limits, the challenge of further increasing chip integration intensifies. 2D semiconductors, with their atomically thin thickness, ultraflat surfaces, and van der Waals (vdW) integration capability, are seen as a key candidate for sub-1 nm nodes in the post-Moore era. However, the low dielectric integration quality, including discontinuity and substantial leakage currents due to the lack of nucleation sites during deposition, interfacial states causing serious charge scattering, uncontrolled threshold shifts, and bad uniformity from dielectric doping and damage, have become critical barriers to their real applications. This review focuses on this challenge and the possible solutions. The functions of dielectric materials in transistors and their criteria for 2D devices are first elucidated. The methods for high-quality dielectric integration with 2D channels, such as surface pretreatment, using 2D materials with native oxides, buffer layer insertion, vdW dielectric transfer, and new dielectric materials, are then reviewed. Additionally, the dielectric integration for advanced 3D integration of 2D materials is also discussed. Finally, this paper is concluded with a comparative summary and outlook, highlighting the importance of interfacial state control, dielectric integration for 2D p-type channels, and compatibility with silicon processes.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402187"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonvolatile and Strongly Coordinating Solvent Enables Blade-coating of Efficient FACs-based Perovskite Solar Cells.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-17 DOI: 10.1002/smtd.202402177
Zhihao Hu, Hongkun Cai, Xiaoguang Luo, Baoyu Han, Jifeng Liu, Qinwen Guo, Yingchen Li, Chao Liu, Jian Ni, Juan Li, Jianjun Zhang

Blade-coating has emerges as a critical route for scalable manufacturing of perovskite solar cells. However, the N2 knife-assisted blade-coating process under ambient conditions typically yields inferior-quality perovskite films due to inadequate nucleation control and disorderly rapid crystallization. To address this challenge, a novel solvent engineering strategy is developed through the substitution of N-methyl-2-pyrrolidone (NMP) with 1,3-dimethyl-1,3-diazinan-2-one (DMPU). The unique physicochemical properties of DMPU, characterized by low vapor pressure, strong coordination capability, and limited PbI2 solubility, synergistically regulate nucleation and crystallization kinetics. This enables rapid nucleation, stabilization of intermediate phases in wet films, and controlled crystal growth, ultimately producing phase-pure perovskite films with reduced defect density. Moreover, the feasibility and superiority of the mixed solvent strategy are demonstrated. The optimized blade-coated PSCs achieve a power conversion efficiency of 21.74% with enhanced operational stability, retaining 84% initial efficiency under continuous 1-sun illumination for 1,000 h. This work provides new insights into solvent design for preparing blade-coated perovskite films.

{"title":"Nonvolatile and Strongly Coordinating Solvent Enables Blade-coating of Efficient FACs-based Perovskite Solar Cells.","authors":"Zhihao Hu, Hongkun Cai, Xiaoguang Luo, Baoyu Han, Jifeng Liu, Qinwen Guo, Yingchen Li, Chao Liu, Jian Ni, Juan Li, Jianjun Zhang","doi":"10.1002/smtd.202402177","DOIUrl":"https://doi.org/10.1002/smtd.202402177","url":null,"abstract":"<p><p>Blade-coating has emerges as a critical route for scalable manufacturing of perovskite solar cells. However, the N<sub>2</sub> knife-assisted blade-coating process under ambient conditions typically yields inferior-quality perovskite films due to inadequate nucleation control and disorderly rapid crystallization. To address this challenge, a novel solvent engineering strategy is developed through the substitution of N-methyl-2-pyrrolidone (NMP) with 1,3-dimethyl-1,3-diazinan-2-one (DMPU). The unique physicochemical properties of DMPU, characterized by low vapor pressure, strong coordination capability, and limited PbI<sub>2</sub> solubility, synergistically regulate nucleation and crystallization kinetics. This enables rapid nucleation, stabilization of intermediate phases in wet films, and controlled crystal growth, ultimately producing phase-pure perovskite films with reduced defect density. Moreover, the feasibility and superiority of the mixed solvent strategy are demonstrated. The optimized blade-coated PSCs achieve a power conversion efficiency of 21.74% with enhanced operational stability, retaining 84% initial efficiency under continuous 1-sun illumination for 1,000 h. This work provides new insights into solvent design for preparing blade-coated perovskite films.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402177"},"PeriodicalIF":10.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniaturized High-Throughput and High-Resolution Platform for Continuous Live-Cell Monitoring via Lens-Free Imaging and Deep Learning.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-16 DOI: 10.1002/smtd.202401855
Xinyu Shen, Qianwei Zhou, Yao Peng, Haowen Ma, Xiaofeng Bu, Ting Xu, Cheng Yang, Feng Yan

Monitoring the morphology and dynamics of both individual and collective cells is crucial for understanding the complexities of biological systems, investigating disease mechanisms, and advancing therapeutic strategies. However, traditional live-cell workstations that rely on microscopy often face inherent trade-offs between field of view (FOV) and resolution, making it difficult to achieve both high-throughput and high-resolution monitoring simultaneously. While existing lens-free imaging technologies enable high-throughput cell monitoring, they are often hindered by algorithmic complexity, long processing times that prevent real-time imaging, or insufficient resolution due to large sensor pixel sizes. To overcome these limitations, here an imaging platform is presented that integrates a custom-developed 500 nm pixel-size, 400-megapixel sensor with lens-free shadow imaging technology. This platform is capable of achieving imaging at a speed of up to 40s per frame, with a large FOV of 1 cm2 and an imaging signal-to-noise ratio (SNR) of 42 dB, enabling continuous tracking of individual and cell populations throughout their entire lifecycle. By leveraging deep learning algorithms, the system accurately analyzes cell movement trajectories, while the integration of a K-means unsupervised clustering algorithm ensures precise evaluation of cellular activity. This platform provides an effective solution for high-throughput live-cell morphology monitoring and dynamic analysis.

{"title":"Miniaturized High-Throughput and High-Resolution Platform for Continuous Live-Cell Monitoring via Lens-Free Imaging and Deep Learning.","authors":"Xinyu Shen, Qianwei Zhou, Yao Peng, Haowen Ma, Xiaofeng Bu, Ting Xu, Cheng Yang, Feng Yan","doi":"10.1002/smtd.202401855","DOIUrl":"https://doi.org/10.1002/smtd.202401855","url":null,"abstract":"<p><p>Monitoring the morphology and dynamics of both individual and collective cells is crucial for understanding the complexities of biological systems, investigating disease mechanisms, and advancing therapeutic strategies. However, traditional live-cell workstations that rely on microscopy often face inherent trade-offs between field of view (FOV) and resolution, making it difficult to achieve both high-throughput and high-resolution monitoring simultaneously. While existing lens-free imaging technologies enable high-throughput cell monitoring, they are often hindered by algorithmic complexity, long processing times that prevent real-time imaging, or insufficient resolution due to large sensor pixel sizes. To overcome these limitations, here an imaging platform is presented that integrates a custom-developed 500 nm pixel-size, 400-megapixel sensor with lens-free shadow imaging technology. This platform is capable of achieving imaging at a speed of up to 40s per frame, with a large FOV of 1 cm<sup>2</sup> and an imaging signal-to-noise ratio (SNR) of 42 dB, enabling continuous tracking of individual and cell populations throughout their entire lifecycle. By leveraging deep learning algorithms, the system accurately analyzes cell movement trajectories, while the integration of a K-means unsupervised clustering algorithm ensures precise evaluation of cellular activity. This platform provides an effective solution for high-throughput live-cell morphology monitoring and dynamic analysis.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401855"},"PeriodicalIF":10.7,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-Printed Nanocarbon Polymer Conductive Structures for Electromagnetic Interference Shielding.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-16 DOI: 10.1002/smtd.202401822
Shidhin Mappoli, Keval K Sonigara, Suvani Subhadarshini, Martin Pumera

Electromagnetic interference (EMI) significantly affects the performance and reliability of electronic devices. Although current metallic shielding materials are effective, they have drawbacks such as high density, limited flexibility, and poor corrosion resistance that limit their wider application in modern electronics. This study investigates the EMI shielding properties of 3D-printed conductive structures made from polylactic acid (PLA) infused with 0D carbon black (CB) and 1D carbon nanotube (CNT) fillers. This study demonstrates that CNT/PLA composites exhibit superior EMI shielding effectiveness (SE), achieving 43 dB at 10 GHz, compared to 22 dB for CB/PLA structures. Further, conductive coating of polyaniline (PANI) electrodeposition onto the CNT/PLA structures improves the SE to 54.5 dB at 10 GHz. This strategy allows fine control of PANI loading and relevant tuning of SE. Additionally, the 3D-printed PLA-based composites offer several advantages, including lightweight construction and enhanced corrosion resistance, positioning them as a sustainable alternative to traditional metal-based EMI shielding materials. These findings indicate that the SE of 3D-printed materials can be substantially improved through low-cost and straightforward PANI electrodeposition, enabling the production of customized EMI shielding materials with enhanced performance. This novel fabrication method offers promising potential for developing advanced shielding solutions in electronic devices.

{"title":"3D-Printed Nanocarbon Polymer Conductive Structures for Electromagnetic Interference Shielding.","authors":"Shidhin Mappoli, Keval K Sonigara, Suvani Subhadarshini, Martin Pumera","doi":"10.1002/smtd.202401822","DOIUrl":"https://doi.org/10.1002/smtd.202401822","url":null,"abstract":"<p><p>Electromagnetic interference (EMI) significantly affects the performance and reliability of electronic devices. Although current metallic shielding materials are effective, they have drawbacks such as high density, limited flexibility, and poor corrosion resistance that limit their wider application in modern electronics. This study investigates the EMI shielding properties of 3D-printed conductive structures made from polylactic acid (PLA) infused with 0D carbon black (CB) and 1D carbon nanotube (CNT) fillers. This study demonstrates that CNT/PLA composites exhibit superior EMI shielding effectiveness (SE), achieving 43 dB at 10 GHz, compared to 22 dB for CB/PLA structures. Further, conductive coating of polyaniline (PANI) electrodeposition onto the CNT/PLA structures improves the SE to 54.5 dB at 10 GHz. This strategy allows fine control of PANI loading and relevant tuning of SE. Additionally, the 3D-printed PLA-based composites offer several advantages, including lightweight construction and enhanced corrosion resistance, positioning them as a sustainable alternative to traditional metal-based EMI shielding materials. These findings indicate that the SE of 3D-printed materials can be substantially improved through low-cost and straightforward PANI electrodeposition, enabling the production of customized EMI shielding materials with enhanced performance. This novel fabrication method offers promising potential for developing advanced shielding solutions in electronic devices.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401822"},"PeriodicalIF":10.7,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Ion Transport Kinetics in Sulfolane-Modified Aqueous Electrolytes for High-Performance Zinc-Ion Batteries with V₂C MXene Cathodes.
IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-03-16 DOI: 10.1002/smtd.202500028
Jenitha Moses, Naveen T Bharanitharan, Tharani Selvam, Durgalakshmi Dhinasekaran, Ashwin Kishore Munusamy Rajendran, Balakumar Subramanian, Ajay Rakkesh Rajendran

The advancement of zinc-ion batteries (ZIBs) is propelled by their inherent safety, cost-effectiveness, and environmental sustainability. This study investigates the role of sulfolane (SL), a polar aprotic solvent with a high dielectric constant, as an electrolyte additive to enhance ion transport and electrochemical performance in V₂C MXene cathodes for high-performance ZIBs. The addition of 1% SL optimizes Zn-ion transport by increasing ionic conductivity, suppressing electrolyte decomposition, and mitigating zinc dendrite formation. Galvanostatic Intermittent Titration Technique (GITT) analysis reveals a reduction in Zn2⁺ diffusion coefficient from 1.54 × 10⁻⁷ cm2/s in 2 m ZnSO₄ to 1.07 × 10⁻⁹ cm2 s-1 in the SL-modified system, indicating a more confined Zn2⁺ transport environment. Electrochemical Impedance Spectroscopy (EIS) further demonstrates a substantial decrease in activation energy from 123.78 to 65.08 kJ mol⁻¹, signifying improved charge transfer kinetics. Ex situ XRD confirms that SL stabilizes the phase transformation of V₂C to Zn₀.₂₉V₂O₅, enhancing structural integrity. The modified system achieves an impressive specific capacity of 545 mAh g⁻¹ at 0.5 A g⁻¹ and exhibits exceptional cycling stability, retaining 91% capacity over 7000 cycles at 20 A g⁻¹. These findings underscore the potential of sulfolane as a key additive for advancing V₂C MXene-based ZIBs.

{"title":"Boosting Ion Transport Kinetics in Sulfolane-Modified Aqueous Electrolytes for High-Performance Zinc-Ion Batteries with V₂C MXene Cathodes.","authors":"Jenitha Moses, Naveen T Bharanitharan, Tharani Selvam, Durgalakshmi Dhinasekaran, Ashwin Kishore Munusamy Rajendran, Balakumar Subramanian, Ajay Rakkesh Rajendran","doi":"10.1002/smtd.202500028","DOIUrl":"https://doi.org/10.1002/smtd.202500028","url":null,"abstract":"<p><p>The advancement of zinc-ion batteries (ZIBs) is propelled by their inherent safety, cost-effectiveness, and environmental sustainability. This study investigates the role of sulfolane (SL), a polar aprotic solvent with a high dielectric constant, as an electrolyte additive to enhance ion transport and electrochemical performance in V₂C MXene cathodes for high-performance ZIBs. The addition of 1% SL optimizes Zn-ion transport by increasing ionic conductivity, suppressing electrolyte decomposition, and mitigating zinc dendrite formation. Galvanostatic Intermittent Titration Technique (GITT) analysis reveals a reduction in Zn<sup>2</sup>⁺ diffusion coefficient from 1.54 × 10⁻⁷ cm<sup>2</sup>/s in 2 m ZnSO₄ to 1.07 × 10⁻⁹ cm<sup>2</sup> s<sup>-1</sup> in the SL-modified system, indicating a more confined Zn<sup>2</sup>⁺ transport environment. Electrochemical Impedance Spectroscopy (EIS) further demonstrates a substantial decrease in activation energy from 123.78 to 65.08 kJ mol⁻¹, signifying improved charge transfer kinetics. Ex situ XRD confirms that SL stabilizes the phase transformation of V₂C to Zn₀.₂₉V₂O₅, enhancing structural integrity. The modified system achieves an impressive specific capacity of 545 mAh g⁻¹ at 0.5 A g⁻¹ and exhibits exceptional cycling stability, retaining 91% capacity over 7000 cycles at 20 A g⁻¹. These findings underscore the potential of sulfolane as a key additive for advancing V₂C MXene-based ZIBs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500028"},"PeriodicalIF":10.7,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Small Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1