The poor morphology, and susceptibility to oxidation of tin-based perovskite quantum dots (TQDs) have posed significant challenges, limiting their application potential. This study presents a straightforward method for synthesizing high-quality CsSnI3-based perovskite quantum dots (TQDs) by incorporating a mixed Cs source of Cs2CO3 and CsI. The addition of CsI increased the I:Sn ratio while maintaining Sn:Cs, resulting in TQDs with smaller size and improved uniformity. X-ray photoelectron spectroscopy (XPS), and Nuclear magnetic resonance (NMR) analyses confirmed enhanced crystallinity, photoluminescence intensity, and antioxidation ability of CsI-TQDs. Remarkably, these TQDs exhibit exceptional stability, enduring over 1 h in air and more than 24 h before complete oxidation, surpassing the previously reported longest lifetime in air for TQDs with conventional oleic acid (OA) and oleylamine (OAm) ligands. Furthermore, these TQD films retain robustness after ligand exchange with methyl acetate (MeOAc) and formamidinium iodide (FAI), representing the first successful short-ligand exchange of TQDs and enabling further electronic device applications. These findings suggest that CsI in the Cs source plays a crucial role in facilitating the formation of surface complexes, regulating TQD growth and suppressing iodine vacancies.
{"title":"Caesium-Iodide-Assisted Synthesis of High-Quality, Stable, and Robust Lead-Free Perovskite Quantum Dots.","authors":"Shiang Li, Yuhao Li, Minchao Qin, Luhang Xu, Yuang Fu, Pok Fung Chan, Xinhui Lu","doi":"10.1002/smtd.202400996","DOIUrl":"https://doi.org/10.1002/smtd.202400996","url":null,"abstract":"<p><p>The poor morphology, and susceptibility to oxidation of tin-based perovskite quantum dots (TQDs) have posed significant challenges, limiting their application potential. This study presents a straightforward method for synthesizing high-quality CsSnI<sub>3</sub>-based perovskite quantum dots (TQDs) by incorporating a mixed Cs source of Cs<sub>2</sub>CO<sub>3</sub> and CsI. The addition of CsI increased the I:Sn ratio while maintaining Sn:Cs, resulting in TQDs with smaller size and improved uniformity. X-ray photoelectron spectroscopy (XPS), and Nuclear magnetic resonance (NMR) analyses confirmed enhanced crystallinity, photoluminescence intensity, and antioxidation ability of CsI-TQDs. Remarkably, these TQDs exhibit exceptional stability, enduring over 1 h in air and more than 24 h before complete oxidation, surpassing the previously reported longest lifetime in air for TQDs with conventional oleic acid (OA) and oleylamine (OAm) ligands. Furthermore, these TQD films retain robustness after ligand exchange with methyl acetate (MeOAc) and formamidinium iodide (FAI), representing the first successful short-ligand exchange of TQDs and enabling further electronic device applications. These findings suggest that CsI in the Cs source plays a crucial role in facilitating the formation of surface complexes, regulating TQD growth and suppressing iodine vacancies.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400996"},"PeriodicalIF":10.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since 1990, numerous aptamers have been isolated and discovered for use in various analytical, biomedical, and environmental applications. This trend continues to date. A critical step in the characterization of aptamer binding is to measure its binding affinity toward both target and non-target molecules. Dissociation constant (Kd) is the most commonly used value in characterizing aptamer binding. In this article, homogenous assays are reviewed for aptamers that can bind small-molecule targets. The reviewed methods include label-free methods, such as isothermal titration calorimetry, intrinsic fluorescence of target molecules, DNA staining dyes, and nuclease digestion assays, and labeled methods, such as the strand displacement reaction. Some methods are not recommended, such as those based on the aggregation of gold nanoparticles and the desorption of fluorophore-labeled DNA from nanomaterials. The difference between the measured apparent Kd and the true Kd of aptamer binding is stressed. In addition, avoiding the titration regime and paying attention to the time required to reach equilibrium are discussed. Finally, it is important to include mutated non-binding sequences as controls.
自 1990 年以来,已经分离和发现了许多适配体,可用于各种分析、生物医学和环境应用。这一趋势至今仍在继续。鉴定适配体结合特性的关键步骤是测量其与目标分子和非目标分子的结合亲和力。解离常数(Kd)是表征适配体结合的最常用值。本文综述了可与小分子靶标结合的适配体的同源检测方法。所综述的方法包括无标记方法(如等温滴定量热法、靶分子的内在荧光、DNA 染色染料和核酸酶消化测定法)和标记方法(如链置换反应)。有些方法不推荐使用,如基于金纳米粒子聚集和纳米材料中荧光团标记 DNA 的解吸的方法。测量到的表观 Kd 与真正的适配体结合 Kd 之间的差异值得强调。此外,还讨论了避免滴定机制和注意达到平衡所需的时间。最后,将突变的非结合序列作为对照非常重要。
{"title":"Dissociation Constant (K<sub>d</sub>) Measurement for Small-Molecule Binding Aptamers: Homogeneous Assay Methods and Critical Evaluations.","authors":"Stefen Stangherlin, Yuzhe Ding, Juewen Liu","doi":"10.1002/smtd.202401572","DOIUrl":"https://doi.org/10.1002/smtd.202401572","url":null,"abstract":"<p><p>Since 1990, numerous aptamers have been isolated and discovered for use in various analytical, biomedical, and environmental applications. This trend continues to date. A critical step in the characterization of aptamer binding is to measure its binding affinity toward both target and non-target molecules. Dissociation constant (K<sub>d</sub>) is the most commonly used value in characterizing aptamer binding. In this article, homogenous assays are reviewed for aptamers that can bind small-molecule targets. The reviewed methods include label-free methods, such as isothermal titration calorimetry, intrinsic fluorescence of target molecules, DNA staining dyes, and nuclease digestion assays, and labeled methods, such as the strand displacement reaction. Some methods are not recommended, such as those based on the aggregation of gold nanoparticles and the desorption of fluorophore-labeled DNA from nanomaterials. The difference between the measured apparent K<sub>d</sub> and the true K<sub>d</sub> of aptamer binding is stressed. In addition, avoiding the titration regime and paying attention to the time required to reach equilibrium are discussed. Finally, it is important to include mutated non-binding sequences as controls.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401572"},"PeriodicalIF":10.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetic nanoparticles have attracted great attention and become promising candidates in the biomedicine field due to their special physicochemical properties. They are generally divided into metallic and non-metallic magnetic nanoparticles, according to their compositions. Both of the two types have shown practical values in biomedicine applications, such as drug delivery, biosensing, bioimaging, and so on. Research efforts are devoted to the improvement of synthesis strategies to achieve magnetic nanoparticles with controllable morphology, diverse composition, active surface, or multiple functions. Taking high repeatability, programmable operation, precise fluid control, and simple device into account, the microfluidics system can expand the production scale and develop magnetic nanoparticles with desired features. This review will first describe different classifications of promising magnetic nanoparticles, followed by the advancements in microfluidic synthesis and the latest biomedical applications of these magnetic nanoparticles. In addition, the challenges and prospects of magnetic nanoparticles in the biomedical field are also discussed.
{"title":"Microfluidic Synthesis of Magnetic Nanoparticles for Biomedical Applications.","authors":"Yunru Yu, Changqing Zhang, Xin Yang, Lingyu Sun, Feika Bian","doi":"10.1002/smtd.202401220","DOIUrl":"https://doi.org/10.1002/smtd.202401220","url":null,"abstract":"<p><p>Magnetic nanoparticles have attracted great attention and become promising candidates in the biomedicine field due to their special physicochemical properties. They are generally divided into metallic and non-metallic magnetic nanoparticles, according to their compositions. Both of the two types have shown practical values in biomedicine applications, such as drug delivery, biosensing, bioimaging, and so on. Research efforts are devoted to the improvement of synthesis strategies to achieve magnetic nanoparticles with controllable morphology, diverse composition, active surface, or multiple functions. Taking high repeatability, programmable operation, precise fluid control, and simple device into account, the microfluidics system can expand the production scale and develop magnetic nanoparticles with desired features. This review will first describe different classifications of promising magnetic nanoparticles, followed by the advancements in microfluidic synthesis and the latest biomedical applications of these magnetic nanoparticles. In addition, the challenges and prospects of magnetic nanoparticles in the biomedical field are also discussed.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401220"},"PeriodicalIF":10.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Namwook Hur, Yechan Kim, Beomsung Park, Sohui Yoon, Seunghwan Kim, Dong-Hyeok Lim, Hongsik Jeong, Yoongwoo Kwon, Joonki Suh
Recent advancements in phase-change memory (PCM) technology have predominantly stemmed from material-level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device-level electrothermal solutions. Thus, the concept of a 3D heater-all-around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed. The embedded thin metallic heater completely encircles the phase-change material, so it promotes highly localized Joule heating with minimal loss. Hence, a low RESET current density of 6-8 MA cm-2 and operation energy of 150-200 pJ are achieved even for a sizable hole diameter of 300 nm. Beyond the conventional 2D scaling of the bottom electrode contact, it accordingly enhances ≈80% of operational energy efficiency compared to planar PCM with an identical contact area. In addition, reliable memory operations of ≈105 cycles and the 3-bits-per-cell multilevel storage despite ultrathin (<10 nm) sidewall deposition of Ge2Sb2Te5 are optimized. The proposed 3D-scaled HAA-PCM architecture holds promise as a universally applicable backbone for emerging phase-change chalcogenides toward high-density, ultralow-power computing units.
{"title":"Ultralow-Power Programmable 3D Vertical Phase-Change Memory with Heater-All-Around Configuration.","authors":"Namwook Hur, Yechan Kim, Beomsung Park, Sohui Yoon, Seunghwan Kim, Dong-Hyeok Lim, Hongsik Jeong, Yoongwoo Kwon, Joonki Suh","doi":"10.1002/smtd.202401381","DOIUrl":"https://doi.org/10.1002/smtd.202401381","url":null,"abstract":"<p><p>Recent advancements in phase-change memory (PCM) technology have predominantly stemmed from material-level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device-level electrothermal solutions. Thus, the concept of a 3D heater-all-around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed. The embedded thin metallic heater completely encircles the phase-change material, so it promotes highly localized Joule heating with minimal loss. Hence, a low RESET current density of 6-8 MA cm<sup>-2</sup> and operation energy of 150-200 pJ are achieved even for a sizable hole diameter of 300 nm. Beyond the conventional 2D scaling of the bottom electrode contact, it accordingly enhances ≈80% of operational energy efficiency compared to planar PCM with an identical contact area. In addition, reliable memory operations of ≈10<sup>5</sup> cycles and the 3-bits-per-cell multilevel storage despite ultrathin (<10 nm) sidewall deposition of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> are optimized. The proposed 3D-scaled HAA-PCM architecture holds promise as a universally applicable backbone for emerging phase-change chalcogenides toward high-density, ultralow-power computing units.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401381"},"PeriodicalIF":10.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Ortiz-Rivero, Katarzyna Prorok, Riccardo Marin, Artur Bednarkiewicz, Daniel Jaque, Patricia Haro-González
Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF4:Er3+, Yb3+ upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er3+ ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er3+ ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.
{"title":"Unlocking Single-Particle Multiparametric Sensing: Decoupling Temperature and Viscosity Readouts through Upconverting Polarized Spectroscopy.","authors":"Elisa Ortiz-Rivero, Katarzyna Prorok, Riccardo Marin, Artur Bednarkiewicz, Daniel Jaque, Patricia Haro-González","doi":"10.1002/smtd.202400718","DOIUrl":"https://doi.org/10.1002/smtd.202400718","url":null,"abstract":"<p><p>Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF<sub>4</sub>:Er<sup>3+</sup>, Yb<sup>3+</sup> upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er<sup>3+</sup> ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er<sup>3+</sup> ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400718"},"PeriodicalIF":10.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Liu, Ziyu Song, Fengjiao Yu, Michel Armand, Zhibin Zhou, Heng Zhang, Yuhui Chen
Solid polymer electrolytes (SPEs) have been treated as a viable solution to build high-performance solid-state lithium metal batteries (SSLMBs) at the industrial level, bypassing the safety and energy density dilemmas experienced by today's lithium-ion battery technology. To promote a wider application of SPEs-based SSLMBs, the chemical and electrochemical characteristics of lithium metal (Li°) electrode in SPEs have to be clearly elucidated. In this work, the morphological evolution of Li° electrode in the SPEs-based SSLMBs is comprehensively investigated, via a customized electrochemical cell allowing optical microscopic analyses. The results demonstrate that differing from inorganic solid electrolytes, the elastic feature of SPEs eliminates the "memory effect" of the dendrite formation, in which the previously formed dendrites can be dissolved and the resulting space can be simultaneously occupied by electrolyte components, instead of leaving for a second-round growth of Li° dendrites. Furthermore, the largely increased electronic conductivities of the as-formed interphases between Li° electrode and SPEs are found to be responsible for the notoriously soft short-circuit behavior observed during cycling. These findings bring a fresh understanding of the formation and evolution of lithium dendrites in SPE-based cells, which are vital for improving the long-term stability of SSLMBs and other related high-energy battery systems.
{"title":"In Situ Optical Observation of Lithium Dendrite Pattern in Solid Polymer Electrolytes.","authors":"Jie Liu, Ziyu Song, Fengjiao Yu, Michel Armand, Zhibin Zhou, Heng Zhang, Yuhui Chen","doi":"10.1002/smtd.202401233","DOIUrl":"https://doi.org/10.1002/smtd.202401233","url":null,"abstract":"<p><p>Solid polymer electrolytes (SPEs) have been treated as a viable solution to build high-performance solid-state lithium metal batteries (SSLMBs) at the industrial level, bypassing the safety and energy density dilemmas experienced by today's lithium-ion battery technology. To promote a wider application of SPEs-based SSLMBs, the chemical and electrochemical characteristics of lithium metal (Li°) electrode in SPEs have to be clearly elucidated. In this work, the morphological evolution of Li° electrode in the SPEs-based SSLMBs is comprehensively investigated, via a customized electrochemical cell allowing optical microscopic analyses. The results demonstrate that differing from inorganic solid electrolytes, the elastic feature of SPEs eliminates the \"memory effect\" of the dendrite formation, in which the previously formed dendrites can be dissolved and the resulting space can be simultaneously occupied by electrolyte components, instead of leaving for a second-round growth of Li° dendrites. Furthermore, the largely increased electronic conductivities of the as-formed interphases between Li° electrode and SPEs are found to be responsible for the notoriously soft short-circuit behavior observed during cycling. These findings bring a fresh understanding of the formation and evolution of lithium dendrites in SPE-based cells, which are vital for improving the long-term stability of SSLMBs and other related high-energy battery systems.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401233"},"PeriodicalIF":10.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukang Ji, Jinqi Li, Tianzi Meng, Zujian Li, Huajie Zhu, Guanghui Ouyang, Minghua Liu
The realization of persistent luminescence and in particular circularly polarized luminescence (CPL) of organic radicals remains a challenge due to their sensitivity to oxygen at ambient conditions and elusive excited state chirality control. Here, it is reported that UV-irradiation on a supramolecular gel from a chiral triarylamine derivative, TPA-Ala, led to the formation of luminescent radicals with bright CPL. TPA-Ala can form an organogel in chloroform with blue emission and supramolecular chirality as demonstrated by both CD and CPL signals. Upon UV 365 nm irradiation, an emission color change from blue to cyan is observed due to the formation of photo-induced radicals. Interestingly, it is found that the supramolecular gel radicals showed stable luminescence with a lifetime ≈ 10 days in dark environments and inverted CPL, which represents a scarce example with persistent CPL from doublet-state due to oxygen isolation ability of the gel network. Furthermore, doping a guest dye, Rhodamine B (RhB), into the supramolecular gel (RhB/TPA-Ala = 30% in molar ratio) successfully obtained a transient white-light CPL through the superposition of photo-induced radical and guest dye emissions. This work provides a useful methodology for the fabrication of radical-based CPL materials via a supramolecular assembly approach.
{"title":"Photo-Induced Radical Generation of Supramolecular Gel with Sign-Inverted and White-Light Circularly Polarized Luminescence.","authors":"Lukang Ji, Jinqi Li, Tianzi Meng, Zujian Li, Huajie Zhu, Guanghui Ouyang, Minghua Liu","doi":"10.1002/smtd.202400824","DOIUrl":"https://doi.org/10.1002/smtd.202400824","url":null,"abstract":"<p><p>The realization of persistent luminescence and in particular circularly polarized luminescence (CPL) of organic radicals remains a challenge due to their sensitivity to oxygen at ambient conditions and elusive excited state chirality control. Here, it is reported that UV-irradiation on a supramolecular gel from a chiral triarylamine derivative, TPA-Ala, led to the formation of luminescent radicals with bright CPL. TPA-Ala can form an organogel in chloroform with blue emission and supramolecular chirality as demonstrated by both CD and CPL signals. Upon UV 365 nm irradiation, an emission color change from blue to cyan is observed due to the formation of photo-induced radicals. Interestingly, it is found that the supramolecular gel radicals showed stable luminescence with a lifetime ≈ 10 days in dark environments and inverted CPL, which represents a scarce example with persistent CPL from doublet-state due to oxygen isolation ability of the gel network. Furthermore, doping a guest dye, Rhodamine B (RhB), into the supramolecular gel (RhB/TPA-Ala = 30% in molar ratio) successfully obtained a transient white-light CPL through the superposition of photo-induced radical and guest dye emissions. This work provides a useful methodology for the fabrication of radical-based CPL materials via a supramolecular assembly approach.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400824"},"PeriodicalIF":10.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Xiong, Chuanyin Xiong, Qiusheng Zhou, Mengxia Shen, Jiangnan Song, Mengjie Zhao, Yongkang Zhang, Meng An, Yonghao Ni
Prussian blue analogs (PBA) exhibit excellent potential for energy storage due to their unique three-dimensional open framework and abundant redox active sites. However, the dissolution of transition metal ions in water can compromise the structural integrity of PBAs, leading to significant issues such as low cycle life and capacity decay. To address these challenges, we proposed a dual-effect additive-modified electrolyte method to alleviate such issues, introducing sodium ferrocyanide (Na4Fe(CN)6) into aqueous alkaline electrolytes. It could not only capture Zn2+ dissolved on the surface of Na1.86Zn1.46[Fe(CN)6]0.87 (ZnHCF) electrode material during the cycling process but also conduct redox reactions on the electrode surface to provide additional capacitance. Through experiments and molecular simulation calculations, it showed that Na4Fe(CN)6 can restrict the movement of Zn dissolution into the electrolyte on the electrode surface. Based on this, an asymmetric supercapacitor based on ZnHCF//activated carbon was assembled with a modified electrolyte. The assembled supercapacitor displayed a specific capacitance of 1,329.65 mF cm-2, a power density of 2,900 mW cm-2, and an energy density of 388.28 mW h cm-2. This study provides a new idea for the design and construction of stable and efficient PBA energy storage materials by inhibiting the leaching of transition metals in PBA.
{"title":"A Dual Effect Additive Modified Electrolyte Strategy to Improve the Electrochemical Performance of Zinc-Based Prussian Blue Analogs Energy Storage Device.","authors":"Qing Xiong, Chuanyin Xiong, Qiusheng Zhou, Mengxia Shen, Jiangnan Song, Mengjie Zhao, Yongkang Zhang, Meng An, Yonghao Ni","doi":"10.1002/smtd.202401254","DOIUrl":"https://doi.org/10.1002/smtd.202401254","url":null,"abstract":"<p><p>Prussian blue analogs (PBA) exhibit excellent potential for energy storage due to their unique three-dimensional open framework and abundant redox active sites. However, the dissolution of transition metal ions in water can compromise the structural integrity of PBAs, leading to significant issues such as low cycle life and capacity decay. To address these challenges, we proposed a dual-effect additive-modified electrolyte method to alleviate such issues, introducing sodium ferrocyanide (Na<sub>4</sub>Fe(CN)<sub>6</sub>) into aqueous alkaline electrolytes. It could not only capture Zn<sup>2+</sup> dissolved on the surface of Na<sub>1.86</sub>Zn<sub>1.46</sub>[Fe(CN)<sub>6</sub>]<sub>0.87</sub> (ZnHCF) electrode material during the cycling process but also conduct redox reactions on the electrode surface to provide additional capacitance. Through experiments and molecular simulation calculations, it showed that Na<sub>4</sub>Fe(CN)<sub>6</sub> can restrict the movement of Zn dissolution into the electrolyte on the electrode surface. Based on this, an asymmetric supercapacitor based on ZnHCF//activated carbon was assembled with a modified electrolyte. The assembled supercapacitor displayed a specific capacitance of 1,329.65 mF cm<sup>-2</sup>, a power density of 2,900 mW cm<sup>-2</sup>, and an energy density of 388.28 mW h cm<sup>-2</sup>. This study provides a new idea for the design and construction of stable and efficient PBA energy storage materials by inhibiting the leaching of transition metals in PBA.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401254"},"PeriodicalIF":10.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen-Yan Zheng, Hai-Long Qian, Cheng Yang, Xiu-Ping Yan
Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L-1, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.
{"title":"Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing.","authors":"Chen-Yan Zheng, Hai-Long Qian, Cheng Yang, Xiu-Ping Yan","doi":"10.1002/smtd.202401120","DOIUrl":"https://doi.org/10.1002/smtd.202401120","url":null,"abstract":"<p><p>Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L<sup>-1</sup>, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401120"},"PeriodicalIF":10.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weili Cui, Wendi Zhang, Kunpeng Tang, Yingzhi Chen, Kecheng Cao, Lei Shi, Guowei Yang
Armchair graphene nanoribbons (AGNRs) known as semiconductors are holding promise for nanoelectronics applications and sparking increased research interest. Currently, synthesis of 5-AGNRs with a quasi-metallic gap has been achieved using perylene and its halogen-containing derivatives as precursors via on-surface synthesis on a metal substrate. However, challenges in controlling the polymerization and orientation between precursor molecules have led to side reactions and the formation of by-products, posing a significant issue in purity. Here a precision synthesis of confined 5-AGNRs using molecular-designed precursors without halogens is proposed to address these challenges. Perylene and its dimer quaterrylene are utilized for filling into single-walled carbon nanotubes (SWCNTs), following a precursor-driven transition into 5-AGNRs by heat-induced polymerization and cyclodehydrogenation. SWCNTs restrict the alignment of confined quaterrylene enabling their polymerization with a head-to-tail arrangement, which results in the formation of pure 5-AGNRs with three times higher yield than that of perylene, as the free rotation capability of perylene molecules inside SWCNTs lead to the formation of 5-AGNRs concomitant with by-products. This work provides a templated route for synthesizing desired GNRs based on molecular-designed precursors and confined polymerization, bringing advantages for their applications in electronics and optoelectronics.
{"title":"Precursor-Driven Confined Synthesis of Highly Pure 5-Armchair Graphene Nanoribbons.","authors":"Weili Cui, Wendi Zhang, Kunpeng Tang, Yingzhi Chen, Kecheng Cao, Lei Shi, Guowei Yang","doi":"10.1002/smtd.202401168","DOIUrl":"https://doi.org/10.1002/smtd.202401168","url":null,"abstract":"<p><p>Armchair graphene nanoribbons (AGNRs) known as semiconductors are holding promise for nanoelectronics applications and sparking increased research interest. Currently, synthesis of 5-AGNRs with a quasi-metallic gap has been achieved using perylene and its halogen-containing derivatives as precursors via on-surface synthesis on a metal substrate. However, challenges in controlling the polymerization and orientation between precursor molecules have led to side reactions and the formation of by-products, posing a significant issue in purity. Here a precision synthesis of confined 5-AGNRs using molecular-designed precursors without halogens is proposed to address these challenges. Perylene and its dimer quaterrylene are utilized for filling into single-walled carbon nanotubes (SWCNTs), following a precursor-driven transition into 5-AGNRs by heat-induced polymerization and cyclodehydrogenation. SWCNTs restrict the alignment of confined quaterrylene enabling their polymerization with a head-to-tail arrangement, which results in the formation of pure 5-AGNRs with three times higher yield than that of perylene, as the free rotation capability of perylene molecules inside SWCNTs lead to the formation of 5-AGNRs concomitant with by-products. This work provides a templated route for synthesizing desired GNRs based on molecular-designed precursors and confined polymerization, bringing advantages for their applications in electronics and optoelectronics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401168"},"PeriodicalIF":10.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}