Silicon heterojunction (SHJ) solar cell is an advanced and mature photovoltaic cell. Development of photoelectrochemical (PEC) water splitting devices for hydrogen fuel production using SHJ solar cells is considered as a promising approach to address energy crisis. To achieve this goal, it is necessary to deposit passivation layer and cocatalyst layer on the photoelectrode. However, the development of low-cost and scalable preparation methods for high-quality passivation and cocatalyst layer continues to be a significant challenge. Herein, an efficient passivation layer and hydrogen evolution reaction (HER) catalyst are successfully fabricated via solution processed methods. To improve the HER activity of Ni3S2, a Ni3S2-based nanoheterostructure of crystalline Ni3S2, Ni, and amorphous Y(OH)3 is constructed. The optimized photocathode exhibits excellent PEC-HER performance, which achieves a saturated photocurrent of -35.5 mA cm-2 and an applied bias photon-to-current efficiency (ABPE) of 8.4 ± 0.1% under simulated AM1.5G one-sun illumination and more than 120 h of continuous water splitting. This study paves a way for the design and large-scale manufacturing of cost-efficient SHJ photocathode devices.