首页 > 最新文献

Thermochimica Acta最新文献

英文 中文
Pyrolysis kinetics and flame retardant enhancement of bio-based polyamide 56/6 生物基聚酰胺 56/6 的热解动力学和阻燃性能的提高
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-21 DOI: 10.1016/j.tca.2024.179869
Xiaoqi Zhang , Haoyu Yang , Yaxin Guo , Jie Zhou , Hao Liu , Suqin He , Miaoming Huang , Wanlin Xu , Chengshen Zhu , Wentao Liu
The development of polyamide materials with fire safety is of great importance at this stage. A novel nitrogen-phosphorus bisystem flame retardant (MC) with a multi-branched structure was synthesized and applied to a new bio-based polyamide 56/6 (PA56/6). Notably, at 8 wt% MC content, flame-retardant PA56/6@MC8% (FRPA56/6@MC8%) achieved an Limiting Oxygen Index (LOI) of 26.6% and a V-0 rating in UL-94 tests. Cone calorimetry results indicated that FRPA56/6@MC8% exhibited a 22.9% reduction in total heat release (THR) and a 41.0% decrease in peak heat release rate (PHRR), underscoring the flame retardancy promotion by MC in PA56/6. The study further explored the pyrolysis kinetics and mechanisms of polyamide materials, offering insights crucial for flame-retardant modifications. Overall, the findings present an innovative strategy for enhancing the flame retardant properties of PA56/6, potentially applicable in automotive components and other pertinent fields.
现阶段,开发具有防火安全性的聚酰胺材料具有重要意义。研究人员合成了一种具有多分支结构的新型氮磷双体系阻燃剂(MC),并将其应用于新型生物基聚酰胺 56/6(PA56/6)。值得注意的是,在 MC 含量为 8 wt% 时,阻燃 PA56/6@MC8% (FRPA56/6@MC8%)的极限氧指数(LOI)达到 26.6%,在 UL-94 测试中达到 V-0 级。锥形量热仪结果表明,FRPA56/6@MC8% 的总放热量 (THR) 降低了 22.9%,峰值放热率 (PHRR) 降低了 41.0%,突出表明了 MC 在 PA56/6 中的阻燃性能。该研究进一步探讨了聚酰胺材料的热解动力学和机理,为阻燃改性提供了至关重要的见解。总之,研究结果提出了一种增强 PA56/6 阻燃性能的创新策略,可用于汽车部件和其他相关领域。
{"title":"Pyrolysis kinetics and flame retardant enhancement of bio-based polyamide 56/6","authors":"Xiaoqi Zhang ,&nbsp;Haoyu Yang ,&nbsp;Yaxin Guo ,&nbsp;Jie Zhou ,&nbsp;Hao Liu ,&nbsp;Suqin He ,&nbsp;Miaoming Huang ,&nbsp;Wanlin Xu ,&nbsp;Chengshen Zhu ,&nbsp;Wentao Liu","doi":"10.1016/j.tca.2024.179869","DOIUrl":"10.1016/j.tca.2024.179869","url":null,"abstract":"<div><div>The development of polyamide materials with fire safety is of great importance at this stage. A novel nitrogen-phosphorus bisystem flame retardant (MC) with a multi-branched structure was synthesized and applied to a new bio-based polyamide 56/6 (PA56/6). Notably, at 8 wt% MC content, flame-retardant PA56/6@MC<sub>8%</sub> (FRPA56/6@MC<sub>8%</sub>) achieved an Limiting Oxygen Index (LOI) of 26.6% and a V-0 rating in UL-94 tests. Cone calorimetry results indicated that FRPA56/6@MC<sub>8%</sub> exhibited a 22.9% reduction in total heat release (THR) and a 41.0% decrease in peak heat release rate (PHRR), underscoring the flame retardancy promotion by MC in PA56/6. The study further explored the pyrolysis kinetics and mechanisms of polyamide materials, offering insights crucial for flame-retardant modifications. Overall, the findings present an innovative strategy for enhancing the flame retardant properties of PA56/6, potentially applicable in automotive components and other pertinent fields.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179869"},"PeriodicalIF":3.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flammability of Novolac epoxy cured with aromatic diamines 用芳香族二胺固化的 Novolac 环氧树脂的可燃性
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-19 DOI: 10.1016/j.tca.2024.179870
Mauro R.S. Silveira , Vicente F. Moritz , Carlos A. Ferreira , Laurent Ferry , José-Marie Lopez-Cuesta
The modification of Novolac epoxy with the organophosphorus compound 9,10-dihydro-9-oxa-10-phosphaphenanthren-10-oxide (DOPO) to reduce flammability and its influence on curing reactions has been investigated. Three aromatic diamine curing agents were used, namely 4,4′-diaminodiphenylmethane (DDM), 4,4′-diaminodiphenylsulphone (DDS), and diethyltoluenediamine (DETDA). The thermal stability and dynamic-mechanical behaviour of the cured resin depend on interactions of the curing agent with DOPO. The onset degradation temperature decreased with increasing phosphorus content, indicating the influence of DOPO on thermal stability. The DDM 3 %P sample exhibited the highest glass transition (Tg) of 136 °C, while DDS-crosslinked simples displayed the highest Tg of 147 °C among all samples. An improvement in the reaction of Novolac epoxy to fire was achieved by incorporating DOPO compound, as indicated by cone calorimetry results, showing up to a 67 % reduction in the peak heat release rate (pHRR) and 53 % reduction in total heat release (THR) for DDM 3 %P. The modified samples containing DOPO presented a self-extinguishing performance, displaying a UL-94 V-0 rating and a limiting oxygen index (LOI) values reached a maximum of 37.1 % for DDM 3 %P, with less flame propagation than for neat Novolac epoxy.
研究了用有机磷化合物 9,10-二氢-9-氧杂-10-磷菲-10-氧化物(DOPO)对 Novolac 环氧树脂进行改性以降低易燃性及其对固化反应的影响。使用了三种芳香族二胺固化剂,即 4,4′-二氨基二苯甲烷(DDM)、4,4′-二氨基二苯砜(DDS)和二乙基甲苯二胺(DETDA)。固化树脂的热稳定性和动态机械性能取决于固化剂与 DOPO 的相互作用。起始降解温度随着磷含量的增加而降低,这表明 DOPO 对热稳定性有影响。DDM 3 %P 样品的玻璃化转变温度(Tg)最高,为 136 °C,而在所有样品中,DDS 交联模拟物的玻璃化转变温度(Tg)最高,为 147 °C。锥形量热仪结果表明,加入 DOPO 化合物后,Novolac 环氧树脂的着火反应有所改善,DDM 3 %P 的峰值放热率(pHRR)降低了 67%,总放热率(THR)降低了 53%。含有 DOPO 的改性样品具有自熄灭性能,达到了 UL-94 V-0 等级,DDM 3 %P 的极限氧指数(LOI)值最高达到 37.1%,与纯净的 Novolac 环氧树脂相比,火焰蔓延更小。
{"title":"Flammability of Novolac epoxy cured with aromatic diamines","authors":"Mauro R.S. Silveira ,&nbsp;Vicente F. Moritz ,&nbsp;Carlos A. Ferreira ,&nbsp;Laurent Ferry ,&nbsp;José-Marie Lopez-Cuesta","doi":"10.1016/j.tca.2024.179870","DOIUrl":"10.1016/j.tca.2024.179870","url":null,"abstract":"<div><div>The modification of Novolac epoxy with the organophosphorus compound 9,10-dihydro-9-oxa-10-phosphaphenanthren-10-oxide (DOPO) to reduce flammability and its influence on curing reactions has been investigated. Three aromatic diamine curing agents were used, namely 4,4′-diaminodiphenylmethane (DDM), 4,4′-diaminodiphenylsulphone (DDS), and diethyltoluenediamine (DETDA). The thermal stability and dynamic-mechanical behaviour of the cured resin depend on interactions of the curing agent with DOPO. The onset degradation temperature decreased with increasing phosphorus content, indicating the influence of DOPO on thermal stability. The DDM 3 %P sample exhibited the highest glass transition (Tg) of 136 °C, while DDS-crosslinked simples displayed the highest Tg of 147 °C among all samples. An improvement in the reaction of Novolac epoxy to fire was achieved by incorporating DOPO compound, as indicated by cone calorimetry results, showing up to a 67 % reduction in the peak heat release rate (pHRR) and 53 % reduction in total heat release (THR) for DDM 3 %P. The modified samples containing DOPO presented a self-extinguishing performance, displaying a UL-94 V-0 rating and a limiting oxygen index (LOI) values reached a maximum of 37.1 % for DDM 3 %P, with less flame propagation than for neat Novolac epoxy.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179870"},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic compounds as temperature calibrants for fast scanning calorimetry 用作快速扫描量热仪温度校准器的有机化合物
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-14 DOI: 10.1016/j.tca.2024.179868
Timur A. Mukhametzyanov , Airat A. Notfullin , Alisa A. Fatkhutdinova , Christoph Schick

Organic compounds can be used as temperature calibrants in fast scanning calorimetry. Their advantages include ease of surface cleaning of the calorimetric chip and good thermal contact with the chip surface. Among several compounds tested, benzoic acid was identified as a convenient and reliable calibrant for temperatures below approximately 130 °C. However, organic calibrants often exhibit unusual heating rate dependencies of the onset temperatures of melting. This phenomenon can be semi-quantitatively explained by considering different heat flows within the sensor. Notably, the thermal resistance between the heater and thermopile, often overlooked, introduces an additional time constant that can sometimes result in a negative apparent thermal lag. In addition, the onset temperatures are influenced by factors such as sample position, thickness, surface wetting, and spreading. These factors limit the accuracy of transition temperature determinations to approximately ±1 K below 130 °C and ±5 K up to 220 °C.

有机化合物可用作快速扫描量热仪的温度校准器。有机化合物的优点包括易于清洁量热芯片的表面以及与芯片表面良好的热接触。在测试的几种化合物中,苯甲酸被认为是温度低于约 130 °C 时方便可靠的校准物。然而,有机定标物在开始熔化的温度上往往表现出不寻常的加热速率依赖性。考虑到传感器内的不同热流,这种现象可以得到半定量的解释。值得注意的是,加热器和热电堆之间的热阻经常被忽视,它会带来一个额外的时间常数,有时会导致负的表观热滞后。此外,起始温度还受到样品位置、厚度、表面润湿和扩散等因素的影响。这些因素将过渡温度测定的精确度限制在 130 °C 以下约 ±1 K 和 220 °C 以下 ±5 K。
{"title":"Organic compounds as temperature calibrants for fast scanning calorimetry","authors":"Timur A. Mukhametzyanov ,&nbsp;Airat A. Notfullin ,&nbsp;Alisa A. Fatkhutdinova ,&nbsp;Christoph Schick","doi":"10.1016/j.tca.2024.179868","DOIUrl":"10.1016/j.tca.2024.179868","url":null,"abstract":"<div><p>Organic compounds can be used as temperature calibrants in fast scanning calorimetry. Their advantages include ease of surface cleaning of the calorimetric chip and good thermal contact with the chip surface. Among several compounds tested, benzoic acid was identified as a convenient and reliable calibrant for temperatures below approximately 130 °C. However, organic calibrants often exhibit unusual heating rate dependencies of the onset temperatures of melting. This phenomenon can be semi-quantitatively explained by considering different heat flows within the sensor. Notably, the thermal resistance between the heater and thermopile, often overlooked, introduces an additional time constant that can sometimes result in a negative apparent thermal lag. In addition, the onset temperatures are influenced by factors such as sample position, thickness, surface wetting, and spreading. These factors limit the accuracy of transition temperature determinations to approximately ±1 K below 130 °C and ±5 K up to 220 °C.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179868"},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary crystallization of low-isotacticity polypropylene 低异构聚丙烯的二次结晶
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-14 DOI: 10.1016/j.tca.2024.179867
Yoshitomo Furushima , Akihiko Toda , Kazuo Kimura , Masaru Nakada , Akihiro Masuda , Kazuya Nakamura , Hideaki Takahashi , Toshiumi Tatsuki , Kazuma Okada , Masatoshi Ohkura

This study aimed to clarify the secondary crystallization process of low-isotacticity polypropylene (LT-PP). LT-PP demonstrates an exceptionally low crystallization rate at room temperature, which is approximately 1/5000 lower than that of isotactic PP (iPP). During the secondary crystallization of LT-PP at 30 °C, the thickness of lamellar (c-axis) and a- and b-axes of crystallite size remained constant. In addition, no significant change was observed in the CC-C bending vibration. It seems that the direction of the CC-C molecular order is similar to the thickness direction. This vibration mode may be associated with changes in the thickness of the lamellae. To explain the log(t) dependence of crystallinity, the Seto–Frank model was employed.

本研究旨在阐明低异构聚丙烯(LT-PP)的二次结晶过程。LT-PP 在室温下的结晶速率极低,比同轴聚丙烯(iPP)低约 1/5000。LT-PP 在 30 °C 的二次结晶过程中,片层厚度(c 轴)以及结晶尺寸的 a 轴和 b 轴保持不变。此外,CC-C 弯曲振动也没有发生明显变化。由此看来,CC-C 分子顺序的方向与厚度方向相似。这种振动模式可能与薄片厚度的变化有关。为了解释结晶度的对数(t)依赖性,我们采用了 Seto-Frank 模型。
{"title":"Secondary crystallization of low-isotacticity polypropylene","authors":"Yoshitomo Furushima ,&nbsp;Akihiko Toda ,&nbsp;Kazuo Kimura ,&nbsp;Masaru Nakada ,&nbsp;Akihiro Masuda ,&nbsp;Kazuya Nakamura ,&nbsp;Hideaki Takahashi ,&nbsp;Toshiumi Tatsuki ,&nbsp;Kazuma Okada ,&nbsp;Masatoshi Ohkura","doi":"10.1016/j.tca.2024.179867","DOIUrl":"10.1016/j.tca.2024.179867","url":null,"abstract":"<div><p>This study aimed to clarify the secondary crystallization process of low-isotacticity polypropylene (LT-PP). LT-PP demonstrates an exceptionally low crystallization rate at room temperature, which is approximately 1/5000 lower than that of isotactic PP (iPP). During the secondary crystallization of LT-PP at 30 °C, the thickness of lamellar (c-axis) and a- and b-axes of crystallite size remained constant. In addition, no significant change was observed in the C<img>C-C bending vibration. It seems that the direction of the C<img>C-C molecular order is similar to the thickness direction. This vibration mode may be associated with changes in the thickness of the lamellae. To explain the log(<em>t</em>) dependence of crystallinity, the Seto–Frank model was employed.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179867"},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doping SrSnO3 perovskite with transition metals: Synthesis of double hydroxides, thermal decomposition, and pigment potential 用过渡金属掺杂 SrSnO3 包晶:双氢氧化物的合成、热分解和颜料潜力
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-12 DOI: 10.1016/j.tca.2024.179864
Žaneta Dohnalová, Jan Hroch, Nataliia Reinders, Jana Luxová, Petra Šulcová

The primary objective of this research is to explore the feasibility of synthesizing phase-pure perovskite SrSnO3 doped with transition metals and to evaluate the potential of these products as high-temperature inorganic pigments. The initial step in preparing perovskite powders with the general formula SrSn0.95M0.05O3-δ (M = Mn, Fe, Co, Ni) involved synthesizing SrSn0.95M0.05(OH)6 followed by its thermal decomposition. The thermal decomposition processes and the reaction pathway for perovskite formation were analyzed using thermal analysis and X-ray diffraction analysis. Single-phase products of beige SrSn0.95Fe0.05O3-δ and brown SrSn0.95Co0.05O3-δ were successfully obtained by calcining the precursors at 1,100 °C. In contrast, brown SrSn0.95Mn0.05O3-δ contained a phase impurity of SnO2 and doping with Ni ions resulted in a phase mixture of SrSnO3 and NiO. The pigment quality of the powders was assessed based on their color parameters, described using the CIE Lab system.

本研究的主要目的是探索合成掺杂过渡金属的相纯包晶 SrSnO3 的可行性,并评估这些产品作为高温无机颜料的潜力。制备通式为 SrSn0.95M0.05O3-δ(M = Mn、Fe、Co、Ni)的包晶粉末的第一步是合成 SrSn0.95M0.05(OH)6,然后进行热分解。热分析和 X 射线衍射分析对热分解过程和包晶形成的反应途径进行了分析。通过在 1100 ℃ 下煅烧前驱体,成功获得了米色 SrSn0.95Fe0.05O3-δ 和棕色 SrSn0.95Co0.05O3-δ 的单相产物。相比之下,棕色 SrSn0.95Mn0.05O3-δ 中含有 SnO2 相杂质,掺入 Ni 离子后会产生 SrSnO3 和 NiO 相混合物。这些粉末的颜料质量是根据其颜色参数进行评估的,颜色参数采用 CIE Lab 系统进行描述。
{"title":"Doping SrSnO3 perovskite with transition metals: Synthesis of double hydroxides, thermal decomposition, and pigment potential","authors":"Žaneta Dohnalová,&nbsp;Jan Hroch,&nbsp;Nataliia Reinders,&nbsp;Jana Luxová,&nbsp;Petra Šulcová","doi":"10.1016/j.tca.2024.179864","DOIUrl":"10.1016/j.tca.2024.179864","url":null,"abstract":"<div><p>The primary objective of this research is to explore the feasibility of synthesizing phase-pure perovskite SrSnO<sub>3</sub> doped with transition metals and to evaluate the potential of these products as high-temperature inorganic pigments. The initial step in preparing perovskite powders with the general formula SrSn<sub>0.95</sub>M<sub>0.05</sub>O<sub>3-δ</sub> (<em>M</em> = Mn, Fe, Co, Ni) involved synthesizing SrSn<sub>0.95</sub>M<sub>0.05</sub>(OH)<sub>6</sub> followed by its thermal decomposition. The thermal decomposition processes and the reaction pathway for perovskite formation were analyzed using thermal analysis and X-ray diffraction analysis. Single-phase products of beige SrSn<sub>0.95</sub>Fe<sub>0.05</sub>O<sub>3-δ</sub> and brown SrSn<sub>0.95</sub>Co<sub>0.05</sub>O<sub>3-δ</sub> were successfully obtained by calcining the precursors at 1,100 °C. In contrast, brown SrSn<sub>0.95</sub>Mn<sub>0.05</sub>O<sub>3-δ</sub> contained a phase impurity of SnO<sub>2</sub> and doping with Ni ions resulted in a phase mixture of SrSnO<sub>3</sub> and NiO. The pigment quality of the powders was assessed based on their color parameters, described using the CIE Lab system.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179864"},"PeriodicalIF":3.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal conductivity of epoxy/multilayered graphene composites prepared with different curing agents 使用不同固化剂制备的环氧树脂/多层石墨烯复合材料的导热性能
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-10 DOI: 10.1016/j.tca.2024.179866
Miyuki Harada, Masafumi Horimoto, Tomoki Tsukuda

Epoxy/multilayer graphene (ML-graphene) composites were prepared using different curing agents to control the graphene dispersion by changing the curing reactivity. With increasing initial reactivity, the aggregation size of the ML-graphene decreased and their thermal conductivity increased. In particular, the thermal conductivity of the composite prepared with p-phenylenediamine showed a maximum value of 1.46 W/(m·K) at 25 wt% ML-graphene loading because of the highest initial curing reactivity. The application of a magnetic field led to graphene alignment along the applied field, resulting in two times higher thermal conductivity than that of the corresponding system without magnetic field. The relationship between the interfacial affinity for epoxy/graphene and thermal conductivity was also investigated. As a result, resulting in a biphenyl epoxy composite showed higher thermal conductivity (6.17 W/(m·K)) than that of the bisphenol-A epoxy composite. This is derived that the π-conjugated and planar structure of biphenyl epoxy can easily interact with the surface of graphene.

使用不同的固化剂制备了环氧树脂/多层石墨烯(ML-石墨烯)复合材料,通过改变固化反应活性来控制石墨烯的分散。随着初始反应活性的增加,多层石墨烯的聚集尺寸减小,导热系数增加。特别是用对苯二胺制备的复合材料,由于初始固化反应活性最高,在石墨烯含量为 25 wt% 时,热导率达到最大值 1.46 W/(m-K)。磁场的施加导致石墨烯沿着施加的磁场排列,从而使热导率比相应的无磁场体系高出两倍。此外,还研究了环氧树脂/石墨烯界面亲和性与导热性之间的关系。结果表明,联苯环氧复合材料的热导率(6.17 W/(m-K))高于双酚 A 环氧复合材料。这说明联苯环氧的 π 共轭和平面结构很容易与石墨烯表面相互作用。
{"title":"Thermal conductivity of epoxy/multilayered graphene composites prepared with different curing agents","authors":"Miyuki Harada,&nbsp;Masafumi Horimoto,&nbsp;Tomoki Tsukuda","doi":"10.1016/j.tca.2024.179866","DOIUrl":"10.1016/j.tca.2024.179866","url":null,"abstract":"<div><p>Epoxy/multilayer graphene (ML-graphene) composites were prepared using different curing agents to control the graphene dispersion by changing the curing reactivity. With increasing initial reactivity, the aggregation size of the ML-graphene decreased and their thermal conductivity increased. In particular, the thermal conductivity of the composite prepared with <em>p</em>-phenylenediamine showed a maximum value of 1.46 W/(m·K) at 25 wt% ML-graphene loading because of the highest initial curing reactivity. The application of a magnetic field led to graphene alignment along the applied field, resulting in two times higher thermal conductivity than that of the corresponding system without magnetic field. The relationship between the interfacial affinity for epoxy/graphene and thermal conductivity was also investigated. As a result, resulting in a biphenyl epoxy composite showed higher thermal conductivity (6.17 W/(m·K)) than that of the bisphenol-A epoxy composite. This is derived that the π-conjugated and planar structure of biphenyl epoxy can easily interact with the surface of graphene.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179866"},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation and thermodynamic modeling for isobaric heat capacity of ethanol at elevated temperatures and pressures 高温高压下乙醇等压热容的实验研究和热力学建模
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-10 DOI: 10.1016/j.tca.2024.179865
Lingyan Gui , Jian Yang , Jiangtao Wu , Xianyang Meng

Ethanol is a promising sustainable fuel for its environmental friendliness and renewability. Due to the association effect in ethanol molecules, the particular behavior in isobaric heat capacity was explored by combining experimental and theoretical methods. Experimental isobaric heat capacity measurements of ethanol were performed over the temperature range from (298.15 to 573.15) K and at pressures up to 15 MPa in both liquid and vapor phases by a flow calorimeter. Different association schemes were combined respectively with PC-SAFT equation of state and SAFT-VR Mie equation of state to compare their accuracy in isobaric heat capacity prediction, and it could be concluded that two-site (2B) model was better than three-site (3B) model. It was also found that PC-SAFT equation of state was able to yield good results in predicting the isobaric heat capacity far from the saturated state and critical region, however, SAFT-VR Mie equation of state showed better prediction performance near the saturated state and critical region.

乙醇具有环境友好性和可再生性,是一种前景广阔的可持续燃料。由于乙醇分子中的关联效应,研究人员结合实验和理论方法探索了乙醇等压热容的特殊行为。使用流动热量计对乙醇进行了等压热容量实验测量,测量温度范围为 298.15 至 573.15 K,测量压力为 15 MPa,测量条件包括液相和气相。将不同的关联方案分别与 PC-SAFT 状态方程和 SAFT-VR Mie 状态方程相结合,比较了它们在等压热容预测中的准确性,得出的结论是双位点(2B)模型优于三位点(3B)模型。研究还发现,PC-SAFT 状态方程在预测远离饱和状态和临界区域的等压热容时能产生良好的结果,而 SAFT-VR Mie 状态方程在预测接近饱和状态和临界区域的等压热容时表现更好。
{"title":"Experimental investigation and thermodynamic modeling for isobaric heat capacity of ethanol at elevated temperatures and pressures","authors":"Lingyan Gui ,&nbsp;Jian Yang ,&nbsp;Jiangtao Wu ,&nbsp;Xianyang Meng","doi":"10.1016/j.tca.2024.179865","DOIUrl":"10.1016/j.tca.2024.179865","url":null,"abstract":"<div><p>Ethanol is a promising sustainable fuel for its environmental friendliness and renewability. Due to the association effect in ethanol molecules, the particular behavior in isobaric heat capacity was explored by combining experimental and theoretical methods. Experimental isobaric heat capacity measurements of ethanol were performed over the temperature range from (298.15 to 573.15) K and at pressures up to 15 MPa in both liquid and vapor phases by a flow calorimeter. Different association schemes were combined respectively with PC-SAFT equation of state and SAFT-VR Mie equation of state to compare their accuracy in isobaric heat capacity prediction, and it could be concluded that two-site (2B) model was better than three-site (3B) model. It was also found that PC-SAFT equation of state was able to yield good results in predicting the isobaric heat capacity far from the saturated state and critical region, however, SAFT-VR Mie equation of state showed better prediction performance near the saturated state and critical region.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179865"},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermotropic phase behavior, structure and supramolecular organization of N, O-diacyl-β-alaninols with matched N- and O-acyl chains (n = 9-18) 具有匹配 N-和 O-酰基链的 N,O-二乙酰基-β-丙氨醇的热致相行为、结构和超分子组织(n = 9-18)
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-23 DOI: 10.1016/j.tca.2024.179852
Dokku Sivaramakrishna , Konga Manasa , Gowri Sankar Reddipalli , Musti J. Swamy

The thermotropic phase behavior, molecular structure and supramolecular organization of a homologous series of N,O-diacyl-β-alaninols (DABAOHs) with matched acyl chains (C9-C18) are reported. The C9-C11 DABAOHs showed a single thermotropic transition in DSC studies, whereas the longer chainlength compounds gave two transitions. Transition temperatures, enthalpies and entropies of the DABAOHs exhibited odd-even alternation, suggesting minor differences in the packing of odd- and even chain length compounds. Crystal structure of N,O-didecanoyl-β-alaninol revealed a bent geometry, with several N-H···O and C-H···O hydrogen bonds stabilizing the molecular packing. Powder X-ray diffraction studies suggested that all DABAOHs are packed in a tilted bilayer mode. These results provide a thermodynamic and structural basis for investigating the structure-function relationships of N,O-diacyl-β-alaninols.

报告了具有匹配酰基链(C9-C18)的同源 N,O-二乙酰基-β-丙氨醇(DABAOHs)系列的热致相行为、分子结构和超分子组织。在 DSC 研究中,C9-C11 DABAOHs 表现出单一的向热转变,而链长较长的化合物则有两个转变。DABAOHs 的转变温度、热焓和熵呈现奇偶交替,表明奇数和偶数链长化合物的堆积存在细微差别。N,O-二癸酰基-β-丙氨醇的晶体结构显示出弯曲的几何形状,多个 N-H-O 和 C-H-O 氢键稳定了分子填料。粉末 X 射线衍射研究表明,所有 DABAOH 都以倾斜的双层模式堆积。这些结果为研究 N,O-二乙酰基-β-丙氨醇的结构-功能关系提供了热力学和结构基础。
{"title":"Thermotropic phase behavior, structure and supramolecular organization of N, O-diacyl-β-alaninols with matched N- and O-acyl chains (n = 9-18)","authors":"Dokku Sivaramakrishna ,&nbsp;Konga Manasa ,&nbsp;Gowri Sankar Reddipalli ,&nbsp;Musti J. Swamy","doi":"10.1016/j.tca.2024.179852","DOIUrl":"10.1016/j.tca.2024.179852","url":null,"abstract":"<div><p>The thermotropic phase behavior, molecular structure and supramolecular organization of a homologous series of <em>N,O</em>-diacyl-β-alaninols (DABAOHs) with matched acyl chains (C9-C18) are reported. The C9-C11 DABAOHs showed a single thermotropic transition in DSC studies, whereas the longer chainlength compounds gave two transitions. Transition temperatures, enthalpies and entropies of the DABAOHs exhibited odd-even alternation, suggesting minor differences in the packing of odd- and even chain length compounds. Crystal structure of <em>N,O</em>-didecanoyl-β-alaninol revealed a bent geometry, with several N-H···O and C-H···O hydrogen bonds stabilizing the molecular packing. Powder X-ray diffraction studies suggested that all DABAOHs are packed in a tilted bilayer mode. These results provide a thermodynamic and structural basis for investigating the structure-function relationships of <em>N,O</em>-diacyl-β-alaninols.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"741 ","pages":"Article 179852"},"PeriodicalIF":3.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase change materials encapsulated in graphene hybrid aerogels with high thermal conductivity for efficient solar-thermal energy conversion and thermal management of solar PV panels 石墨烯混合气凝胶中封装的相变材料具有高导热性,可用于太阳能光伏板的高效光热转换和热管理
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-22 DOI: 10.1016/j.tca.2024.179853
Fangfang He , Weijie Hong , Zhipeng Liu , Yulin Zhu , Yongsheng Li , Zhuoni Jiang , Zhengguo Chen , Wenbin Yang

Phase change materials (PCMs) have a wide range of applications in latent heat storage and thermal management. However, their practical use is hindered by high leakage rates and low thermal conductivity. To address these issues, polyvinyl alcohol/carboxylated carbon nanotubes/graphene hybrid aerogels (PCG) were carbonized at high temperatures to obtain polyvinyl alcohol/carboxylated carbon nanotubes/graphene carbon aerogels (cPCG). Polyethylene glycol (PEG) was then encapsulated within cPCG to form cPCG@PEG shape-stabilized PCMs (SSPCMs). These cPCG@PEG SSPCMs demonstrated excellent thermal conductivity (0.843 W•m-1•K-1) and superior solar-thermal conversion performance (91.8%). Additionally, the latent heat of cPCG@PEG showed a minimal decrease even after 100 melt-crystallization cycles. An experimental setup was designed to regulate the temperature of solar photovoltaic (PV) panels using cPCG@PEG. The results indicated that cPCG@PEG effectively managed the temperature of solar PV panels under varying light conditions. This study presents a novel approach for enhancing the application of porous PCMs in solar energy utilization and thermal management of equipment.

相变材料(PCM)在潜热储存和热管理方面有着广泛的应用。然而,高泄漏率和低导热性阻碍了它们的实际应用。为解决这些问题,在高温下对聚乙烯醇/羧基碳纳米管/石墨烯混合气凝胶(PCG)进行碳化,得到聚乙烯醇/羧基碳纳米管/石墨烯碳气凝胶(cPCG)。然后将聚乙二醇(PEG)封装在 cPCG 中,形成 cPCG@PEG 形状稳定 PCM(SSPCM)。这些 cPCG@PEG SSPCMs 具有出色的热导率(0.843 W-m-1-K-1)和卓越的太阳能-热转换性能(91.8%)。此外,即使经过 100 次熔融-结晶循环,cPCG@PEG 的潜热降低幅度也很小。研究人员设计了一套实验装置,利用 cPCG@PEG 调节太阳能光伏(PV)板的温度。结果表明,在不同的光照条件下,cPCG@PEG 能有效控制太阳能光伏板的温度。这项研究为提高多孔 PCM 在太阳能利用和设备热管理中的应用提供了一种新方法。
{"title":"Phase change materials encapsulated in graphene hybrid aerogels with high thermal conductivity for efficient solar-thermal energy conversion and thermal management of solar PV panels","authors":"Fangfang He ,&nbsp;Weijie Hong ,&nbsp;Zhipeng Liu ,&nbsp;Yulin Zhu ,&nbsp;Yongsheng Li ,&nbsp;Zhuoni Jiang ,&nbsp;Zhengguo Chen ,&nbsp;Wenbin Yang","doi":"10.1016/j.tca.2024.179853","DOIUrl":"10.1016/j.tca.2024.179853","url":null,"abstract":"<div><p>Phase change materials (PCMs) have a wide range of applications in latent heat storage and thermal management. However, their practical use is hindered by high leakage rates and low thermal conductivity. To address these issues, polyvinyl alcohol/carboxylated carbon nanotubes/graphene hybrid aerogels (PCG) were carbonized at high temperatures to obtain polyvinyl alcohol/carboxylated carbon nanotubes/graphene carbon aerogels (cPCG). Polyethylene glycol (PEG) was then encapsulated within cPCG to form cPCG@PEG shape-stabilized PCMs (SSPCMs). These cPCG@PEG SSPCMs demonstrated excellent thermal conductivity (0.843 W•m<sup>-1</sup>•K<sup>-1</sup>) and superior solar-thermal conversion performance (91.8%). Additionally, the latent heat of cPCG@PEG showed a minimal decrease even after 100 melt-crystallization cycles. An experimental setup was designed to regulate the temperature of solar photovoltaic (PV) panels using cPCG@PEG. The results indicated that cPCG@PEG effectively managed the temperature of solar PV panels under varying light conditions. This study presents a novel approach for enhancing the application of porous PCMs in solar energy utilization and thermal management of equipment.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179853"},"PeriodicalIF":3.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the curing kinetics of Acrolein-Pentaerythritol resin: Impact of molecular weight and molecular weight distribution on cure behavior 探索丙烯醛-季戊四醇树脂的固化动力学:分子量和分子量分布对固化行为的影响
IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-15 DOI: 10.1016/j.tca.2024.179851
Qian Yu, Qihui Zeng, Lichun Jiang, Jianjun Li, Fang Yang, Gang Li, Jie Chen, Chuande Zhao

Curing kinetics are crucial for designing and optimizing the process parameters of a resin. This study examines the non-isothermal curing kinetics of acrolein-pentaerythritol (APE) resins, focusing on the impact of molecular weight (MW) and molecular weight distribution (MWD) on their cure behavior. Kinetic parameters were determined using isoconversional and combined kinetic analysis methods through microcalorimeter measurements. The findings suggest that the cure process follows the nucleation and growth models (Avrami−Erofeev equation), with an activation energy of 72.2 kJ/mol. A comparison of two APE resins with different molecular weights and molecular weight distributions reveals that higher MW components expedite the initial curing reaction but impede the main curing process, leading to extended curing durations. This study provides valuable insights into the curing kinetics of APE resin and the influence of MW and MWD, contributing to the reliable and reproducible production of composite parts.

固化动力学对于设计和优化树脂的工艺参数至关重要。本研究探讨了丙烯醛-季戊四醇(APE)树脂的非等温固化动力学,重点研究了分子量(MW)和分子量分布(MWD)对其固化行为的影响。通过微量热计测量,采用等转换和组合动力学分析方法确定了动力学参数。研究结果表明,固化过程遵循成核和生长模型(Avrami-Erofeev 方程),活化能为 72.2 kJ/mol。对两种具有不同分子量和分子量分布的 APE 树脂进行比较后发现,较高分子量的成分可加速初始固化反应,但会阻碍主要固化过程,从而导致固化持续时间延长。这项研究为了解 APE 树脂的固化动力学以及分子量和分子量分布的影响提供了宝贵的见解,有助于可靠、可重复地生产复合材料部件。
{"title":"Exploring the curing kinetics of Acrolein-Pentaerythritol resin: Impact of molecular weight and molecular weight distribution on cure behavior","authors":"Qian Yu,&nbsp;Qihui Zeng,&nbsp;Lichun Jiang,&nbsp;Jianjun Li,&nbsp;Fang Yang,&nbsp;Gang Li,&nbsp;Jie Chen,&nbsp;Chuande Zhao","doi":"10.1016/j.tca.2024.179851","DOIUrl":"10.1016/j.tca.2024.179851","url":null,"abstract":"<div><p>Curing kinetics are crucial for designing and optimizing the process parameters of a resin. This study examines the non-isothermal curing kinetics of acrolein-pentaerythritol (APE) resins, focusing on the impact of molecular weight (MW) and molecular weight distribution (MWD) on their cure behavior. Kinetic parameters were determined using isoconversional and combined kinetic analysis methods through microcalorimeter measurements. The findings suggest that the cure process follows the nucleation and growth models (Avrami−Erofeev equation), with an activation energy of 72.2 kJ/mol. A comparison of two APE resins with different molecular weights and molecular weight distributions reveals that higher MW components expedite the initial curing reaction but impede the main curing process, leading to extended curing durations. This study provides valuable insights into the curing kinetics of APE resin and the influence of MW and MWD, contributing to the reliable and reproducible production of composite parts.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179851"},"PeriodicalIF":3.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Thermochimica Acta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1