Pub Date : 2024-07-19DOI: 10.1016/j.tca.2024.179826
Haoting Yin, Cong Chen, Tianyu Wu, Xiaoyu Meng, Hai-Mu Ye
The crystallization behavior and miscibility of blends between poly(glycolic acid) (PGA) and minority poly(vinyl alcohol) (PVA) with different saponification degrees have been studied. It was found that the melting point and crystallization ability of PGA in blends were remarkably depressed. During isothermal crystallization, introduction of PVA led to a decrease in both the Avrami index and the crystallization rate of PGA. The observation of spherulite morphology further revealed that the addition of PVA inhibited the growth of PGA spherulites, but increased the density of nucleation. Besides, PVA1788 with lower saponification degree displayed a stronger impact than PVA1799 on the crystallization of PGA. All blends exhibited a single composition-dependent glass transition temperature (Tg), characteristic of miscible systems. The Tgs fitted the Kwei equation well, and the calculated interaction parameters demonstrated the formation of intermolecular interactions between PGA and PVA and revealed the stronger interactions presenting in PGA/PVA1788 blends. FTIR investigation directly confirmed the effect of PVA on the carbonyl groups of PGA and PVA1788 played more roles than PVA1799. The interactions mainly form between carbonyl groups in PGA and hydroxyl groups in PVA1799, while latter ones change to carbonyl and hydroxyl groups in PVA1788.
{"title":"Influence of poly(vinyl alcohol) on poly(glycolic acid) crystallization: An investigation into intermolecular interactions","authors":"Haoting Yin, Cong Chen, Tianyu Wu, Xiaoyu Meng, Hai-Mu Ye","doi":"10.1016/j.tca.2024.179826","DOIUrl":"10.1016/j.tca.2024.179826","url":null,"abstract":"<div><p>The crystallization behavior and miscibility of blends between poly(glycolic acid) (PGA) and minority poly(vinyl alcohol) (PVA) with different saponification degrees have been studied. It was found that the melting point and crystallization ability of PGA in blends were remarkably depressed. During isothermal crystallization, introduction of PVA led to a decrease in both the Avrami index and the crystallization rate of PGA. The observation of spherulite morphology further revealed that the addition of PVA inhibited the growth of PGA spherulites, but increased the density of nucleation. Besides, PVA1788 with lower saponification degree displayed a stronger impact than PVA1799 on the crystallization of PGA. All blends exhibited a single composition-dependent glass transition temperature (<em>T</em><sub>g</sub>), characteristic of miscible systems. The <em>T</em><sub>g</sub>s fitted the Kwei equation well, and the calculated interaction parameters demonstrated the formation of intermolecular interactions between PGA and PVA and revealed the stronger interactions presenting in PGA/PVA1788 blends. FTIR investigation directly confirmed the effect of PVA on the carbonyl groups of PGA and PVA1788 played more roles than PVA1799. The interactions mainly form between carbonyl groups in PGA and hydroxyl groups in PVA1799, while latter ones change to carbonyl and hydroxyl groups in PVA1788.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179826"},"PeriodicalIF":3.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.tca.2024.179828
Sercan Basit , Pınar Ata Esener , Yiğit Yavuz Aydoğan , Sezen Aksöz , Necmettin Maraşlı
This study aims to investigate the effects of external positive and negative static electric fields (E+ and E- respectively) on thermal conductivity (K) and electrical conductivity (σ) in Al-33 wt. % Cu, Al-6.4 wt. % Ni and Al-12 wt. % Si eutectic alloys. For this purpose, the solidifications of Al-Cu, Al-Ni, and Al-Si eutectic alloys were directionally done under E+ and E-. The directions of E were chosen to be parallel (E+) and antiparallel (E-) to the solid-liquid (S-L) growth direction and the magnitudes of E were approximately (+10) and (−10) kV cm−1 and (+16) and (-16) kV cm−1 for the Al-Cu, Al-Ni, and Al-Si eutectic alloys, respectively. The effects of E+ and E− on the K and σ were determined by the longitudinal heat flow and the four-point probe methods, respectively. While the K and σ values decreased with increasing temperature, the K and σ were increased and decreased with E+ and E−, respectively.
{"title":"Effects of external static electrical field on thermal and electrical conductivity in the Al-Cu, Al-Ni, and Al-Si eutectic alloys","authors":"Sercan Basit , Pınar Ata Esener , Yiğit Yavuz Aydoğan , Sezen Aksöz , Necmettin Maraşlı","doi":"10.1016/j.tca.2024.179828","DOIUrl":"10.1016/j.tca.2024.179828","url":null,"abstract":"<div><p>This study aims to investigate the effects of external positive and negative static electric fields (E<sub>+</sub> and E<sub>-</sub> respectively) on thermal conductivity (K) and electrical conductivity (σ) in Al-33 wt. % Cu, Al-6.4 wt. % Ni and Al-12 wt. % Si eutectic alloys. For this purpose, the solidifications of Al-Cu, Al-Ni, and Al-Si eutectic alloys were directionally done under E<sub>+</sub> and E<sub>-</sub>. The directions of E were chosen to be parallel (E<sub>+</sub>) and antiparallel (E<sub>-</sub>) to the solid-liquid (S-L) growth direction and the magnitudes of E were approximately (+10) and (−10) kV cm<sup>−1</sup> and (+16) and (-16) kV cm<sup>−1</sup> for the Al-Cu, Al-Ni, and Al-Si eutectic alloys, respectively. The effects of E<sub>+</sub> and E<sub>−</sub> on the K and σ were determined by the longitudinal heat flow and the four-point probe methods, respectively. While the K and σ values decreased with increasing temperature, the K and σ were increased and decreased with E<sub>+</sub> and E<sub>−</sub>, respectively.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179828"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boron (B) powder has been considered a promising high-energy material due to its high calorific value. Nevertheless, the low combustion efficiency and the difficulty in ignition restrict its application. To solve the problems, in this study, an energetic metal-organic framework (EMOF) was used as a modifier for the nano-sized B powder, and its effect on the ignition and burning performance of B powder was examined. EMOF can significantly increase the heat release of B powder and lower its initial oxidation temperature. The best improvement is achieved with 10% EMOF contents in air, while the highest heat release is obtained with 25% EMOF contents in pure oxygen. Furthermore, EMOF can also reduce the ignition delay of B powder, enhance the flame intensity, and increase the flame propagation rate. This study offers new perspectives on modifying B powder with incorporating EMOF to develop multifunctional energetic particles with improved ignition and combustion characteristics.
硼(B)粉因其热值高而被认为是一种很有前途的高能材料。然而,燃烧效率低和点火困难限制了它的应用。为了解决这些问题,本研究使用了高能金属有机框架(EMOF)作为纳米级硼粉的改性剂,并考察了其对硼粉点火和燃烧性能的影响。EMOF 能明显增加 B 粉的热释放并降低其初始氧化温度。在空气中 EMOF 含量为 10% 时,改善效果最好,而在纯氧中 EMOF 含量为 25% 时,热释放量最高。此外,EMOF 还能降低 B 粉的点火延迟,增强火焰强度,提高火焰传播速度。这项研究为通过加入 EMOF 对 B 粉末进行改性,从而开发出具有更佳点火和燃烧特性的多功能高能粒子提供了新的视角。
{"title":"Study on nano-sized boron particles modified by EMOF to enhance the combustion performance","authors":"Hailong Zhou, Jiuyu Chen, Yunlan Sun, Naiqiang Huang, Jiang Liu, Xuan Jiang, Baozhong Zhu","doi":"10.1016/j.tca.2024.179827","DOIUrl":"10.1016/j.tca.2024.179827","url":null,"abstract":"<div><p>Boron (B) powder has been considered a promising high-energy material due to its high calorific value. Nevertheless, the low combustion efficiency and the difficulty in ignition restrict its application. To solve the problems, in this study, an energetic metal-organic framework (EMOF) was used as a modifier for the nano-sized B powder, and its effect on the ignition and burning performance of B powder was examined. EMOF can significantly increase the heat release of B powder and lower its initial oxidation temperature. The best improvement is achieved with 10% EMOF contents in air, while the highest heat release is obtained with 25% EMOF contents in pure oxygen. Furthermore, EMOF can also reduce the ignition delay of B powder, enhance the flame intensity, and increase the flame propagation rate. This study offers new perspectives on modifying B powder with incorporating EMOF to develop multifunctional energetic particles with improved ignition and combustion characteristics.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179827"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.tca.2024.179825
Oleg I. Loban , Yulia V. Olikhova , Irina Yu. Gorbunova , Natalya V. Kostromina
The article examines the curing of epoxy resin, based on diglycidyl ether Bisphenol-A, with the amine hardener Aramin (a mixture of aliphatic and aromatic amines). It was found that curing at 20, 40 and 60 °C is accompanied by microgelation. Coefficients of viscosity increase rise by 2, 3 and 4 times respectively. The possibility of using second order equation, Kamal catalytic equation, auto-acceleration and auto-inhibition equations and describing the curing process was considered. It was shown that no one of the equations describes the entire process with a high degree of accuracy. Equations, which could adequately describe distinct stages of the process, have been found. The conditions (time and degree of conversion) for the onset of microgelation, gelation and transition from a kinetic to a diffusion-controlled mechanism were established.
文章研究了以双酚 A 二缩水甘油醚为基础的环氧树脂与胺固化剂 Aramin(脂肪族胺和芳香族胺的混合物)的固化过程。研究发现,在 20、40 和 60 °C 下固化时会出现微凝胶现象。粘度系数 kη 分别上升了 2、3 和 4 倍。考虑了使用二阶方程、Kamal 催化方程、自加速方程和自抑制方程来描述固化过程的可能性。结果表明,没有任何一个方程能高度准确地描述整个过程。已经找到了能够充分描述该过程不同阶段的方程。确定了开始微凝胶化、凝胶化以及从动力学机制过渡到扩散控制机制的条件(时间和转化程度)。
{"title":"Curing rheokinetics of epoxy-amine composition","authors":"Oleg I. Loban , Yulia V. Olikhova , Irina Yu. Gorbunova , Natalya V. Kostromina","doi":"10.1016/j.tca.2024.179825","DOIUrl":"10.1016/j.tca.2024.179825","url":null,"abstract":"<div><p>The article examines the curing of epoxy resin, based on diglycidyl ether Bisphenol-A, with the amine hardener Aramin (a mixture of aliphatic and aromatic amines). It was found that curing at 20, 40 and 60 °C is accompanied by microgelation. Coefficients of viscosity increase <span><math><msub><mi>k</mi><mi>η</mi></msub></math></span> rise by 2, 3 and 4 times respectively. The possibility of using second order equation, Kamal catalytic equation, auto-acceleration and auto-inhibition equations and describing the curing process was considered. It was shown that no one of the equations describes the entire process with a high degree of accuracy. Equations, which could adequately describe distinct stages of the process, have been found. The conditions (time and degree of conversion) for the onset of microgelation, gelation and transition from a kinetic to a diffusion-controlled mechanism were established.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179825"},"PeriodicalIF":3.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.tca.2024.179815
Zi Yang , Sina Mallow , John Banhart , Olaf Kessler
Investigating precipitation processes in aluminium alloys during cooling from the solutionising temperature is important because the level of solute supersaturation and the presence of pre-precipitated solutes determine the response to the subsequent age hardening step. Differential scanning calorimetry has been developed to a suitable method to follow precipitation over a wide range of cooling rates. We develop a device that allows us to measure electrical resistivity in-situ during the quenching of alloy samples from the solutionising temperature. A procedure is formulated that allows us to separate the signal related to precipitation from the large background caused by the temperature dependence of electrical resistivity. Application to an aluminium alloy 6014 reveals a two-stage precipitation reaction during cooling at rates between 1 and 20 K min-1, the first related to precipitation of the stable β phase, the second due to the formation of various metastable phases. Comparison between resistivity and DSC signals measured at the same cooling rate shows very close correspondence between the two. Thus, in the future, both methods could be used in a complementary way.
{"title":"Probing precipitation in aluminium alloys during linear cooling via in-situ differential scanning calorimetry and electrical resistivity measurement","authors":"Zi Yang , Sina Mallow , John Banhart , Olaf Kessler","doi":"10.1016/j.tca.2024.179815","DOIUrl":"10.1016/j.tca.2024.179815","url":null,"abstract":"<div><p>Investigating precipitation processes in aluminium alloys during cooling from the solutionising temperature is important because the level of solute supersaturation and the presence of pre-precipitated solutes determine the response to the subsequent age hardening step. Differential scanning calorimetry has been developed to a suitable method to follow precipitation over a wide range of cooling rates. We develop a device that allows us to measure electrical resistivity <em>in-situ</em> during the quenching of alloy samples from the solutionising temperature. A procedure is formulated that allows us to separate the signal related to precipitation from the large background caused by the temperature dependence of electrical resistivity. Application to an aluminium alloy 6014 reveals a two-stage precipitation reaction during cooling at rates between 1 and 20 K min<sup>-1</sup>, the first related to precipitation of the stable β phase, the second due to the formation of various metastable phases. Comparison between resistivity and DSC signals measured at the same cooling rate shows very close correspondence between the two. Thus, in the future, both methods could be used in a complementary way.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179815"},"PeriodicalIF":3.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040603124001540/pdfft?md5=421e33d75fc8c81140d70cf8ad78db4d&pid=1-s2.0-S0040603124001540-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.tca.2024.179824
Tianhua Ju , Zhenlin Huang , Xueyong Ding , Xinlin Yan , Changzong Liao
Predicting the thermodynamic properties of multicomponent solution based on binary data is highly desirable. However, traditional methods face many challenges in practical applications due to the unclear mechanisms for obtaining the molar composition of sub-binary terms. In this article, a new extrapolation model is suggested, which derived from the assumption of the Kohler model. It determines the molar composition points of each sub-binary system through a clear mechanism by introducing the contribution coefficient, defined by the property differences between two components. Moreover, the new model can mathematically obtain all potential molar composition points of sub-binary systems. Additionally, a simple and effective method for calculating the property difference between two components is recommended. The performance of this new extrapolation model is demonstrated in several multicomponent alloy systems with different properties.
{"title":"A Unified Extrapolation thermodynamic model for multicomponent solutions based on binary data","authors":"Tianhua Ju , Zhenlin Huang , Xueyong Ding , Xinlin Yan , Changzong Liao","doi":"10.1016/j.tca.2024.179824","DOIUrl":"10.1016/j.tca.2024.179824","url":null,"abstract":"<div><p>Predicting the thermodynamic properties of multicomponent solution based on binary data is highly desirable. However, traditional methods face many challenges in practical applications due to the unclear mechanisms for obtaining the molar composition of sub-binary terms. In this article, a new extrapolation model is suggested, which derived from the assumption of the Kohler model. It determines the molar composition points of each sub-binary system through a clear mechanism by introducing the contribution coefficient, defined by the property differences between two components. Moreover, the new model can mathematically obtain all potential molar composition points of sub-binary systems. Additionally, a simple and effective method for calculating the property difference between two components is recommended. The performance of this new extrapolation model is demonstrated in several multicomponent alloy systems with different properties.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179824"},"PeriodicalIF":3.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.tca.2024.179814
Nanta Sophonrat, Margaret Wooldridge
The determination of biomass composition via thermogravimetric analysis (TGA) has been a subject of considerable interest for many years. The current work proposes a revised workflow for determining the amounts of cellulose, hemicellulose, and lignin in biomass by combining TGA under an inert atmosphere with analyses of extractives and ash. An independent parallel reaction (IPR) model used for the deconvolution of the derivative thermogravimetry data was improved by constraining model parameters, i.e., thermal decomposition kinetic parameters and char fractions of cellulose, hemicellulose, and lignin, with values compiled from the literature using statistical analysis. The workflow is developed and demonstrated using cellulose and starch mixtures and then applied to biomass with varying levels of ash, including pine, birch, and oak wood, switchgrass, and pine bark. Using extractive-free biomass in the new TGA-IPR workflow improved the composition results compared with untreated biomass. The compositions determined by this method agreed well with values reported in the literature (within approx. 8 wt%) for the tested samples. The results demonstrate improved biomass composition accuracy using an accessible and rapid TGA-based approach.
{"title":"Revisiting biomass compositions determination using thermogravimetric analysis and independent parallel reaction model","authors":"Nanta Sophonrat, Margaret Wooldridge","doi":"10.1016/j.tca.2024.179814","DOIUrl":"10.1016/j.tca.2024.179814","url":null,"abstract":"<div><p>The determination of biomass composition via thermogravimetric analysis (TGA) has been a subject of considerable interest for many years. The current work proposes a revised workflow for determining the amounts of cellulose, hemicellulose, and lignin in biomass by combining TGA under an inert atmosphere with analyses of extractives and ash. An independent parallel reaction (IPR) model used for the deconvolution of the derivative thermogravimetry data was improved by constraining model parameters, i.e., thermal decomposition kinetic parameters and char fractions of cellulose, hemicellulose, and lignin, with values compiled from the literature using statistical analysis. The workflow is developed and demonstrated using cellulose and starch mixtures and then applied to biomass with varying levels of ash, including pine, birch, and oak wood, switchgrass, and pine bark. Using extractive-free biomass in the new TGA-IPR workflow improved the composition results compared with untreated biomass. The compositions determined by this method agreed well with values reported in the literature (within approx. 8 wt%) for the tested samples. The results demonstrate improved biomass composition accuracy using an accessible and rapid TGA-based approach.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179814"},"PeriodicalIF":3.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.tca.2024.179812
Sanjun Wu, Jiaye Li, Qi Sun, Zhenshan Li
A visualized macro thermogravimetric analyzer was utilized to gather data on sample weight, temperature, and image signals of centimeter-scale PET. The PET was subjected to both fast (above 300 K/min) and slow (below 25 K/min) heating rates. The experimental findings revealed that weight loss mainly occurred at different temperature ranges under fast (above 610 °C) and slow (400–520 °C) heating rates. The isoconversional method (ICM) and the distributed activation energy model (DAEM), both assuming single-step reactions, were employed separately to predict the conversion and rate of PET pyrolysis. However, the prediction error was considerable. To address this issue, a discrete distributed activation energy model (DDAEM) was developed, incorporating both single-step and double-step parallel reactions. The DDAEM yielded a prediction error within 10 %, which is better than ICM and DDAEM. Furthermore, all three models (ICM, DAEM, and DDAEM) indicated significant discrepancies in activation energies between fast and slow heating rates.
利用可视化宏观热重分析仪收集厘米级 PET 的样品重量、温度和图像信号数据。对 PET 进行了快速(高于 300 K/分钟)和慢速(低于 25 K/分钟)加热。实验结果表明,在快速(高于 610 ℃)和慢速(400-520 ℃)加热速率下,重量损失主要发生在不同的温度范围。假设单步反应,分别采用等转化法(ICM)和分布活化能模型(DAEM)预测 PET 高温分解的转化率和速率。然而,预测误差相当大。为解决这一问题,开发了离散分布式活化能模型(DDAEM),其中包含单步和双步并行反应。DDAEM 的预测误差在 10% 以内,优于 ICM 和 DDAEM。此外,所有三种模型(ICM、DAEM 和 DDAEM)都表明,快慢加热速率之间的活化能存在显著差异。
{"title":"Experimental and kinetic study of PET pyrolysis under fast and slow heating rates using a visualized Macro TGA","authors":"Sanjun Wu, Jiaye Li, Qi Sun, Zhenshan Li","doi":"10.1016/j.tca.2024.179812","DOIUrl":"10.1016/j.tca.2024.179812","url":null,"abstract":"<div><p>A visualized macro thermogravimetric analyzer was utilized to gather data on sample weight, temperature, and image signals of centimeter-scale PET. The PET was subjected to both fast (above 300 K/min) and slow (below 25 K/min) heating rates. The experimental findings revealed that weight loss mainly occurred at different temperature ranges under fast (above 610 °C) and slow (400–520 °C) heating rates. The isoconversional method (ICM) and the distributed activation energy model (DAEM), both assuming single-step reactions, were employed separately to predict the conversion and rate of PET pyrolysis. However, the prediction error was considerable. To address this issue, a discrete distributed activation energy model (DDAEM) was developed, incorporating both single-step and double-step parallel reactions. The DDAEM yielded a prediction error within 10 %, which is better than ICM and DDAEM. Furthermore, all three models (ICM, DAEM, and DDAEM) indicated significant discrepancies in activation energies between fast and slow heating rates.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179812"},"PeriodicalIF":3.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-07DOI: 10.1016/j.tca.2024.179813
Vagner R. Magri , Caroline S. de Matos , Michele A. Rocha , Christine Taviot-Gueho , Vera R.L. Constantino
Folic acid (FA) is a low-cost and suitable source for producing different N-doped carbon materials by pyrolysis. However, the pyrolytic steps of FA are not entirely understood, particularly above 350 °C, which hampers the intelligent design of tailor-made carbon materials by a one-pot route. In this work, the pyrolytic decomposition steps of FA were investigated by simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (TGA-DSC). The released gaseous/volatile products were probed by coupling TGA to infrared spectroscopy and mass spectrometry (TGA-FTIR-MS). Considering the thermal analysis data, FA was pyrolysed in a furnace at 350, 430, 570, 800, and 1000 °C, and the products were analysed by X-ray diffractometry (XRD), vibrational spectroscopy, and X-ray photoelectron spectroscopy. In situ high-temperature X-ray diffractometry (HT-XRD) experiments were also conducted under the nitrogen atmosphere. According to the data set, insights about FA decomposition steps could be proposed, including gaseous/volatile products released during the process and the structural evolution of N-doped graphitic carbon. The formation of carbonaceous material initiated between 200 and 350 °C through polymerisation/condensation reactions, and this step was marked by the release of 2-pyrrolidone and aniline. The graphitisation was enhanced above 350 °C, increasing graphitic nitrogen while the amide groups vanished. The process was accompanied by deoxygenation (i.e., CO and CO2 release) and denitrogenation (e.g., NH3, HNCO, and HCN) reactions. In the 570–800 °C range, the N-enrichment of carbon material (N-pyridine, N-pyrrole/Csp2-N in 5,7-membered rings, and nitrile) could occur by the reaction of released NH3 over the char surface. Graphitic-like structures containing mainly N-graphite and N-pyridine were obtained above 800 °C. The original data about the thermal decomposition steps of FA allow for optimising the synthesis of N-doped carbon materials suitable for applications in adsorption, sensing, catalysis, and energy storage.
叶酸(FA)是一种通过热解生产不同掺杂 N 的碳材料的低成本合适来源。然而,人们对叶酸的热解步骤并不完全了解,尤其是在 350 ℃ 以上,这阻碍了通过单锅路线智能设计量身定制的碳材料。本研究采用热重分析法(TGA)和差示扫描量热法(TGA-DSC)同时研究了 FA 的热解分解步骤。通过将 TGA 与红外光谱和质谱联用(TGA-FTIR-MS),对释放的气态/挥发性产物进行了探测。考虑到热分析数据,FA 在 350、430、570、800 和 1000 °C 的炉中进行热解,并通过 X 射线衍射仪 (XRD)、振动光谱仪和 X 射线光电子能谱仪对产物进行分析。此外,还在氮气环境下进行了原位高温 X 射线衍射(HT-XRD)实验。根据数据集,可以提出有关 FA 分解步骤的见解,包括分解过程中释放的气态/挥发性产物以及掺杂 N 的石墨碳的结构演变。通过聚合/缩合反应,碳质材料在 200 至 350 °C 之间开始形成,这一步骤的特点是释放出 2-吡咯烷酮和苯胺。350 °C 以上时,石墨化增强,石墨氮增加,而酰胺基消失。这一过程伴随着脱氧(即 CO 和 CO2 释放)和脱氮(如 NH3、HNCO 和 HCN)反应。在 570-800 °C 范围内,碳材料(N-吡啶、5,7-元环中的 N-吡咯/Csp2-N 和腈)的 N 富集可能是通过炭表面释放的 NH3 反应发生的。在 800 °C 以上的温度下,会产生主要含有 N-石墨和 N-吡啶的类石墨结构。有关 FA 热分解步骤的原始数据有助于优化掺杂 N 的碳材料的合成,使其适用于吸附、传感、催化和储能领域。
{"title":"Pyrolysis of folic acid: Identification of gaseous/volatile products and structural evolution of N-doped graphitic carbon","authors":"Vagner R. Magri , Caroline S. de Matos , Michele A. Rocha , Christine Taviot-Gueho , Vera R.L. Constantino","doi":"10.1016/j.tca.2024.179813","DOIUrl":"10.1016/j.tca.2024.179813","url":null,"abstract":"<div><p>Folic acid (FA) is a low-cost and suitable source for producing different N-doped carbon materials by pyrolysis. However, the pyrolytic steps of FA are not entirely understood, particularly above 350 °C, which hampers the intelligent design of tailor-made carbon materials by a one-pot route. In this work, the pyrolytic decomposition steps of FA were investigated by simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (TGA-DSC). The released gaseous/volatile products were probed by coupling TGA to infrared spectroscopy and mass spectrometry (TGA-FTIR-MS). Considering the thermal analysis data, FA was pyrolysed in a furnace at 350, 430, 570, 800, and 1000 °C, and the products were analysed by X-ray diffractometry (XRD), vibrational spectroscopy, and X-ray photoelectron spectroscopy. <em>In situ</em> high-temperature X-ray diffractometry (HT-XRD) experiments were also conducted under the nitrogen atmosphere. According to the data set, insights about FA decomposition steps could be proposed, including gaseous/volatile products released during the process and the structural evolution of N-doped graphitic carbon. The formation of carbonaceous material initiated between 200 and 350 °C through polymerisation/condensation reactions, and this step was marked by the release of 2-pyrrolidone and aniline. The graphitisation was enhanced above 350 °C, increasing graphitic nitrogen while the amide groups vanished. The process was accompanied by deoxygenation (i.e., CO and CO<sub>2</sub> release) and denitrogenation (e.g., NH<sub>3</sub>, HNCO, and HCN) reactions. In the 570–800 °C range, the N-enrichment of carbon material (N-pyridine, N-pyrrole/Csp<sup>2</sup>-N in 5,7-membered rings, and nitrile) could occur by the reaction of released NH<sub>3</sub> over the char surface. Graphitic-like structures containing mainly N-graphite and N-pyridine were obtained above 800 °C. The original data about the thermal decomposition steps of FA allow for optimising the synthesis of N-doped carbon materials suitable for applications in adsorption, sensing, catalysis, and energy storage.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179813"},"PeriodicalIF":3.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.tca.2024.179809
Suzhou Dai , Yonggao Yin , Yikai Wang , Bowen Cao , Maurizio Peruzzini , Francesco Barzagli
The thermochemical reaction of ammonium carbamate (AC) holds significant potential for low-grade heat utilization. However, the insufficient understanding of reaction kinetics limits its further applications. Therefore, a detailed study on the kinetic mechanism of AC decomposition was conducted using both the model-free and model-fitting thermal analysis methods with kinetic data from multiple heating program experiments. The results obtained from various methods are consistent, supporting the concept that AC decomposition is a single-step controlled multi-step reaction. The activation energy E, preexponential factor A, and most probable reaction model were determined to be 56.38 kJ∙mol−1, 2.75 × 106 s−1, f(α)=(1-α)0.7811, respectively. The reaction mechanism can be hypothesized as involving the rapid generation of numerous nucleation sites on the surface of solid AC, where surface reactions occur, with the movement of reaction interface governing the reaction rate. Consequently, a kinetic equation accounting for the AC decomposition was developed and evaluated, and the heat absorption specific power under different temperature conditions was predicted.
氨基甲酸铵(AC)的热化学反应在低品位热利用方面具有巨大潜力。然而,对反应动力学的认识不足限制了其进一步应用。因此,我们利用多个加热程序实验的动力学数据,采用无模型热分析方法和模型拟合热分析方法,对 AC 分解的动力学机理进行了详细研究。各种方法得出的结果是一致的,支持了交流电分解是一个单步控制的多步反应的概念。活化能 E、预指数 A 和最可能的反应模型分别被确定为 56.38 kJ∙mol-1, 2.75 × 106 s-1, f(α)=(1-α)0.7811 。反应机理可推测为在固体 AC 表面迅速生成大量成核点,并在这些成核点上发生表面反应,反应界面的运动控制着反应速率。因此,建立并评估了交流电分解的动力学方程,并预测了不同温度条件下的吸热比功率。
{"title":"Study on the thermal decomposition kinetics of ammonium carbamate for low-grade heat utilization","authors":"Suzhou Dai , Yonggao Yin , Yikai Wang , Bowen Cao , Maurizio Peruzzini , Francesco Barzagli","doi":"10.1016/j.tca.2024.179809","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179809","url":null,"abstract":"<div><p>The thermochemical reaction of ammonium carbamate (AC) holds significant potential for low-grade heat utilization. However, the insufficient understanding of reaction kinetics limits its further applications. Therefore, a detailed study on the kinetic mechanism of AC decomposition was conducted using both the model-free and model-fitting thermal analysis methods with kinetic data from multiple heating program experiments. The results obtained from various methods are consistent, supporting the concept that AC decomposition is a single-step controlled multi-step reaction. The activation energy <em>E</em>, preexponential factor <em>A</em>, and most probable reaction model were determined to be 56.38 kJ∙mol<sup>−1</sup>, 2.75 × 10<sup>6</sup> s<sup>−1</sup>, <em>f</em>(<em>α</em>)=(1-<em>α</em>)<sup>0.7811</sup>, respectively. The reaction mechanism can be hypothesized as involving the rapid generation of numerous nucleation sites on the surface of solid AC, where surface reactions occur, with the movement of reaction interface governing the reaction rate. Consequently, a kinetic equation accounting for the AC decomposition was developed and evaluated, and the heat absorption specific power under different temperature conditions was predicted.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"739 ","pages":"Article 179809"},"PeriodicalIF":3.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}