首页 > 最新文献

Thermochimica Acta最新文献

英文 中文
Novel insights into the problem of enthalpy and entropy convergence in thermal decomposition of coal slag using the data from non-isothermal kinetic measurements 利用非等温动力学测量数据对煤渣热分解焓熵收敛问题的新见解
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-01 DOI: 10.1016/j.tca.2024.179763
Bojan Janković , Marija Janković , Ivana Smičiklas , Mihajlo Jović , Ivana Vukanac , Ana Mraković , Nebojša Manić

This study provides insight into benefits of thermo-chemical conversion of coal slag as recovery process into value-added products. This research involves kinetic analysis of process conducted through non-isothermal thermal analysis measurements, with additional raw material characterization. Kinetic results showed that decomposition proceeds through two consecutive reactions steps (first one, including anorthite P1̅ → I1̅ phase transition, and then production of incongruent melting product (ternary system: CaO·Al2O3·2SiO2 (CAS2), where viscosity of slag changes), and second one including dehydration and formation of meta-muscovite, and subsequently, thermal disruption of muscovite de-hydroxylated phase, which proceeds with breaking of octahedral Al–O bonds), and one single-step reaction (attributed to CO-reduction of hematite to magnetite). Thermodynamic results showed an existence of physically meaningful isokinetic temperature (Tiso), which corresponds to active vibrational frequency of surroundings of SiO2 reaction site, manifested through Si‒O bond weakening by catalytic reaction of freed hydroxide ion (OH). It was concluded that at temperature T = Tiso, the course of process loses its dependence on temperature and pressure, regulating changes between thermodynamic parameters, through enthalpy-entropy compensation (EEC) effect.

这项研究深入探讨了将煤渣作为回收工艺转化为高附加值产品的热化学转化效益。这项研究包括通过非等温热分析测量对过程进行动力学分析,以及其他原材料特征描述。动力学结果表明,分解是通过两个连续的反应步骤进行的(第一个步骤,包括阳起石 P1̅ → I1̅相变,然后产生不协调熔融产物(三元系统:CaO-Al2O3-2SiO2(CAS2),炉渣粘度发生变化),第二个反应包括脱水和形成元麝香石,随后麝香石脱羟基相发生热破坏,八面体 Al-O 键断裂),以及一个单步反应(赤铁矿一氧化碳还原为磁铁矿)。热力学结果表明,存在有物理意义的等动力学温度(Tiso),该温度与二氧化硅反应位点周围环境的活跃振动频率相对应,通过释放出的氢氧根离子(OH-)的催化反应,Si-O 键发生弱化。研究得出结论,在温度 T = Tiso 时,反应过程不再依赖于温度和压力,而是通过焓熵补偿效应(EEC)调节热力学参数之间的变化。
{"title":"Novel insights into the problem of enthalpy and entropy convergence in thermal decomposition of coal slag using the data from non-isothermal kinetic measurements","authors":"Bojan Janković ,&nbsp;Marija Janković ,&nbsp;Ivana Smičiklas ,&nbsp;Mihajlo Jović ,&nbsp;Ivana Vukanac ,&nbsp;Ana Mraković ,&nbsp;Nebojša Manić","doi":"10.1016/j.tca.2024.179763","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179763","url":null,"abstract":"<div><p>This study provides insight into benefits of thermo-chemical conversion of coal slag as recovery process into value-added products. This research involves kinetic analysis of process conducted through non-isothermal thermal analysis measurements, with additional raw material characterization. Kinetic results showed that decomposition proceeds through two consecutive reactions steps (first one, including anorthite <em>P</em>1̅ → <em>I</em>1̅ phase transition, and then production of incongruent melting product (ternary system: CaO·Al<sub>2</sub>O<sub>3</sub>·2SiO<sub>2</sub> (CAS<sub>2</sub>), where viscosity of slag changes), and second one including dehydration and formation of meta-muscovite, and subsequently, thermal disruption of muscovite de-hydroxylated phase, which proceeds with breaking of octahedral Al–O bonds), and one single-step reaction (attributed to CO-reduction of hematite to magnetite). Thermodynamic results showed an existence of physically meaningful isokinetic temperature (<em>T<sub>iso</sub></em>), which corresponds to active vibrational frequency of surroundings of SiO<sub>2</sub> reaction site, manifested through Si‒O bond weakening by catalytic reaction of freed hydroxide ion (OH<sup>−</sup>). It was concluded that at temperature <em>T</em> = <em>T<sub>iso</sub></em>, the course of process loses its dependence on temperature and pressure, regulating changes between thermodynamic parameters, through enthalpy-entropy compensation (EEC) effect.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179763"},"PeriodicalIF":3.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140823140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ignition and combustion characteristics of aluminum-based fluorine-containing composite powder 铝基含氟复合粉末的点火和燃烧特性
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-28 DOI: 10.1016/j.tca.2024.179757
Peini Xie, Xueqin Liao, Jianzhong Liu

To improve the combustion characteristics of micron-sized aluminum (Al) powder, a composite powder was prepared by doping a small amount (15 wt%) of magnesium fluoride (MgF2), polytetrafluoroethylene (PTFE), and fluorinated graphite (FG) into the aluminum powder through solution dispersion method. The physical phase composition, micro morphology, thermal reactivity, and combustion performance of the composite powders were also characterized. The findings suggest that the promoting effect of the three fluorides on aluminum combustion can be ranked in the following descending order: FG > PTFE > MgF2. The fluorides can to erode the Al2O3 shell layer directly, thus creating cracks and reaction pathways for the Al core enclosed within the shell. Moreover, the gasification of AlF3 within the combustion products can escape from the surface of Al particles and promote the oxidation combustion of the exposed aluminum, which enhances the diffusion reaction on the active aluminum surface.

为改善微米级铝粉的燃烧特性,通过溶液分散法在铝粉中掺入少量(15 wt%)氟化镁(MgF2)、聚四氟乙烯(PTFE)和氟化石墨(FG)制备了一种复合粉末。研究还对复合粉末的物相组成、微观形貌、热反应活性和燃烧性能进行了表征。研究结果表明,三种氟化物对铝燃烧的促进作用可按以下降序排列:FG;PTFE;MgF2。氟化物可以直接侵蚀 Al2O3 外壳层,从而产生裂缝,为外壳中的铝芯提供反应通道。此外,燃烧产物中气化的 AlF3 可以从铝颗粒表面逸出,促进暴露铝的氧化燃烧,从而增强活性铝表面的扩散反应。
{"title":"Ignition and combustion characteristics of aluminum-based fluorine-containing composite powder","authors":"Peini Xie,&nbsp;Xueqin Liao,&nbsp;Jianzhong Liu","doi":"10.1016/j.tca.2024.179757","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179757","url":null,"abstract":"<div><p>To improve the combustion characteristics of micron-sized aluminum (Al) powder, a composite powder was prepared by doping a small amount (15 wt%) of magnesium fluoride (MgF<sub>2</sub>), polytetrafluoroethylene (PTFE), and fluorinated graphite (FG) into the aluminum powder through solution dispersion method. The physical phase composition, micro morphology, thermal reactivity, and combustion performance of the composite powders were also characterized. The findings suggest that the promoting effect of the three fluorides on aluminum combustion can be ranked in the following descending order: FG &gt; PTFE &gt; MgF<sub>2</sub>. The fluorides can to erode the Al<sub>2</sub>O<sub>3</sub> shell layer directly, thus creating cracks and reaction pathways for the Al core enclosed within the shell. Moreover, the gasification of AlF<sub>3</sub> within the combustion products can escape from the surface of Al particles and promote the oxidation combustion of the exposed aluminum, which enhances the diffusion reaction on the active aluminum surface.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179757"},"PeriodicalIF":3.5,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The experimental study of the kinetics and modes of polymethyl methacrylate thermal degradation in argon flows 聚甲基丙烯酸甲酯在氩气流中的热降解动力学和模式的实验研究
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-28 DOI: 10.1016/j.tca.2024.179756
Eugene A. Salgansky , Marina V. Salganskaya , Dmitrii O. Glushkov , Andrey O. Pleshko

The experimental study of the kinetics and modes of the thermal degradation of polymethyl methacrylate (PMMA) in an argon flow was carried out. During thermogravimetric analysis the sample heating rates were 2, 5, 8, 20 and 35 K/min. Based on the integral isoconversional method the values of the kinetic rate constants of the PMMA thermal degradation were determined. When modeling the decomposition process of PMMA for low conversion degrees, it is advisable to use the reaction rate constant obtained for the conversion degree equal to 20 %, and for modeling the whole process – 50 %. Therefore, for evaluation calculations, it is possible to describe the process of PMMA decomposition with one gross reaction. Also, the investigation of the thermal degradation of PMMA particles under conductive heating conditions (680, 700, 720 K) in an argon and air was carried out. Based on the analysis of the data obtained, a scheme for the decomposition of PMMA, consisting of four stages, was established.

实验研究了聚甲基丙烯酸甲酯(PMMA)在氩气流中的热降解动力学和模式。在热重分析过程中,样品的加热速率分别为 2、5、8、20 和 35 K/分钟。根据积分等转换法,确定了 PMMA 热降解的动力学速率常数的值。在为低转化率的 PMMA 分解过程建模时,建议使用转化率等于 20% 时获得的反应速率常数,而为整个过程建模时则使用转化率为 50%时获得的反应速率常数。因此,在进行评估计算时,可以用一个总反应来描述 PMMA 的分解过程。此外,还对 PMMA 颗粒在氩气和空气中的传导加热条件(680、700、720 K)下的热降解进行了研究。根据对所获数据的分析,建立了由四个阶段组成的 PMMA 分解方案。
{"title":"The experimental study of the kinetics and modes of polymethyl methacrylate thermal degradation in argon flows","authors":"Eugene A. Salgansky ,&nbsp;Marina V. Salganskaya ,&nbsp;Dmitrii O. Glushkov ,&nbsp;Andrey O. Pleshko","doi":"10.1016/j.tca.2024.179756","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179756","url":null,"abstract":"<div><p>The experimental study of the kinetics and modes of the thermal degradation of polymethyl methacrylate (PMMA) in an argon flow was carried out. During thermogravimetric analysis the sample heating rates were 2, 5, 8, 20 and 35 K/min. Based on the integral isoconversional method the values of the kinetic rate constants of the PMMA thermal degradation were determined. When modeling the decomposition process of PMMA for low conversion degrees, it is advisable to use the reaction rate constant obtained for the conversion degree equal to 20 %, and for modeling the whole process – 50 %. Therefore, for evaluation calculations, it is possible to describe the process of PMMA decomposition with one gross reaction. Also, the investigation of the thermal degradation of PMMA particles under conductive heating conditions (680, 700, 720 K) in an argon and air was carried out. Based on the analysis of the data obtained, a scheme for the decomposition of PMMA, consisting of four stages, was established.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179756"},"PeriodicalIF":3.5,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convolutional denoising for large-volume Seebeck calorimeter 用于大容积塞贝克量热计的卷积去噪技术
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-27 DOI: 10.1016/j.tca.2024.179760
Wu-Shou Zhang

Ambient temperature fluctuations can affect the thermal noise and sensitivity of a large-volume Seebeck calorimeter. This paper proposes that a reference cell considerably smaller than the sample cell in the apparatus can effectively neutralize this noise. It is found that the thermal signals from both the reference and sample cells exhibit a convolution relationship. By deconvolving two distinct thermal pulses generated by abrupt changes in cooling fluid temperature, one from the reference cell and one from the sample cell, a corresponding response function is derived. And using this function, the noise is canceled out by subtracting the convoluted signal of the reference cell from that of the sample cell during isothermal calorimetry. Experimentally, utilizing this technique with two calorimeters, one with a 17.6-liter capacity and the other with a 27-liter capacity, has been shown to reduce noise by at least 5 % and 6 % from their initial values, respectively.

环境温度波动会影响大容积塞贝克量热计的热噪声和灵敏度。本文提出,仪器中比样品池小很多的参比池可以有效中和这种噪声。研究发现,参考池和样品池的热信号呈现卷积关系。通过对冷却液温度突然变化产生的两个不同的热脉冲(一个来自参考池,另一个来自样品池)进行解卷积,可以得出相应的响应函数。利用这个函数,在等温量热过程中,从样品池的信号中减去参考池的卷积信号,就可以消除噪声。实验证明,在两个热量计(一个容量为 17.6 升,另一个容量为 27 升)上使用这种技术,可分别将噪声从初始值至少降低 5% 和 6%。
{"title":"Convolutional denoising for large-volume Seebeck calorimeter","authors":"Wu-Shou Zhang","doi":"10.1016/j.tca.2024.179760","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179760","url":null,"abstract":"<div><p>Ambient temperature fluctuations can affect the thermal noise and sensitivity of a large-volume Seebeck calorimeter. This paper proposes that a reference cell considerably smaller than the sample cell in the apparatus can effectively neutralize this noise. It is found that the thermal signals from both the reference and sample cells exhibit a convolution relationship. By deconvolving two distinct thermal pulses generated by abrupt changes in cooling fluid temperature, one from the reference cell and one from the sample cell, a corresponding response function is derived. And using this function, the noise is canceled out by subtracting the convoluted signal of the reference cell from that of the sample cell during isothermal calorimetry. Experimentally, utilizing this technique with two calorimeters, one with a 17.6-liter capacity and the other with a 27-liter capacity, has been shown to reduce noise by at least 5 % and 6 % from their initial values, respectively.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179760"},"PeriodicalIF":3.5,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and pyrolysis of polyacrylate-supported flavor precursors 聚丙烯酸酯支撑的香料前体的合成与热解
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-25 DOI: 10.1016/j.tca.2024.179759
Chen Zhu , Wei-Po Jiang , Chun-Hua Liu , Liangyuan Jia , Zeng-Yang He , Jin Zhang , Peng Zou , Yuan-Yuan Zhu

Herein we present a novel ‘polymerization strategy’ aimed at synthesizing flavor precursors, with a focus on enhancing their thermal stability and release properties. Three volatile flavors, menthol, methyl cyclopentenolone, and ethyl maltol, are reacted with acryloyl chloride to produce corresponding vinyl monomers. These monomers undergo radical polymerization to form homopolymers (P1P3). To improve solubility in alcohol solvents, a hydrophilic oligoethylene glycol monomer is introduced, copolymerized with the flavor containing monomers, resulting in copolymers (P4P6). An important advantage of these polymers lies in their significantly enhanced thermal stability, exhibiting an increase of approximately 100 to 200 °°C compared to small molecular flavors. Furthermore, our methodology enables efficient release of the target flavors upon heating, as evidenced by online analyses of volatiles from pyrolysis using fixed-bed reactor combined with single photoionization mass spectrometry (FBR-SPIMS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC–MS). This work represents a practical and innovative approach to improving the thermal stability of volatile flavors and elevating their release temperature, offering promising applications in high-temperature food processing and tobacco industries.

在本文中,我们介绍了一种旨在合成香精前体的新型 "聚合策略",其重点是提高香精前体的热稳定性和释放性能。薄荷醇、甲基环戊烯酮和乙基麦芽酚这三种挥发性香料与丙烯酰氯反应生成相应的乙烯基单体。这些单体经过自由基聚合形成均聚物(P1-P3)。为了提高在醇类溶剂中的溶解度,可引入亲水性低聚乙二醇单体,与含香料的单体共聚,形成共聚物(P4-P6)。这些聚合物的一个重要优点是热稳定性明显增强,与小分子香精相比,热稳定性提高了约 100 至 200°C。此外,通过使用固定床反应器结合单一光离子化质谱法(FBR-SPIMS)和热解-气相色谱-质谱法(Py-GC-MS)对热解产生的挥发物进行在线分析,我们的方法能够在加热时有效释放目标香料。这项工作是提高挥发性香料热稳定性和提高其释放温度的一种实用创新方法,有望在高温食品加工和烟草行业得到应用。
{"title":"Synthesis and pyrolysis of polyacrylate-supported flavor precursors","authors":"Chen Zhu ,&nbsp;Wei-Po Jiang ,&nbsp;Chun-Hua Liu ,&nbsp;Liangyuan Jia ,&nbsp;Zeng-Yang He ,&nbsp;Jin Zhang ,&nbsp;Peng Zou ,&nbsp;Yuan-Yuan Zhu","doi":"10.1016/j.tca.2024.179759","DOIUrl":"10.1016/j.tca.2024.179759","url":null,"abstract":"<div><p>Herein we present a novel ‘polymerization strategy’ aimed at synthesizing flavor precursors, with a focus on enhancing their thermal stability and release properties. Three volatile flavors, menthol, methyl cyclopentenolone, and ethyl maltol, are reacted with acryloyl chloride to produce corresponding vinyl monomers. These monomers undergo radical polymerization to form homopolymers (<strong>P1</strong>−<strong>P3</strong>). To improve solubility in alcohol solvents, a hydrophilic oligoethylene glycol monomer is introduced, copolymerized with the flavor containing monomers, resulting in copolymers (<strong>P4</strong>−<strong>P6</strong>). An important advantage of these polymers lies in their significantly enhanced thermal stability, exhibiting an increase of approximately 100 to 200 °°C compared to small molecular flavors. Furthermore, our methodology enables efficient release of the target flavors upon heating, as evidenced by online analyses of volatiles from pyrolysis using fixed-bed reactor combined with single photoionization mass spectrometry (FBR-SPIMS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC–MS). This work represents a practical and innovative approach to improving the thermal stability of volatile flavors and elevating their release temperature, offering promising applications in high-temperature food processing and tobacco industries.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179759"},"PeriodicalIF":3.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140791927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation kinetics of typical high FeO ferrous spinels 典型高氧化铁尖晶石的氧化动力学
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-21 DOI: 10.1016/j.tca.2024.179758
Chenmei Tang , Congcong Yang , Jian Pan , Deqing Zhu , Zhengqi Guo

In this study, the isothermal oxidation kinetics of magnetite (OM), high-Mg magnetite (MM), titanomagnetite (TM), and chromite (CM) were investigated by applying thermogravimetry (TG) analysis at temperatures ranging from 1073 K to 1223 K. The results show that different high-FeO spinels possess distinct oxidizability. The oxidation process of OM in the temperature range from 1073 K to 1223 K is faster than others, followed by MM and TM. While CM exhibits the poorest oxidizability, and generally undergoes complex phase transitions. In the initial stage of oxidation, high FeO spinels have a higher oxidation rate due to the surface oxidation of spinel particles. However, the oxidation rate gradually declines in the later stages of oxidation due to increased internal diffusion resistance. The results of oxidation kinetics indicate that the initial oxidation stage of four spinels can be described as random nucleation and subsequent growth mechanism. The average apparent activation energies of the initial oxidation stage of OM, MM, TM, and CM are 25.09 kJ/mol, 32.39 kJ/mol, 58.10 kJ/mol, and 82.42 kJ/mol, respectively.

本研究通过热重分析法(TG)研究了磁铁矿(OM)、高镁磁铁矿(MM)、钛磁铁矿(TM)和铬铁矿(CM)在 1073 K 至 1223 K 温度范围内的等温氧化动力学。在 1073 K 至 1223 K 的温度范围内,OM 的氧化过程比其他材料快,其次是 MM 和 TM。而 CM 的氧化性最差,一般会发生复杂的相变。在氧化的初始阶段,由于尖晶石颗粒的表面氧化作用,高FeO尖晶石的氧化速率较高。但在氧化后期,由于内部扩散阻力增加,氧化率逐渐下降。氧化动力学结果表明,四种尖晶石的初始氧化阶段可描述为随机成核和随后的生长机制。OM、MM、TM 和 CM 初始氧化阶段的平均表观活化能分别为 25.09 kJ/mol、32.39 kJ/mol、58.10 kJ/mol 和 82.42 kJ/mol。
{"title":"Oxidation kinetics of typical high FeO ferrous spinels","authors":"Chenmei Tang ,&nbsp;Congcong Yang ,&nbsp;Jian Pan ,&nbsp;Deqing Zhu ,&nbsp;Zhengqi Guo","doi":"10.1016/j.tca.2024.179758","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179758","url":null,"abstract":"<div><p>In this study, the isothermal oxidation kinetics of magnetite (OM), high-Mg magnetite (MM), titanomagnetite (TM), and chromite (CM) were investigated by applying thermogravimetry (TG) analysis at temperatures ranging from 1073 K to 1223 K. The results show that different high-FeO spinels possess distinct oxidizability. The oxidation process of OM in the temperature range from 1073 K to 1223 K is faster than others, followed by MM and TM. While CM exhibits the poorest oxidizability, and generally undergoes complex phase transitions. In the initial stage of oxidation, high FeO spinels have a higher oxidation rate due to the surface oxidation of spinel particles. However, the oxidation rate gradually declines in the later stages of oxidation due to increased internal diffusion resistance. The results of oxidation kinetics indicate that the initial oxidation stage of four spinels can be described as random nucleation and subsequent growth mechanism. The average apparent activation energies of the initial oxidation stage of OM, MM, TM, and CM are 25.09 kJ/mol, 32.39 kJ/mol, 58.10 kJ/mol, and 82.42 kJ/mol, respectively.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179758"},"PeriodicalIF":3.5,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140647067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ study on CO/CO2/H2/CH4 emissions during high temperature oxidative pyrolysis of coal via tetrahydrofuran extraction 四氢呋喃萃取法高温氧化热解煤炭过程中 CO/CO2/H2/CH4 排放的现场研究
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-20 DOI: 10.1016/j.tca.2024.179742
Guolan Dou , Liying Zhang , Deming Wang , Xiaoxing Zhong , Botao Qin

The study examined the oxidative pyrolysis of raw and residual coals extracted with tetrahydrofuran, as well as the CO/CO2/H2/CH4 emissions at high temperatures (200∼900 °C). Tetrahydrofuran was found to extract aromatic and aliphatic hydrocarbons from lower metamorphic coal, as well as hydroxyl, increasing the specific surface area of char formed by oxidative pyrolysis of residual coal. The CO2/CO ratio was temperature dependent, and the increase period was fit by a polynomial and a linear function, with critical temperature of around 570 °C. The greater CO2/CO ratio of raw coal suggested that oxidative pyrolysis produced more CO2. The kinetic analysis showed that the change in activation energy is inconsistent with the gas production, and the gases were found to be proportionate to the specific surface area of the coal chars, implying that the char structure has a significant influence on gaseous product emissions and the coal oxidative pyrolysis at high temperatures is a diffusion-controlled heterogeneous reaction. The findings of this study could be useful for determining the status of coal fire.

该研究考察了用四氢呋喃萃取的原煤和残煤的氧化热解,以及高温(200∼900 °C)下的 CO/CO2/H2/CH4 排放情况。研究发现,四氢呋喃能萃取下变质煤中的芳香烃和脂肪烃,还能萃取羟基,增加残煤氧化热解形成的炭的比表面积。CO2/CO 比值与温度有关,上升期由多项式和线性函数拟合,临界温度约为 570 ℃。原煤的 CO2/CO 比值越大,说明氧化热解产生的 CO2 越多。动力学分析表明,活化能的变化与气体产生量不一致,并且发现气体与煤炭的比表面积成正比,这意味着炭的结构对气体产物的排放有重要影响,高温下的煤氧化热解是一种扩散控制的异质反应。这项研究的结果有助于确定煤的燃烧状态。
{"title":"In-situ study on CO/CO2/H2/CH4 emissions during high temperature oxidative pyrolysis of coal via tetrahydrofuran extraction","authors":"Guolan Dou ,&nbsp;Liying Zhang ,&nbsp;Deming Wang ,&nbsp;Xiaoxing Zhong ,&nbsp;Botao Qin","doi":"10.1016/j.tca.2024.179742","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179742","url":null,"abstract":"<div><p>The study examined the oxidative pyrolysis of raw and residual coals extracted with tetrahydrofuran, as well as the CO/CO<sub>2</sub>/H<sub>2</sub>/CH<sub>4</sub> emissions at high temperatures (200∼900 °C). Tetrahydrofuran was found to extract aromatic and aliphatic hydrocarbons from lower metamorphic coal, as well as hydroxyl, increasing the specific surface area of char formed by oxidative pyrolysis of residual coal. The CO<sub>2</sub>/CO ratio was temperature dependent, and the increase period was fit by a polynomial and a linear function, with critical temperature of around 570 °C. The greater CO<sub>2</sub>/CO ratio of raw coal suggested that oxidative pyrolysis produced more CO<sub>2</sub>. The kinetic analysis showed that the change in activation energy is inconsistent with the gas production, and the gases were found to be proportionate to the specific surface area of the coal chars, implying that the char structure has a significant influence on gaseous product emissions and the coal oxidative pyrolysis at high temperatures is a diffusion-controlled heterogeneous reaction. The findings of this study could be useful for determining the status of coal fire.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179742"},"PeriodicalIF":3.5,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modification to the Friedman and Ortega isoconversional methods for evaluation of the activation energy as a function of conversion and temperature 对弗里德曼和奥尔特加等转换法进行修改,以评估活化能与转换率和温度的关系
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-15 DOI: 10.1016/j.tca.2024.179748
Alireza Aghili , Amir Hossein Shabani

The Friedman and Ortega isoconversional methods typically apply linear regression to the isoconversional kinetic data for calculation of activation energy solely as a function of extent of conversion. However, in complex reactions, activation energy depends on both conversion and temperature. Our modification involves quadratic curve fitting instead of linear regression, resulting in the determination of activation energy as a function of conversion and temperature. The new technique enables the calculation of the temperature dependence of activation energy for different heating rates, making it a valuable addition to isoconversional analysis. The conventional and modified approaches were utilized on the isoconversional kinetic data concerning polyethylene thermal degradation. The results provided a more detailed representation of the variations in activation energy when nonlinear regression was used.

弗里德曼和奥尔特加等转化法通常对等转化动力学数据进行线性回归,以计算活化能是否仅是转化程度的函数。然而,在复杂的反应中,活化能同时取决于转化率和温度。我们的修改涉及二次曲线拟合,而不是线性回归,从而确定活化能是转化率和温度的函数。这项新技术能够计算不同加热速率下活化能的温度依赖性,是等转化分析的重要补充。对聚乙烯热降解的等转化动力学数据采用了传统方法和改进方法。在使用非线性回归时,结果更详细地反映了活化能的变化。
{"title":"A modification to the Friedman and Ortega isoconversional methods for evaluation of the activation energy as a function of conversion and temperature","authors":"Alireza Aghili ,&nbsp;Amir Hossein Shabani","doi":"10.1016/j.tca.2024.179748","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179748","url":null,"abstract":"<div><p>The Friedman and Ortega isoconversional methods typically apply linear regression to the isoconversional kinetic data for calculation of activation energy solely as a function of extent of conversion. However, in complex reactions, activation energy depends on both conversion and temperature. Our modification involves quadratic curve fitting instead of linear regression, resulting in the determination of activation energy as a function of conversion and temperature. The new technique enables the calculation of the temperature dependence of activation energy for different heating rates, making it a valuable addition to isoconversional analysis. The conventional and modified approaches were utilized on the isoconversional kinetic data concerning polyethylene thermal degradation. The results provided a more detailed representation of the variations in activation energy when nonlinear regression was used.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179748"},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of metals and brominated flame retardants on thermal degradation kinetics of waste printed circuit board 金属和溴化阻燃剂对废印刷电路板热降解动力学的影响
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-14 DOI: 10.1016/j.tca.2024.179747
Bibari Boro, Pankaj Tiwari

Waste printed circuit board (WPCB) is an indispensable component in any waste electrical and electronic equipment (WEEE). A promising method for recycling WPCB is pyrolysis. To understand the effect of metals and brominated flame retardants (BFR) on WPCB pyrolysis, four samples were prepared, namely (a) raw WPCB (RW), (b) non-metallic WPCB (NM), (c) bromine extracted WPCB (RWBFR_ext) and (d) bromine and metal extracted WPCB (NMBFR_ext). The degradation kinetics study using the isoconversional methods: Friedman, Ozawa-Flynn-Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Starink showed that the extraction of metals exhibited an increase in final degradation temperature and activation energy (Eα), and altered the reaction mechanism (f(a)) whereas, the reduction of BFR reduced initial degradation temperature. The identified kinetic triplets were verified using the reconstruction profiles. The parameters can be used in designing applications and developing an energy-efficient pyrolysis process.

废印刷电路板(WPCB)是所有废弃电气和电子设备(WEEE)中不可或缺的组成部分。回收 WPCB 的一种可行方法是热解。为了了解金属和溴化阻燃剂(BFR)对 WPCB 热解的影响,我们制备了四种样品,即(a)原 WPCB(RW)、(b)非金属 WPCB(NM)、(c)溴提取 WPCB(RWBFR_ext)和(d)溴和金属提取 WPCB(NMBFR_ext)。降解动力学研究采用的是等转化法:Friedman、Ozawa-Flynn-Wall (OFW)、Kissinger-Akahira-Sunose (KAS) 和 Starink 等方法进行的降解动力学研究表明,金属萃取会提高最终降解温度和活化能 (Eα),并改变反应机理 (f(a)),而溴化阻燃剂的减少会降低初始降解温度。利用重构剖面验证了已确定的动力学三元组。这些参数可用于设计应用和开发高能效热解工艺。
{"title":"Effect of metals and brominated flame retardants on thermal degradation kinetics of waste printed circuit board","authors":"Bibari Boro,&nbsp;Pankaj Tiwari","doi":"10.1016/j.tca.2024.179747","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179747","url":null,"abstract":"<div><p>Waste printed circuit board (WPCB) is an indispensable component in any waste electrical and electronic equipment (WEEE). A promising method for recycling WPCB is pyrolysis. To understand the effect of metals and brominated flame retardants (BFR) on WPCB pyrolysis, four samples were prepared, namely (a) raw WPCB (RW), (b) non-metallic WPCB (NM), (c) bromine extracted WPCB (RW<sub>BFR_ext</sub>) and (d) bromine and metal extracted WPCB (NM<sub>BFR_ext</sub>). The degradation kinetics study using the isoconversional methods: Friedman, Ozawa-Flynn-Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Starink showed that the extraction of metals exhibited an increase in final degradation temperature and activation energy (<em>E<sub>α</sub></em>), and altered the reaction mechanism (<em>f(a)</em>) whereas, the reduction of BFR reduced initial degradation temperature. The identified kinetic triplets were verified using the reconstruction profiles. The parameters can be used in designing applications and developing an energy-efficient pyrolysis process.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179747"},"PeriodicalIF":3.5,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140604569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ copper-loaded hollow porous carbon nanospheres derived from phenolic resin for thermal energy storage 用于热能储存的酚醛树脂原位铜负载空心多孔碳纳米球
IF 3.5 2区 化学 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-04-12 DOI: 10.1016/j.tca.2024.179746
Jiahui Wu , Lei Shi , Jie Liu , Yali Luo , Yunfei Liu , Yinong Lyu

Hollow porous carbon nanospheres (HPCS) are ideal scaffolds for phase change materials in thermal energy storage. However, their synthesis traditionally relies on template-based routes, involving tedious procedures and high costs. This study presents a facile method for preparing HPCS through one-step carbonization of phenolic resin using CuCl2 as the activation agent. This mild activation agent not only helps create a rich porous structure, but also maintains the hollow spherical architecture of the polymer precursor. More importantly, copper ions are reduced to copper nanoparticles during the carbonization process and are in-situ loaded into porous carbon, enhancing the thermal conductivity of the scaffold. After incorporating paraffin, the resulting composite exhibits a high phase change enthalpy of 104.4 J g−1, improved thermal conductivity of 0.95 W m−1 K−1, and excellent thermal cycling stability (100.5 J g−1 after 50 heating-cooling cycles), indicating significant potential for thermal energy storage and management.

中空多孔碳纳米球(HPCS)是热能储存领域相变材料的理想支架。然而,它们的合成传统上依赖于基于模板的路线,涉及繁琐的程序和高昂的成本。本研究采用 CuCl2 作为活化剂,通过一步碳化酚醛树脂,提出了一种制备 HPCS 的简便方法。这种温和的活化剂不仅有助于形成丰富的多孔结构,还能保持聚合物前体的中空球形结构。更重要的是,铜离子在碳化过程中被还原成纳米铜粒子,并被原位载入多孔碳中,从而增强了支架的导热性。在加入石蜡后,得到的复合材料显示出 104.4 J g-1 的高相变焓、0.95 W m-1 K-1 的改进热导率和出色的热循环稳定性(50 次加热-冷却循环后为 100.5 J g-1),这表明其在热能存储和管理方面具有巨大潜力。
{"title":"In-situ copper-loaded hollow porous carbon nanospheres derived from phenolic resin for thermal energy storage","authors":"Jiahui Wu ,&nbsp;Lei Shi ,&nbsp;Jie Liu ,&nbsp;Yali Luo ,&nbsp;Yunfei Liu ,&nbsp;Yinong Lyu","doi":"10.1016/j.tca.2024.179746","DOIUrl":"https://doi.org/10.1016/j.tca.2024.179746","url":null,"abstract":"<div><p>Hollow porous carbon nanospheres (HPCS) are ideal scaffolds for phase change materials in thermal energy storage. However, their synthesis traditionally relies on template-based routes, involving tedious procedures and high costs. This study presents a facile method for preparing HPCS through one-step carbonization of phenolic resin using CuCl<sub>2</sub> as the activation agent. This mild activation agent not only helps create a rich porous structure, but also maintains the hollow spherical architecture of the polymer precursor. More importantly, copper ions are reduced to copper nanoparticles during the carbonization process and are <em>in-situ</em> loaded into porous carbon, enhancing the thermal conductivity of the scaffold. After incorporating paraffin, the resulting composite exhibits a high phase change enthalpy of 104.4 J g<sup>−1</sup>, improved thermal conductivity of 0.95 W m<sup>−1</sup> K<sup>−1</sup>, and excellent thermal cycling stability (100.5 J g<sup>−1</sup> after 50 heating-cooling cycles), indicating significant potential for thermal energy storage and management.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"736 ","pages":"Article 179746"},"PeriodicalIF":3.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Thermochimica Acta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1