Stress alters neuroendocrine, autonomic, and behavioral processes to cope well with perceived threats that compromise subjective wellbeing. Just as the perception of risk can change the structure and function of brain circuitry, which may result in enduring behavioral changes. There needs to be a greater understanding of how the brain reacts to stress-related disorders and discern how the adaptation mechanisms of the central nervous system under acute stress, as well as how stress-induced adaptation mechanisms are altered under chronic stress conditions that may induce plasticity-related changes in the brain. During this interaction, the brain becomes more capable of resolving stress in a way that is either adaptive or maladaptive, leaving the most critical deficit in the emotion regulation associated with risk for pathological conditions. The essence of this associated risk involves the reciprocal influence between hypothalamic-pituitary-adrenal function, the relay nucleus within the amygdala reactivation, and the hippocampus as essential structures associated with the forebrain pathways mediating stress-induced hormones, and the gamma-aminobutyric acid neurotransmitter system as key mechanisms of regulating stress. Understanding how related emotional experiences occur on the neural level and their impact on cognition and behavior entail tracing the interaction between the hypothalamic-pituitary-adrenal axis, the hormones released by these structures, and the neuroendocrine system's reactivity to stress. The interaction between threat-sensitive brain circuitry and the neuroendocrine stress system is crucial to understanding how related emotions arise on the neural level and their impact on cognition and behavior. The hypothalamic-pituitary-adrenal axis is critical in regulating the synthesis and release of endocrine hormones through its interactions with these structures, collectively referred to as the stress response. The stress system is described in its anatomy and physiology and connections to other brain areas and endocrine systems. We explore the current evidence linking stress with pathophysiologic mechanisms implicated in stressful conditions affecting the neuronal circuitry between endocrine, metabolic, gastrointestinal, and immune systems. Examining the biopsychological contributions provides a conceptual framework for understanding the emergence of emotions and stress-related behaviors.
{"title":"Journal of Multiscale Neuroscience","authors":"Ying Zhou, H. Tuckwell, N. Penington","doi":"10.56280/1531631243","DOIUrl":"https://doi.org/10.56280/1531631243","url":null,"abstract":"Stress alters neuroendocrine, autonomic, and behavioral processes to cope well with perceived threats that compromise subjective wellbeing. Just as the perception of risk can change the structure and function of brain circuitry, which may result in enduring behavioral changes. There needs to be a greater understanding of how the brain reacts to stress-related disorders and discern how the adaptation mechanisms of the central nervous system under acute stress, as well as how stress-induced adaptation mechanisms are altered under chronic stress conditions that may induce plasticity-related changes in the brain. During this interaction, the brain becomes more capable of resolving stress in a way that is either adaptive or maladaptive, leaving the most critical deficit in the emotion regulation associated with risk for pathological conditions. The essence of this associated risk involves the reciprocal influence between hypothalamic-pituitary-adrenal function, the relay nucleus within the amygdala reactivation, and the hippocampus as essential structures associated with the forebrain pathways mediating stress-induced hormones, and the gamma-aminobutyric acid neurotransmitter system as key mechanisms of regulating stress. Understanding how related emotional experiences occur on the neural level and their impact on cognition and behavior entail tracing the interaction between the hypothalamic-pituitary-adrenal axis, the hormones released by these structures, and the neuroendocrine system's reactivity to stress. The interaction between threat-sensitive brain circuitry and the neuroendocrine stress system is crucial to understanding how related emotions arise on the neural level and their impact on cognition and behavior. The hypothalamic-pituitary-adrenal axis is critical in regulating the synthesis and release of endocrine hormones through its interactions with these structures, collectively referred to as the stress response. The stress system is described in its anatomy and physiology and connections to other brain areas and endocrine systems. We explore the current evidence linking stress with pathophysiologic mechanisms implicated in stressful conditions affecting the neuronal circuitry between endocrine, metabolic, gastrointestinal, and immune systems. Examining the biopsychological contributions provides a conceptual framework for understanding the emergence of emotions and stress-related behaviors.","PeriodicalId":230864,"journal":{"name":"Journal of Multiscale Neuroscience","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123222400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes biophysical principles for why geometric holonomic effects through the geometric vector potential are sentient when harmonized by quantized magnetic vector potential in phase-space. These biophysical principles are based on molecular level electromagnetic resonances in partially holistic molecules where nonintegrated information acts as the consciousness process’s conduit—using the informational structure of physical feelings as a transition into subjectivity. The transformation of internal energies from potential to kinetic as ‘concealed’ motion may measure the causal capacity required to bridge causality for conscious experience. Conformational transitions produce bond-breaking, resulting in boundary conditions and limiting the molecular wavefunction to a partially holistic molecular environment with molecular holonomic effects. The van der Waals energy increases protein conformational activity (re-arrangement of bonds), causing energy transfer and information in protein-protein interactions across the cerebral cortex through the energy transduction process. Energy transitions predetermine molecular level electromagnetic resonances in aromatic residues of amino acids. The energy sharing between various nested molecular level electromagnetic resonances interacting with the intermolecular adhesion of London forces at the nexus between phospholipids and the lipophilic proteins has a key role in constraining the release of energy resulting in a vast array of information-based action through negentropic entanglement. Such information structure, passing from the objectivity of holonomic effects stemming from molecular level electromagnetic resonances, has an inherent ambiguity since meaning cannot be related to context, which constitutes preconscious experienceability. The transition from potentiality to actuality where Coulombic force is expressed as a smear of possible experiences where carriers of evanescent meanings instantly actualize through intermittent dispersion interactions as conscious experiences and return to potentiality in preconscious experienceabilities.
{"title":"Journal of Multiscale Neuroscience","authors":"R. Poznanski","doi":"10.56280/1531676942","DOIUrl":"https://doi.org/10.56280/1531676942","url":null,"abstract":"This paper proposes biophysical principles for why geometric holonomic effects through the geometric vector potential are sentient when harmonized by quantized magnetic vector potential in phase-space. These biophysical principles are based on molecular level electromagnetic resonances in partially holistic molecules where nonintegrated information acts as the consciousness process’s conduit—using the informational structure of physical feelings as a transition into subjectivity. The transformation of internal energies from potential to kinetic as ‘concealed’ motion may measure the causal capacity required to bridge causality for conscious experience. Conformational transitions produce bond-breaking, resulting in boundary conditions and limiting the molecular wavefunction to a partially holistic molecular environment with molecular holonomic effects. The van der Waals energy increases protein conformational activity (re-arrangement of bonds), causing energy transfer and information in protein-protein interactions across the cerebral cortex through the energy transduction process. Energy transitions predetermine molecular level electromagnetic resonances in aromatic residues of amino acids. The energy sharing between various nested molecular level electromagnetic resonances interacting with the intermolecular adhesion of London forces at the nexus between phospholipids and the lipophilic proteins has a key role in constraining the release of energy resulting in a vast array of information-based action through negentropic entanglement. Such information structure, passing from the objectivity of holonomic effects stemming from molecular level electromagnetic resonances, has an inherent ambiguity since meaning cannot be related to context, which constitutes preconscious experienceability. The transition from potentiality to actuality where Coulombic force is expressed as a smear of possible experiences where carriers of evanescent meanings instantly actualize through intermittent dispersion interactions as conscious experiences and return to potentiality in preconscious experienceabilities.","PeriodicalId":230864,"journal":{"name":"Journal of Multiscale Neuroscience","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127494821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sentience, defined as the capacity of feeling, for example, to experience basic sensations such as hunger, thirst and other types of qualitative mental states, is a psychobiological phenomenon that involves dynamic patterns of electrochemical (below 1Hz) and electromagnetic (above 1Hz) waves in living systems. The science we have called Sentiomics studies unconscious dynamic patterns in the brain that define the capacity for feeling. This paper discusses the explanation of creative processes based on unconscious patterns that combine and constructively interfere, generating a conscious output experienced in the living system's first-person perspective. We claim that the Sentiomics approach to wave interferences helps to explain creative intuition, artistic creativity, the formation of dreams, and related phenomena. We raise a hypothesis – based on available evidence, to be experimentally tested – that the dominance of slower synchronized oscillatory frequencies (such as Delta, Theta and Alpha bands) in scalp electroencephalogram spectra makes more room for constructive electrochemical interferences supporting creativity. This research points to the dynamism of the unconscious mind, since such interferences happen without the need of conscious control but are influenced by the degree of attention focusing. Once those dynamic processes are understood, they can be used to enrich mental life, boost creativity in general, and improve decision-making processes.
{"title":"Journal of Multiscale Neuroscience","authors":"A. Pereira Júnior, Vinicius Jonas de Aguiar","doi":"10.56280/1531632254","DOIUrl":"https://doi.org/10.56280/1531632254","url":null,"abstract":"Sentience, defined as the capacity of feeling, for example, to experience basic sensations such as hunger, thirst and other types of qualitative mental states, is a psychobiological phenomenon that involves dynamic patterns of electrochemical (below 1Hz) and electromagnetic (above 1Hz) waves in living systems. The science we have called Sentiomics studies unconscious dynamic patterns in the brain that define the capacity for feeling. This paper discusses the explanation of creative processes based on unconscious patterns that combine and constructively interfere, generating a conscious output experienced in the living system's first-person perspective. We claim that the Sentiomics approach to wave interferences helps to explain creative intuition, artistic creativity, the formation of dreams, and related phenomena. We raise a hypothesis – based on available evidence, to be experimentally tested – that the dominance of slower synchronized oscillatory frequencies (such as Delta, Theta and Alpha bands) in scalp electroencephalogram spectra makes more room for constructive electrochemical interferences supporting creativity. This research points to the dynamism of the unconscious mind, since such interferences happen without the need of conscious control but are influenced by the degree of attention focusing. Once those dynamic processes are understood, they can be used to enrich mental life, boost creativity in general, and improve decision-making processes.","PeriodicalId":230864,"journal":{"name":"Journal of Multiscale Neuroscience","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123234403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}