首页 > 最新文献

2019 Sixth Indian Control Conference (ICC)最新文献

英文 中文
Asymptotic characterization of destabilizing switching signals for switched linear systems 切换线性系统不稳定开关信号的渐近表征
Pub Date : 2018-12-22 DOI: 10.1109/ICC47138.2019.9123213
A. Kundu
This paper deals with destabilizing switching signals for continuous-time switched linear systems. Our contributions are twofold: Firstly, we propose a class of switching signals under which a switched system is unstable. Our characterization of instability depends solely on the asymptotic behaviour of frequency of switching, frequency of transition between subsystems, and fraction of activation of subsystems. Secondly, we show that our class of destabilizing switching signals is a strict subset of the class of switching signals that does not satisfy asymptotic characterization of stability recently proposed in the literature. This observation identifies a gap between asymptotic characterizations of stabilizing and destabilizing switching signals for switched linear systems.
研究了连续时间切换线性系统的不稳定开关信号。我们的贡献是双重的:首先,我们提出了一类开关信号,在这种开关信号下,开关系统是不稳定的。我们对不稳定性的描述完全取决于开关频率的渐近行为,子系统之间的转换频率,以及子系统的激活分数。其次,我们证明了我们的不稳定开关信号是一类不满足最近在文献中提出的稳定性渐近特征的开关信号的严格子集。这一观察发现了开关线性系统的稳定和不稳定开关信号的渐近特征之间的差距。
{"title":"Asymptotic characterization of destabilizing switching signals for switched linear systems","authors":"A. Kundu","doi":"10.1109/ICC47138.2019.9123213","DOIUrl":"https://doi.org/10.1109/ICC47138.2019.9123213","url":null,"abstract":"This paper deals with destabilizing switching signals for continuous-time switched linear systems. Our contributions are twofold: Firstly, we propose a class of switching signals under which a switched system is unstable. Our characterization of instability depends solely on the asymptotic behaviour of frequency of switching, frequency of transition between subsystems, and fraction of activation of subsystems. Secondly, we show that our class of destabilizing switching signals is a strict subset of the class of switching signals that does not satisfy asymptotic characterization of stability recently proposed in the literature. This observation identifies a gap between asymptotic characterizations of stabilizing and destabilizing switching signals for switched linear systems.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127187413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating 具有噪声协方差更新的生物分子系统卡尔曼滤波方法
Pub Date : 2017-12-06 DOI: 10.1109/ICC47138.2019.9123219
Abhishek Dey, Kushal Chakrabarti, K. Gola, Shaunak Sen
An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. Here, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the parameter estimation with such process noise covariance can achieve balance between the mean square estimation error and parameter convergence time and we discuss the optimality of the filter. These results may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.
系统建模的一个重要部分是确定参数值,特别是对于生物分子系统,其中单个参数的直接测量通常是困难的。虽然扩展卡尔曼滤波器已被用于此目的,但过程噪声协方差的选择通常不明确。在这里,我们使用蒙特卡罗模拟和实验数据的组合来解决生物分子系统的这个问题,利用过程噪声协方差对状态和参数的依赖,如朗格万框架中给出的。我们采用了一种混合扩展卡尔曼滤波技术,在估计的基础上更新每个时间步的过程噪声协方差。我们将该框架的性能与生物分子系统模型(包括振荡器模型)中不同固定值的过程噪声协方差进行比较,并在负转录反馈电路的实验测量数据中进行比较。结果表明,采用这种过程噪声协方差进行参数估计可以达到均方估计误差和参数收敛时间的平衡,并讨论了滤波器的最优性。这些结果可能有助于在过程噪声协方差依赖于状态和/或参数的系统中使用扩展卡尔曼滤波器。
{"title":"A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating","authors":"Abhishek Dey, Kushal Chakrabarti, K. Gola, Shaunak Sen","doi":"10.1109/ICC47138.2019.9123219","DOIUrl":"https://doi.org/10.1109/ICC47138.2019.9123219","url":null,"abstract":"An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. Here, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the parameter estimation with such process noise covariance can achieve balance between the mean square estimation error and parameter convergence time and we discuss the optimality of the filter. These results may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126594678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
2019 Sixth Indian Control Conference (ICC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1