Pub Date : 2012-01-01Epub Date: 2012-12-28DOI: 10.2174/1874357901206010270
Victoria Juarez, H Amalia Pasolli, Andrea Hellwig, Natalio Garbi, Angel Cid Arregui
Infection by high-risk genotypes of human papillomaviruses (HR-HPVs) is the cause of cancer of the uterine cervix. Although prophylactic vaccines directed against the two most prevalent HR-HPV types (HPV16 and 18) have been commercialized recently, there is a need for effective therapeutic vaccines against HR-HPVs. We have tested in mice a chimeric protein composed of the hepatitis B small surface antigen (HBsAg(S)) flanked at its N-terminus by chemokine CC ligand 19/macrophage inflammatory protein-3β (CCL19/MIP-3β), and at the C-terminus by interleukin 2 (IL-2) and an artificial HPV16 E7 polytope. This protein is assembled into nanoparticles and both CCL19 and IL-2 conserve their functionality. HLA-A2 (AAD) transgenic mice immunized with a plasmid encoding this protein mounted specific T cell responses against E7 without the need of an adjuvant. Furthermore, vaccination prevented the development of tumors after implantation of the E6/E7-expressing TC-1/A2 tumor cell line. Our results suggest that vaccines based on HBsAg(S) nanoparticles carrying short E7 epitopes and immune-stimulatory domains might be of therapeutic value in the treatment of patients suffering from cervical pre-cancer or cancer lesions caused by HR-HPVs.
{"title":"Virus-Like Particles Harboring CCL19, IL-2 and HPV16 E7 Elicit Protective T Cell Responses in HLA-A2 Transgenic Mice.","authors":"Victoria Juarez, H Amalia Pasolli, Andrea Hellwig, Natalio Garbi, Angel Cid Arregui","doi":"10.2174/1874357901206010270","DOIUrl":"https://doi.org/10.2174/1874357901206010270","url":null,"abstract":"<p><p>Infection by high-risk genotypes of human papillomaviruses (HR-HPVs) is the cause of cancer of the uterine cervix. Although prophylactic vaccines directed against the two most prevalent HR-HPV types (HPV16 and 18) have been commercialized recently, there is a need for effective therapeutic vaccines against HR-HPVs. We have tested in mice a chimeric protein composed of the hepatitis B small surface antigen (HBsAg(S)) flanked at its N-terminus by chemokine CC ligand 19/macrophage inflammatory protein-3β (CCL19/MIP-3β), and at the C-terminus by interleukin 2 (IL-2) and an artificial HPV16 E7 polytope. This protein is assembled into nanoparticles and both CCL19 and IL-2 conserve their functionality. HLA-A2 (AAD) transgenic mice immunized with a plasmid encoding this protein mounted specific T cell responses against E7 without the need of an adjuvant. Furthermore, vaccination prevented the development of tumors after implantation of the E6/E7-expressing TC-1/A2 tumor cell line. Our results suggest that vaccines based on HBsAg(S) nanoparticles carrying short E7 epitopes and immune-stimulatory domains might be of therapeutic value in the treatment of patients suffering from cervical pre-cancer or cancer lesions caused by HR-HPVs.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"270-6"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874357901206010270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31179844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-12-28DOI: 10.2174/1874357901206010173
Mandy Muller, Caroline Demeret
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
{"title":"The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network.","authors":"Mandy Muller, Caroline Demeret","doi":"10.2174/1874357901206010173","DOIUrl":"https://doi.org/10.2174/1874357901206010173","url":null,"abstract":"<p><p>Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"173-89"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874357901206010173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31181440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-12-28DOI: 10.2174/1874357901206010204
Richa Singhania, Norliana Khairuddin, Daniel Clarke, Nigel Aj McMillan
Human Papillomavirus (HPV)-induced diseases are a significant burden on our healthcare system and current therapies are not curative. Vaccination provides significant prophylactic protection but effective therapeutic treatments will still be required. RNA interference (RNAi) has great promise in providing highly specific therapies for all HPV diseases yet this promise has not been realised. Here we review the research into RNAi therapy for HPV in vitro and in vivo and examine the various targets and outcomes. We discuss the idea of using RNAi with current treatments and address delivery of RNAi, the major issue holding back clinical adoption. Finally, we present our view of a potential path to the clinic.
{"title":"RNA interference for the treatment of papillomavirus disease.","authors":"Richa Singhania, Norliana Khairuddin, Daniel Clarke, Nigel Aj McMillan","doi":"10.2174/1874357901206010204","DOIUrl":"https://doi.org/10.2174/1874357901206010204","url":null,"abstract":"<p><p>Human Papillomavirus (HPV)-induced diseases are a significant burden on our healthcare system and current therapies are not curative. Vaccination provides significant prophylactic protection but effective therapeutic treatments will still be required. RNA interference (RNAi) has great promise in providing highly specific therapies for all HPV diseases yet this promise has not been realised. Here we review the research into RNAi therapy for HPV in vitro and in vivo and examine the various targets and outcomes. We discuss the idea of using RNAi with current treatments and address delivery of RNAi, the major issue holding back clinical adoption. Finally, we present our view of a potential path to the clinic.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"204-15"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/78/TOVJ-6-204.PMC3547394.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31181443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development.
{"title":"Human papillomavirus infections and cancer stem cells of tumors from the uterine cervix.","authors":"Jacqueline López, Graciela Ruíz, Jorge Organista-Nava, Patricio Gariglio, Alejandro García-Carrancá","doi":"10.2174/1874357901206010232","DOIUrl":"10.2174/1874357901206010232","url":null,"abstract":"<p><p>Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"232-40"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/97/01/TOVJ-6-232.PMC3547319.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31181445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-11-30DOI: 10.2174/1874357901206010151
Mercedes Pérez-Ruiz, Irene Pedrosa-Corral, Sara Sanbonmatsu-Gámez, María Navarro-Marí
Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection.
临床病毒学在检测呼吸道病毒方面的进展主要集中在核酸扩增技术上,该技术已成为诊断急性呼吸道病毒感染的参考方法。目前商业分子检测方法的改进主要依靠两种策略来减少操作时间:逐步自动化(半自动化)和整个过程完全自动化。自动核酸提取器、多重 PCR、实时 PCR 和/或用于检测扩增子的 DNA 阵列为前一种策略做出了贡献。目前已有用于检测呼吸道病毒的商用全自动分子系统。其中一些系统可转化为护理点方法,取代抗原检测法,用于检测呼吸道合胞病毒、甲型和乙型流感病毒。本文介绍了实验室检测呼吸道病毒的方法。考虑到现有检测方法的技术方面、各实验室基础设施的可能性以及感染的临床流行病学因素,提出了一种具有成本效益的合理诊断算法。
{"title":"Laboratory detection of respiratory viruses by automated techniques.","authors":"Mercedes Pérez-Ruiz, Irene Pedrosa-Corral, Sara Sanbonmatsu-Gámez, María Navarro-Marí","doi":"10.2174/1874357901206010151","DOIUrl":"10.2174/1874357901206010151","url":null,"abstract":"<p><p>Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"151-9"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/61/TOVJ-6-151.PMC3522051.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31127017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-11-30DOI: 10.2174/1874357901206010135
Marta Alvarez, Natalia Chueca, Vicente Guillot, María Del Carmen Bernal, Federico García
Since the first tests for identifying individuals with suspected human immunodeficiency virus (HIV) infection were introduced in the mid-1980s, diagnostic virology testing has greatly evolved. The technological advances, automating in the laboratories and the advances in molecular biology techniques have helped introduce invaluable laboratory methods for managing HIV patients. Tests for diagnosis, specially for screening HIV antibodies, are now fully automated; in the same way, tests for monitoring HIV viral load (HIV RNA copies/ml of plasma), which is used for monitoring infection and response to antiretroviral treatment, are also fully automated; however, resistance testing, tropism determination and minor variant detection, which are used to make decisions for changing antiretroviral treatment regimens in patients failing therapy, still remain highly laborious and time consuming. This chapter will review the main aspects relating to the automating of the methods available for laboratory diagnosis as well as for monitoring of the HIV infection and determination of resistance to antiretrovirals and viral tropism.
{"title":"Improving Clinical Laboratory Efficiency: Introduction of Systems for the Diagnosis and Monitoring of HIV Infection.","authors":"Marta Alvarez, Natalia Chueca, Vicente Guillot, María Del Carmen Bernal, Federico García","doi":"10.2174/1874357901206010135","DOIUrl":"https://doi.org/10.2174/1874357901206010135","url":null,"abstract":"<p><p>Since the first tests for identifying individuals with suspected human immunodeficiency virus (HIV) infection were introduced in the mid-1980s, diagnostic virology testing has greatly evolved. The technological advances, automating in the laboratories and the advances in molecular biology techniques have helped introduce invaluable laboratory methods for managing HIV patients. Tests for diagnosis, specially for screening HIV antibodies, are now fully automated; in the same way, tests for monitoring HIV viral load (HIV RNA copies/ml of plasma), which is used for monitoring infection and response to antiretroviral treatment, are also fully automated; however, resistance testing, tropism determination and minor variant detection, which are used to make decisions for changing antiretroviral treatment regimens in patients failing therapy, still remain highly laborious and time consuming. This chapter will review the main aspects relating to the automating of the methods available for laboratory diagnosis as well as for monitoring of the HIV infection and determination of resistance to antiretrovirals and viral tropism.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"135-43"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874357901206010135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31144494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-12-28DOI: 10.2174/1874357901206010257
Sjoerd H van der Burg
Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment.
{"title":"Immunotherapy of human papilloma virus induced disease.","authors":"Sjoerd H van der Burg","doi":"10.2174/1874357901206010257","DOIUrl":"https://doi.org/10.2174/1874357901206010257","url":null,"abstract":"<p><p>Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"257-63"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/9f/TOVJ-6-257.PMC3547504.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31179842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-04-26DOI: 10.2174/1874357901206010059
Emilio E Espínola
Influenza A virus (H1N1), which arose in 2009, constituted the fourth pandemic after the cases of 1918, 1957, and 1968. This new variant was formed by a triple reassortment, with genomic segments from swine, avian, and human influenza origins. The objective of this study was to analyze sequences of hemagglutinin (n=2038) and neuraminidase (n=1273) genes, in order to assess the extent of diversity among circulating 2009-2010 strains, estimate if these genes evolved through positive, negative, or neutral selection models of evolution during the pandemic phase, and analyze the worldwide percentage of detection of important amino acid mutations that could enhance the viral performance, such as transmissibility or resistance to drugs. A continuous surveillance by public health authorities will be critical to monitor the appearance of new influenza variants, especially in animal reservoirs such as swine and birds, in order to prevent the potential animal-human transmission of viruses with pandemic potential.
{"title":"Genome Stability of Pandemic Influenza A (H1N1) 2009 Based on Analysis of Hemagglutinin and Neuraminidase Genes.","authors":"Emilio E Espínola","doi":"10.2174/1874357901206010059","DOIUrl":"https://doi.org/10.2174/1874357901206010059","url":null,"abstract":"<p><p>Influenza A virus (H1N1), which arose in 2009, constituted the fourth pandemic after the cases of 1918, 1957, and 1968. This new variant was formed by a triple reassortment, with genomic segments from swine, avian, and human influenza origins. The objective of this study was to analyze sequences of hemagglutinin (n=2038) and neuraminidase (n=1273) genes, in order to assess the extent of diversity among circulating 2009-2010 strains, estimate if these genes evolved through positive, negative, or neutral selection models of evolution during the pandemic phase, and analyze the worldwide percentage of detection of important amino acid mutations that could enhance the viral performance, such as transmissibility or resistance to drugs. A continuous surveillance by public health authorities will be critical to monitor the appearance of new influenza variants, especially in animal reservoirs such as swine and birds, in order to prevent the potential animal-human transmission of viruses with pandemic potential.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"59-63"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/24/bc/TOVJ-6-59.PMC3349948.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30615656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matrix protein is known to have an important role in the process of virus assembly and virion release during measles virus replication. In the present in vitro study, a single mutation of E89K in the matrix protein was shown to affect cell death and virus replication efficiency in human PBMC. One strain with this mutation caused less cell death than the parental virus, and possessed high virus replication efficiency. Moreover, by Annexin V-FITC staining, polycaspase FLICA staining, and double labeling with poly-caspase FLICA and the Hoechst stain, the cell death seen was shown to be apoptosis.
{"title":"The E89K Mutation in the Matrix Protein of the Measles Virus Affects In Vitro Cell Death and Virus Replication Efficiency in Human PBMC.","authors":"Jianbao Dong, Wei Zhu, Akatsuki Saito, Yoshitaka Goto, Hiroyuki Iwata, Takeshi Haga","doi":"10.2174/1874357901206010068","DOIUrl":"https://doi.org/10.2174/1874357901206010068","url":null,"abstract":"<p><p>Matrix protein is known to have an important role in the process of virus assembly and virion release during measles virus replication. In the present in vitro study, a single mutation of E89K in the matrix protein was shown to affect cell death and virus replication efficiency in human PBMC. One strain with this mutation caused less cell death than the parental virus, and possessed high virus replication efficiency. Moreover, by Annexin V-FITC staining, polycaspase FLICA staining, and double labeling with poly-caspase FLICA and the Hoechst stain, the cell death seen was shown to be apoptosis.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"68-72"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/34/d5/TOVJ-6-68.PMC3377886.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30704507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caprine arthritis/encephalitis (CAE) of goats and occasionally sheep are persistent virus infections caused by a lentivirus (CAEV). This viral infection results in arthritis in adult animals and encephalitis in kids. Prognosis for the encephalitic form is normally poor, with substantial economic loss for the farm. In this context an early/fast laboratory diagnosis for CAEV infection could be useful for effective prophylactic action. In this work we performed a quantitative real time PCR designed on the CAEV env gene to detect/quantify in goat/sheep samples, viral RNA or proviral DNA forms of CAEV. This procedure was validated in 15 sheep, experimentally infected with CAEV or with a highly correlated lentivirus (visna maedi, MVV); in addition, a total of 37 clinical goat specimens recruited in CAEV positive herds were analyzed and compared using serological analysis (Elisa and AGID). All samples infected with MVV resulted negative. In sheep experimentally infected with CAEV, proviral DNA was detectable 15 days post infection, whereas the serological methods revealed an indicative positivity after 40-60 days.This method showed a sensitivity of 10(2) env fragments/PCR) with a linear dynamic range of quantitation from 10(3) to 10(7)env fragments/PCR; the R2 correlation coefficient was 0.98. All subjects with a clinical diagnosis for Caprine Arthritis-Encephalitis (CAE) resulted CAEV DNA positive.
{"title":"Development and Field Testing of a Real-Time PCR Assay for Caprine Arthritis-Encephalitis-Virus (CAEV).","authors":"Giovanni Brajon, Daniela Mandas, Manuele Liciardi, Flavia Taccori, Mauro Meloni, Franco Corrias, Caterina Montaldo, Ferdinando Coghe, Cristina Casciari, Monica Giammarioli, Germano Orrù","doi":"10.2174/1874357901206010082","DOIUrl":"https://doi.org/10.2174/1874357901206010082","url":null,"abstract":"<p><p>Caprine arthritis/encephalitis (CAE) of goats and occasionally sheep are persistent virus infections caused by a lentivirus (CAEV). This viral infection results in arthritis in adult animals and encephalitis in kids. Prognosis for the encephalitic form is normally poor, with substantial economic loss for the farm. In this context an early/fast laboratory diagnosis for CAEV infection could be useful for effective prophylactic action. In this work we performed a quantitative real time PCR designed on the CAEV env gene to detect/quantify in goat/sheep samples, viral RNA or proviral DNA forms of CAEV. This procedure was validated in 15 sheep, experimentally infected with CAEV or with a highly correlated lentivirus (visna maedi, MVV); in addition, a total of 37 clinical goat specimens recruited in CAEV positive herds were analyzed and compared using serological analysis (Elisa and AGID). All samples infected with MVV resulted negative. In sheep experimentally infected with CAEV, proviral DNA was detectable 15 days post infection, whereas the serological methods revealed an indicative positivity after 40-60 days.This method showed a sensitivity of 10(2) env fragments/PCR) with a linear dynamic range of quantitation from 10(3) to 10(7)env fragments/PCR; the R2 correlation coefficient was 0.98. All subjects with a clinical diagnosis for Caprine Arthritis-Encephalitis (CAE) resulted CAEV DNA positive.</p>","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"6 ","pages":"82-90"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874357901206010082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30830276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}