首页 > 最新文献

Tissue engineering and regenerative medicine最新文献

英文 中文
The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats. l -丝氨酸明胶海绵在去卵巢大鼠颅骨缺损中的应用。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI: 10.1007/s13770-024-00686-6
Yoon-Jo Lee, Ji-Hyeon Oh, Suyeon Park, Jongho Choi, Min-Ho Hong, HaeYong Kweon, Weon-Sik Chae, Xiangguo Che, Je-Yong Choi, Seong-Gon Kim

Background: Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.

Methods: This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.

Results: The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group. Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.

Conclusion: These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.

背景:骨质疏松症的特点是由于成骨细胞和破骨细胞活性之间的不平衡导致骨密度下降,这对骨愈合提出了重大挑战,特别是对绝经后妇女。目前的治疗方法,如双膦酸盐,是有效的,但与药物相关的颌骨骨坏死等副作用有关,需要更安全的替代品。方法:研究l -丝氨酸明胶海绵在去卵巢骨质疏松大鼠颅骨缺损骨再生中的应用。将30只大鼠分为三组:对照组、含有氨基酸混合物的明胶海绵组和含有l -丝氨酸的明胶海绵组。采用显微计算机断层扫描(micro-CT)和组织学分析评估骨再生。结果:与对照组和氨基酸组相比,l -丝氨酸组骨体积(BV)和骨面积显著增加。l -丝氨酸组骨体积与总积比(BV/TV)也显著升高。免疫组织化学分析表明,l -丝氨酸处理抑制了破骨细胞活性标志物组织蛋白酶K的表达,同时增加了丝氨酸消旋酶的活性。结论:l -丝氨酸明胶海绵不仅能促进骨形成,还能抑制破骨细胞介导的骨吸收,为目前治疗骨质疏松相关骨缺损提供了一种有前景且更安全的替代方法。需要进一步研究其在人类患者中的临床应用。
{"title":"The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats.","authors":"Yoon-Jo Lee, Ji-Hyeon Oh, Suyeon Park, Jongho Choi, Min-Ho Hong, HaeYong Kweon, Weon-Sik Chae, Xiangguo Che, Je-Yong Choi, Seong-Gon Kim","doi":"10.1007/s13770-024-00686-6","DOIUrl":"10.1007/s13770-024-00686-6","url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.</p><p><strong>Methods: </strong>This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.</p><p><strong>Results: </strong>The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group. Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.</p><p><strong>Conclusion: </strong>These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"91-104"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gingival Mesenchymal Stem Cells: A Periodontal Regenerative Substitute. 牙龈间充质干细胞:牙周再生替代物。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-11-28 DOI: 10.1007/s13770-024-00676-8
Sonia S Shetty, S Sowmya, Aathira Pradeep, R Jayakumar

Background: Gingival mesenchymal stem cells (GMSCs) are distinctive homogenous subset of mesenchymal stem cells (MSCs), which has its development from neural ectomesenchyme along with contributions from the perifollicular mesenchyme and the dental follicle proper. GMSCs stand apart from other dental MSCs owing to their ease of accessibility and availability with incredible long culture sustainability without any tumorigenic capability, and stable telomerase activity. Their capacity to differentiate into various cell lineages and inherent therapeutic effect in chronic inflammatory diseases like colitis, rheumatoid arthritis, systemic lupus erythematous (SLE) and diabetes makes them immensely valuable. The immunomodulatory and anti-inflammatory properties aid its usage in auto immune diseases and graft versus host disease. However, the differentiation, immunomodulatory and anti-inflammatory effects of GMSCs in periodontal tissue regeneration are less explored.

Methods: In this review article, we have comprehensively compiled and described several reports on GMSCs till date, including their basic properties and isolation protocols, subpopulations, spheroid GMSCs, gingiva-derived IPSCsinduced pluripotent stem cells (iPSCs), their characterization, multilineage differentiation, and immunomodulatory properties along with precise applications in periodontal regeneration and peri-implantitis.

Results and conclusion: Though the studies on GMSCs in periodontal regeneration lack superior quality random clinical trials, this review article still strengthens the view that GMSCs can be a newer source in periodontal tissue reconstruction/regeneration.

背景:牙龈间充质干细胞(GMSCs牙龈间充质干细胞(GMSCs)是间充质干细胞(MSCs)中独特的同源亚群,它由神经外间充质以及毛囊周围间充质和牙周毛囊间充质发育而成。牙科间充质干细胞与其他牙科间充质干细胞不同,因为它们易于获取和利用,可持续培养时间长,无任何致瘤能力,端粒酶活性稳定。它们能分化成各种细胞系,对结肠炎、类风湿性关节炎、系统性红斑狼疮(SLE)和糖尿病等慢性炎症性疾病有固有的治疗效果,因此具有巨大的价值。免疫调节和抗炎特性有助于其在自身免疫疾病和移植物抗宿主疾病中的应用。然而,人们对 GMSCs 在牙周组织再生中的分化、免疫调节和抗炎作用探索较少:在这篇综述文章中,我们全面梳理和描述了迄今为止有关GMSCs的几篇报道,包括其基本特性和分离方案、亚群、球形GMSCs、牙龈源性IPSCs诱导多能干细胞(iPSCs)、其特征、多线性分化、免疫调节特性以及在牙周再生和种植体周围炎中的精确应用:虽然有关GMSCs在牙周再生中的研究缺乏高质量的随机临床试验,但这篇综述文章仍加强了GMSCs可作为牙周组织重建/再生的新来源的观点。
{"title":"Gingival Mesenchymal Stem Cells: A Periodontal Regenerative Substitute.","authors":"Sonia S Shetty, S Sowmya, Aathira Pradeep, R Jayakumar","doi":"10.1007/s13770-024-00676-8","DOIUrl":"10.1007/s13770-024-00676-8","url":null,"abstract":"<p><strong>Background: </strong>Gingival mesenchymal stem cells (GMSCs) are distinctive homogenous subset of mesenchymal stem cells (MSCs), which has its development from neural ectomesenchyme along with contributions from the perifollicular mesenchyme and the dental follicle proper. GMSCs stand apart from other dental MSCs owing to their ease of accessibility and availability with incredible long culture sustainability without any tumorigenic capability, and stable telomerase activity. Their capacity to differentiate into various cell lineages and inherent therapeutic effect in chronic inflammatory diseases like colitis, rheumatoid arthritis, systemic lupus erythematous (SLE) and diabetes makes them immensely valuable. The immunomodulatory and anti-inflammatory properties aid its usage in auto immune diseases and graft versus host disease. However, the differentiation, immunomodulatory and anti-inflammatory effects of GMSCs in periodontal tissue regeneration are less explored.</p><p><strong>Methods: </strong>In this review article, we have comprehensively compiled and described several reports on GMSCs till date, including their basic properties and isolation protocols, subpopulations, spheroid GMSCs, gingiva-derived IPSCsinduced pluripotent stem cells (iPSCs), their characterization, multilineage differentiation, and immunomodulatory properties along with precise applications in periodontal regeneration and peri-implantitis.</p><p><strong>Results and conclusion: </strong>Though the studies on GMSCs in periodontal regeneration lack superior quality random clinical trials, this review article still strengthens the view that GMSCs can be a newer source in periodontal tissue reconstruction/regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1-21"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model. 在NOD小鼠模型中,一种新型生物材料植入与treg共种子的胰岛逆转糖尿病
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-12-30 DOI: 10.1007/s13770-024-00685-7
Diana M Elizondo, Lais L de Oliveira Rekowsky, Ayane de Sa Resende, Jonathan Seenarine, Ricardo Luis Louzada da Silva, Jamel Ali, Dazhi Yang, Tatiana de Moura, Michael W Lipscomb

Background: Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.

Methods: Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.

Results: Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.

Conclusion: These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.

背景:1型糖尿病(T1D)导致自身反应性T细胞慢性破坏胰岛。这通常会导致产生胰岛素的β细胞不可替代的损失。为了扭转这一过程,需要采用葡萄糖反应性胰岛素恢复与抑制自身反应性免疫反应相结合的组合策略。方法:将一种新型生物材料与胰岛素生成胰岛和T调节细胞(Tregs)共同植入非肥胖糖尿病小鼠腹腔内。对照组包括单独植入胰岛的生物材料组或仅植入生物材料组。通过血糖监测、多种血清细胞因子谱、流式细胞术和免疫组织化学评估,研究小鼠炎症和糖尿病进展的变化。结果:与对照组相比,胰岛和Tregs共播种的生物材料受体在植入后180天内寿命延长,胰岛素分泌增加,血糖正常。血清分析显示,接受共播种生物材料的受体血清中TNFα、IFNγ、IL-1β含量降低,IL-10、胰岛素、c肽、PP和PPY含量升高。对切除的共种生物材料的评估显示,浸润性自身反应性CD8 +和CD4 + T细胞减少,同时Foxp3 + Tregs持续存在;进一步分析显示,与对照组相比,刺激后IFNγ和颗粒酶- b的水平较低,少数浸润的常驻效应CD4+或CD8+ T细胞是无能的。有趣的是,研究还显示胰腺中的Tregs增加。然而,胰腺β细胞区室没有恢复,这表明植入的共种子生物材料在很大程度上支持了正常血糖和胰岛素水平的产生。结论:这些研究表明,在一种新的自组装类器官中播种treg和胰岛的组合方法可以逆转T1D。
{"title":"Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model.","authors":"Diana M Elizondo, Lais L de Oliveira Rekowsky, Ayane de Sa Resende, Jonathan Seenarine, Ricardo Luis Louzada da Silva, Jamel Ali, Dazhi Yang, Tatiana de Moura, Michael W Lipscomb","doi":"10.1007/s13770-024-00685-7","DOIUrl":"10.1007/s13770-024-00685-7","url":null,"abstract":"<p><strong>Background: </strong>Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.</p><p><strong>Methods: </strong>Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments.</p><p><strong>Results: </strong>Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4<sup>+</sup> or CD8<sup>+</sup> T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial.</p><p><strong>Conclusion: </strong>These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"43-55"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Assessment of Injectable Bone Marrow Aspirate Concentrates Compared to Injectable Platelet-Rich Fibrin. 注射用骨髓吸出物浓缩物与注射用富血小板纤维蛋白的体外评估比较。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI: 10.1007/s13770-024-00677-7
Masako Fujioka-Kobayashi, Masateru Koyanagi, Ryo Inada, Ayako Miyasaka, Takafumi Satomi

Background: Injectable platelet-rich fibrin (iPRF), a liquid form of PRF that is prepared from peripheral blood without anticoagulants, promotes tissue wound healing and regeneration. The present study focused on iPRF-like bone marrow aspirate concentrate (iBMAC) prepared without anticoagulant, and the regenerative potential of iPRF and iBMAC was compared in vitro.

Methods: iPRF and iBMAC were prepared from the same New Zealand white rabbits. The cytocompatibility and regenerative potential of each concentrate were evaluated using primary rabbit gingival fibroblasts and osteoblasts.

Results: Both gingival fibroblasts and osteoblasts treated with each concentrate exhibited excellent cell viability. Interestingly, compared to cells treated with iPRF, cells treated with iBMAC demonstrated significantly greater migration potential. Furthermore, higher mRNA levels of transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and collagen I (COL1) were observed in gingival fibroblasts treated with iBMAC than in those treated with iPRF. Compared with osteoblasts treated with iPRF, osteoblasts treated with iBMAC exhibited greater differentiation potential, as indicated by increased osteocalcin (OCN) expression and mineralization capability.

Conclusion: The results of the in vitro study suggest that, compared with iPRF, iBMAC may promote wound healing and bone regeneration more effectively. However, further preclinical and clinical studies are needed to confirm the regenerative potential of iBMAC in the body.

背景:注射用富血小板纤维蛋白(iPRF)是一种液态富血小板纤维蛋白,由外周血制备而成,不含抗凝剂,可促进组织伤口愈合和再生。本研究重点关注不含抗凝剂的类 iPRF 骨髓抽吸物浓缩液(iBMAC),并在体外比较了 iPRF 和 iBMAC 的再生潜力。方法:iPRF 和 iBMAC 由相同的新西兰白兔制备,使用原代兔牙龈成纤维细胞和成骨细胞评估了每种浓缩物的细胞相容性和再生潜力:结果:用每种浓缩物处理的牙龈成纤维细胞和成骨细胞都表现出极佳的细胞活力。有趣的是,与用 iPRF 处理过的细胞相比,用 iBMAC 处理过的细胞具有明显更高的迁移潜力。此外,用 iBMAC 处理的牙龈成纤维细胞的转化生长因子-β(TGF-β)、血管内皮生长因子(VEGF)和胶原蛋白 I(COL1)的 mRNA 水平高于用 iPRF 处理的细胞。与用 iPRF 处理的成骨细胞相比,用 iBMAC 处理的成骨细胞表现出更大的分化潜力,这体现在骨钙素(OCN)表达和矿化能力的提高上:体外研究结果表明,与 iPRF 相比,iBMAC 可更有效地促进伤口愈合和骨再生。然而,要证实 iBMAC 在体内的再生潜力,还需要进一步的临床前和临床研究。
{"title":"In Vitro Assessment of Injectable Bone Marrow Aspirate Concentrates Compared to Injectable Platelet-Rich Fibrin.","authors":"Masako Fujioka-Kobayashi, Masateru Koyanagi, Ryo Inada, Ayako Miyasaka, Takafumi Satomi","doi":"10.1007/s13770-024-00677-7","DOIUrl":"10.1007/s13770-024-00677-7","url":null,"abstract":"<p><strong>Background: </strong>Injectable platelet-rich fibrin (iPRF), a liquid form of PRF that is prepared from peripheral blood without anticoagulants, promotes tissue wound healing and regeneration. The present study focused on iPRF-like bone marrow aspirate concentrate (iBMAC) prepared without anticoagulant, and the regenerative potential of iPRF and iBMAC was compared in vitro.</p><p><strong>Methods: </strong>iPRF and iBMAC were prepared from the same New Zealand white rabbits. The cytocompatibility and regenerative potential of each concentrate were evaluated using primary rabbit gingival fibroblasts and osteoblasts.</p><p><strong>Results: </strong>Both gingival fibroblasts and osteoblasts treated with each concentrate exhibited excellent cell viability. Interestingly, compared to cells treated with iPRF, cells treated with iBMAC demonstrated significantly greater migration potential. Furthermore, higher mRNA levels of transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and collagen I (COL1) were observed in gingival fibroblasts treated with iBMAC than in those treated with iPRF. Compared with osteoblasts treated with iPRF, osteoblasts treated with iBMAC exhibited greater differentiation potential, as indicated by increased osteocalcin (OCN) expression and mineralization capability.</p><p><strong>Conclusion: </strong>The results of the in vitro study suggest that, compared with iPRF, iBMAC may promote wound healing and bone regeneration more effectively. However, further preclinical and clinical studies are needed to confirm the regenerative potential of iBMAC in the body.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1233-1243"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. 胶原-肝素-FGF2-VEGF 支架在胎羊伤口模型中诱导再生基因表达谱。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-08-31 DOI: 10.1007/s13770-024-00667-9
Merel Gansevoort, Corien Oostendorp, Linde F Bouwman, Dorien M Tiemessen, Paul J Geutjes, Wout F J Feitz, Toin H van Kuppevelt, Willeke F Daamen

Background: The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration.

Methods: We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks.

Results: COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization.

Conclusion: These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.

背景:脊柱裂这种发育异常的特征是组织(如皮肤)缺失和脊髓暴露于羊水中,这会对神经系统的发育产生负面影响。在子宫内对皮肤进行手术闭合可限制神经损伤,但在大面积缺损的情况下会导致疤痕和挛缩。在子宫内刺激皮肤再生将大大有利于治疗效果。此前,我们在胎儿绵羊全厚伤口模型中证实,肝素(HEP)、成纤维细胞生长因子 2(FGF2)和血管内皮生长因子(VEGF)功能化的多孔 I 型胶原(COL)支架(COL-HEP/GF)可改善出生前后的皮肤再生。本研究揭示了与皮肤再生能力增强相关的早期事件:我们研究了植入 COL(-HEP/GF) 支架两周后胎儿皮肤伤口愈合的基因表达谱。利用激光解剖和芯片技术,在表皮和真皮中发现了未处理伤口、COL处理伤口和COL-HEP/GF处理伤口的差异表达基因(DEG)。利用基因富集分析确定了生物过程,并利用蛋白质-蛋白质相互作用网络对 DEG 进行了聚类:结果:COL-HEP/GF 影响了伤口愈合过程中各种有趣的生物过程。虽然变化不大,但通过蛋白质-蛋白质相互作用网络,我们发现了各种聚类基因,这表明 COL-HEP/GF 对细胞信号传导和细胞外基质组织进行了严密而微妙的控制:这些数据为(胎儿)伤口愈合的关键过程提供了一个新的视角,在伤口愈合过程中进行有针对性的早期干预可长期增强皮肤再生的效果。
{"title":"Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model.","authors":"Merel Gansevoort, Corien Oostendorp, Linde F Bouwman, Dorien M Tiemessen, Paul J Geutjes, Wout F J Feitz, Toin H van Kuppevelt, Willeke F Daamen","doi":"10.1007/s13770-024-00667-9","DOIUrl":"10.1007/s13770-024-00667-9","url":null,"abstract":"<p><strong>Background: </strong>The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration.</p><p><strong>Methods: </strong>We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks.</p><p><strong>Results: </strong>COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization.</p><p><strong>Conclusion: </strong>These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1173-1187"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Late-Passage Small Umbilical Cord-Derived Fast Proliferating Cells on Tenocytes from Degenerative Rotator Cuff Tears under an Interleukin 1β-Induced Tendinopathic Environment. 在白细胞介素 1β 诱导的肌腱病理环境下,晚期小脐带衍生的快速增殖细胞对肩袖退行性撕裂的腱细胞的影响
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-11-05 DOI: 10.1007/s13770-024-00673-x
Ah-Young Lee, Ju-Young Park, Sam Joongwon Hwang, Kwi-Hoon Jang, Chris Hyunchul Jo

Background: Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced "small umbilical cord-derived fast proliferating cells" (smumf cells), isolated using a novel minimal cube explant method. These cells maintained their MSC characteristics through long-term culture. Thus, the purpose of the present study was to assess the anti-inflammatory effects of late-passage smumf cells at P10 on tenocytes derived from degenerative rotator cuff tears in a tendinopathic environment.

Methods: The mRNA expression with respect to aging of MSCs and secretion of growth factors (GFs) by smumf cells at P10 were measured. mRNA and protein synthesis in tenocytes with respect to the tenocyte phenotype, inflammatory cytokines, and matrix- degradation enzymes were measured. The inflammatory signal pathways involving nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in tenocytes were also investigated. The proliferative response of degenerative tenocytes to co-culture with smumf cells over 7 days in varying IL-1β induced tendinopathic environments was investigated.

Results: smumf cells at P10 showed no signs of aging compared to those at P3. smumf cells at P10, secreting 2,043 pg/ml of hepatocyte growth factor (HGF), showed a 1.88-fold (p = .002) increase in HGF secretion in a tendinopathic environment. Degenerative tenocytes co-cultured with smumf cells showed significantly increased protein expression levels of collagen type I (Col I) and the Col I/III ratio by 1.46-fold (p < .001) and 1.66-fold (p < .001), respectively. The smumf cells at P10 reduced both mRNA and protein expression levels of matrix metalloproteinases-1, -2, -3, -8, -9, and -13 in tenocytes and attenuated NF-κB (phosphorylated IκBα/IκBα and phosphorylated p65/p65) and MAPK (phosphorylated p38/p38 and phosphorylated JNK/JNK) pathways activated by IL-1β. Removal of IL-1β from the co-culture accelerated the growth of tenocytes by 1.42-fold (p < .001). Removal of IL-1β accelerated tenocyte growth in co-cultures.

Conculsion: Late-passage smumf cells exert anti-inflammatory effects on tenocytes derived from degenerative rotator cuff tears under a tendinopathic environment, primarily through the secretion of growth factors (GFs).

背景:肌腱病是一种慢性肌腱疾病:肌腱病是一种慢性肌腱疾病。间充质干细胞(MSCs)以其抗炎特性而闻名,但在大量培养后可能会失去功效。之前的研究引入了 "小脐带来源快速增殖细胞"(smumf 细胞),该细胞是用一种新颖的最小立方体外植法分离出来的。这些细胞在长期培养过程中保持了间充质干细胞的特性。因此,本研究的目的是评估P10晚期的sumf细胞在肌腱病理环境中对来自退行性肩袖撕裂的腱细胞的抗炎作用。是的,我检查了标题。Kindly check and confirm affiliation 1, 2 and 3 are correctly processed.The corresponding author's affiliation has been changed to 1, 2, and 3.Methods:测定了间充质干细胞衰老的mRNA表达和P10时sumumf细胞分泌生长因子(GFs)的情况;测定了腱细胞表型、炎性细胞因子和基质降解酶的mRNA和蛋白质合成情况。此外,还研究了腱细胞中涉及核因子卡巴B(NF-κB)和丝裂原活化蛋白激酶(MAPK)的炎症信号通路。在不同的IL-1β诱导的腱鞘病变环境中,研究了退行性腱鞘细胞与smumf细胞共培养7天后的增殖反应:请确认作者姓名是否准确,顺序是否正确(名、中名/姓、姓)。作者 3 姓名:[Sam Joongwon] 姓氏:[Hwang],作者 6 姓名:[Chris Hyunchul] 姓氏:[Jo]。另外,请确认元数据中的详细信息是否正确。如果您能从作者名单中删除 "Yejin Park",我们将不胜感激,因为她在完成论文和作品之前就离开了实验室。 结果:与 P3 时的细胞相比,P10 时的 Smumf 细胞没有衰老迹象。P10 时的 Smumf 细胞分泌 2,043 pg/ml 的肝细胞生长因子(HGF),在肌腱病理环境中,HGF 分泌增加了 1.88 倍(p = .002)。与 smumf 细胞共培养的退行性腱鞘细胞显示,I 型胶原蛋白(Col I)的蛋白表达水平和 Col I/III 比值显著增加了 1.46 倍(p = 0.002):在肌腱病理环境下,晚期smumf细胞主要通过分泌生长因子(GFs)对来自退行性肩袖撕裂的腱细胞产生抗炎作用。
{"title":"Effects of Late-Passage Small Umbilical Cord-Derived Fast Proliferating Cells on Tenocytes from Degenerative Rotator Cuff Tears under an Interleukin 1β-Induced Tendinopathic Environment.","authors":"Ah-Young Lee, Ju-Young Park, Sam Joongwon Hwang, Kwi-Hoon Jang, Chris Hyunchul Jo","doi":"10.1007/s13770-024-00673-x","DOIUrl":"10.1007/s13770-024-00673-x","url":null,"abstract":"<p><strong>Background: </strong>Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced \"small umbilical cord-derived fast proliferating cells\" (smumf cells), isolated using a novel minimal cube explant method. These cells maintained their MSC characteristics through long-term culture. Thus, the purpose of the present study was to assess the anti-inflammatory effects of late-passage smumf cells at P10 on tenocytes derived from degenerative rotator cuff tears in a tendinopathic environment.</p><p><strong>Methods: </strong>The mRNA expression with respect to aging of MSCs and secretion of growth factors (GFs) by smumf cells at P10 were measured. mRNA and protein synthesis in tenocytes with respect to the tenocyte phenotype, inflammatory cytokines, and matrix- degradation enzymes were measured. The inflammatory signal pathways involving nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in tenocytes were also investigated. The proliferative response of degenerative tenocytes to co-culture with smumf cells over 7 days in varying IL-1β induced tendinopathic environments was investigated.</p><p><strong>Results: </strong>smumf cells at P10 showed no signs of aging compared to those at P3. smumf cells at P10, secreting 2,043 pg/ml of hepatocyte growth factor (HGF), showed a 1.88-fold (p = .002) increase in HGF secretion in a tendinopathic environment. Degenerative tenocytes co-cultured with smumf cells showed significantly increased protein expression levels of collagen type I (Col I) and the Col I/III ratio by 1.46-fold (p < .001) and 1.66-fold (p < .001), respectively. The smumf cells at P10 reduced both mRNA and protein expression levels of matrix metalloproteinases-1, -2, -3, -8, -9, and -13 in tenocytes and attenuated NF-κB (phosphorylated IκBα/IκBα and phosphorylated p65/p65) and MAPK (phosphorylated p38/p38 and phosphorylated JNK/JNK) pathways activated by IL-1β. Removal of IL-1β from the co-culture accelerated the growth of tenocytes by 1.42-fold (p < .001). Removal of IL-1β accelerated tenocyte growth in co-cultures.</p><p><strong>Conculsion: </strong>Late-passage smumf cells exert anti-inflammatory effects on tenocytes derived from degenerative rotator cuff tears under a tendinopathic environment, primarily through the secretion of growth factors (GFs).</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1217-1231"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation. 骨髓间充质干细胞释放的外泌体lncRNA SNHG7通过靶向miR-485-5p/FSP1轴介导的软骨细胞铁突变和炎症缓解骨关节炎。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-10-03 DOI: 10.1007/s13770-024-00668-8
Yue Wang, Kaili Hu, Changdi Liao, Ting Han, Fenglin Jiang, Zixin Gao, Jinhua Yan

Background: Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.

Methods: OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1β to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-α and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.

Results: The expressions of SNHG7 and FSP1 were both reduced in IL-1β-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCs-derived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCs-Exos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1β-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.

Conclusions: Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1β-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.

背景:骨关节炎(OA)是一种退行性关节疾病,是导致成年人残疾的主要原因。越来越多的证据证明,骨髓间充质干细胞(BMSCs)携带的外泌体对骨关节炎有显著的治疗作用。然而,其确切的调控网络仍然未知:方法:采集患者的 OA 和正常软骨样本,并将软骨细胞暴露于 IL-1β 以建立细胞 OA 模型。使用纳米粒子追踪分析(NTA)和透射电子显微镜(TEM)鉴定从BMSCs制备的外泌体。细胞活力通过 CCK-8 检测法确定。炎症损伤通过 LDH 和炎症因子(TNF-α 和 IL-6)分别用相应的 ELISA 试剂盒进行评估。用相应的试剂盒通过GSH、MDA和铁水平评估铁变态反应,用DCFH-DA评估ROS水平。基因/蛋白质的表达采用 RT-qPCR/western bolt 法测定。通过 RNA 免疫沉淀和荧光素酶活性检测小核仁 RNA 宿主基因 7(SNHG7)/铁突变抑制蛋白 1(FSP1)与 miR-485-5p 的相互作用:结果:在IL-1β诱导的软骨细胞和OA软骨组织中,SNHG7和FSP1的表达均降低,且两者在临床水平上呈正相关。此外,SNHG7富集于BMSCs衍生的外泌体(BMSCs-Exos)中,并可被软骨细胞内化。功能分析表明,BMSCs-Exos能抑制IL-1β诱导的软骨细胞中的炎症损伤、氧化应激和铁突变,而当SNHG7在BMSCs-Exos中过表达时,这些变化会得到加强。值得注意的是,软骨细胞中的FSP1沉默会取消外泌体SNHG7介导的有益效应:结论:BMSCs释放的外泌体SNHG7通过miR-485-5p/FSP1轴抑制了IL-1β诱导的软骨细胞的炎症和铁变态反应。这项研究表明,BMSCs衍生的外泌体SNHG7将成为治疗OA的前瞻性靶点。
{"title":"Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation.","authors":"Yue Wang, Kaili Hu, Changdi Liao, Ting Han, Fenglin Jiang, Zixin Gao, Jinhua Yan","doi":"10.1007/s13770-024-00668-8","DOIUrl":"10.1007/s13770-024-00668-8","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.</p><p><strong>Methods: </strong>OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1β to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-α and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.</p><p><strong>Results: </strong>The expressions of SNHG7 and FSP1 were both reduced in IL-1β-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCs-derived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCs-Exos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1β-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.</p><p><strong>Conclusions: </strong>Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1β-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1203-1216"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair. 血小板纤维蛋白血浆(PFP)对术后难治性伤口的影响:伤口修复中的生理浓缩血小板血浆。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-10-14 DOI: 10.1007/s13770-024-00665-x
Lu Fan, Ying Zhang, Xiankun Yin, Silu Chen, Pin Wu, Tianru Huyan, Ziyang Wang, Qun Ma, Hua Zhang, Wenhui Wang, Chunyan Gu, Lu Tie, Long Zhang

Objective: Surgical wounds that can't complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.

Approach: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.

Results: PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate > 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.

Innovation: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.

Conclusion: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.

目的:术后三周仍不能完成原发愈合的手术伤口称为术后难治性伤口。术后难愈伤口会给患者带来极大的身体和生活负担,严重影响患者的生活质量。研究血小板纤维蛋白血浆(PFP)对术后难治性伤口愈合的影响:方法:利用血常规和血液生化指标分析血小板纤维蛋白血浆的成分。收集使用 PFP 治疗后符合纳入标准的临床数据,并通过伤口愈合率和愈合天数评估 PFP 的疗效。接着,用 ELISA 分析了 PFP、PRP 和 PPP 中的生长因子含量,并应用 PFP 处理过的细胞研究 PFP 对成纤维细胞和内皮细胞功能的影响:PFP成分分析显示,PFP中血小板浓度与生理浓度无统计学差异。临床统计显示,PFP 对术后难治性伤口(四周伤口愈合率大于 90%)的治疗效果明显优于连续性伤口敷料。同时,我们的研究结果还证明,PFP 能通过上调 CD31 的表达水平显著增强血管生成,并改善肉芽组织厚度。活化的 PFP、PRP 和 PPP 可在体外持续释放生长因子,且 PRP 和 PFP 释放的生长因子量明显高于 PPP。体外研究表明,活性血小板可改善成纤维细胞和内皮细胞的细胞增殖、迁移、粘附和血管生成:创新:生理浓缩血小板血浆可促进伤口愈合并改善相关细胞功能。创新:生理浓缩血小板血浆可促进伤口愈合并改善相关细胞功能。制备了改良血小板血浆(可加速伤口愈合并增强成纤维细胞和内皮细胞的迁移和增殖),并分析了其对术后难治性伤口的临床疗效:结论:生理浓缩血小板血浆可促进伤口愈合并改善相关细胞功能。结论:生理学浓缩血小板血浆可促进伤口愈合,改善相关细胞功能。制备血小板血浆可大大减少备血量,对术后伤口具有良好的应用价值。血小板浓缩血浆可作为一种治疗选择,尤其是对术后难治性伤口。
{"title":"The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair.","authors":"Lu Fan, Ying Zhang, Xiankun Yin, Silu Chen, Pin Wu, Tianru Huyan, Ziyang Wang, Qun Ma, Hua Zhang, Wenhui Wang, Chunyan Gu, Lu Tie, Long Zhang","doi":"10.1007/s13770-024-00665-x","DOIUrl":"10.1007/s13770-024-00665-x","url":null,"abstract":"<p><strong>Objective: </strong>Surgical wounds that can't complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.</p><p><strong>Approach: </strong>The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.</p><p><strong>Results: </strong>PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate > 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.</p><p><strong>Innovation: </strong>Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.</p><p><strong>Conclusion: </strong>Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1255-1267"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study on iPSC-Associated Factors in the Generation of Hepatocytes. 关于生成肝细胞过程中 iPSC 相关因素的研究
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI: 10.1007/s13770-024-00674-w
Delger Bayarsaikhan, Govigerel Bayarsaikhan, Hyun A Kang, Su Bin Lee, So Hee Han, Teruo Okano, Kyungsook Kim, Bonghee Lee

Background: Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.

Methods: This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.

Results: Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 × 10 cells/cm of seeding density resulting in good morphology and functionality.

Conclusion: This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.

背景:肝细胞是肝脏的原始细胞,通过其内在功能维持肝脏的平衡,因此是肝组织工程学中极具吸引力的细胞来源。由于对肝脏捐献者的需求不断增加,目前正在研究多种方法来获得功能活跃的肝细胞。iPSCs 是替代细胞来源之一,作为生成肝细胞的一种工具,它显示出巨大的前景:本研究确定了与 iPSC 相关的因素是否会导致 iPSC 衍生的肝细胞样细胞发生变异。iPSCs的相关因素包括培养系统、iPSCs来源以及启动分化的细胞播种密度:我们的研究结果发现,在分化的肝细胞样细胞中,iPSC 存在依赖性差异。培养 iPSCs 所用的基质对细胞的形态、特征和多能基因(如 OCT4 和 SOX2)的表达有显著影响。这些特征反过来又对 iPSC 衍生的肝细胞样细胞的功能活性起着决定性作用。此外,细胞播种密度也是高效生成 iPSC 衍生肝细胞样细胞的一个重要因素,2- 4 × 10 cells/cm 的播种密度可产生良好的形态和功能:本研究为 iPSC 衍生肝细胞样细胞的有效分化方案提供了基本条件,包括细胞培养基、iPSC 来源和 iPSC 的播种密度。
{"title":"A Study on iPSC-Associated Factors in the Generation of Hepatocytes.","authors":"Delger Bayarsaikhan, Govigerel Bayarsaikhan, Hyun A Kang, Su Bin Lee, So Hee Han, Teruo Okano, Kyungsook Kim, Bonghee Lee","doi":"10.1007/s13770-024-00674-w","DOIUrl":"10.1007/s13770-024-00674-w","url":null,"abstract":"<p><strong>Background: </strong>Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.</p><p><strong>Methods: </strong>This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.</p><p><strong>Results: </strong>Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 × 10 cells/cm of seeding density resulting in good morphology and functionality.</p><p><strong>Conclusion: </strong>This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1245-1254"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells. 确定哪种静水压力机制可促进人类间充质干细胞的骨生成
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-12-01 Epub Date: 2024-08-27 DOI: 10.1007/s13770-024-00666-w
James R Henstock, Joshua C F A Price, Alicia J El Haj

Background: Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading.

Methods: Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro.

Results: Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts.

Conclusions: Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.

背景:骨的压缩加载会导致静水压力变化,这被认为是间充质干细胞(hMSCs)成骨分化的刺激因素。我们假设,间充质干细胞只有在循环静水压的幅度和频率超过临界阈值时才会适应分化,而临界阈值与同化骨负载的生理水平相对应:方法:我们使用气动-静水压生物反应器,对三维胶原水凝胶培养物中的人hMSCs施加静水压,每天1小时,持续28天,以确定哪种压力水平和频率可刺激体外成骨:结果:用0-280千帕、1赫兹的循环静水压刺激三维培养物,可使水凝胶中的矿化度高达75%(不含外源性生长因子),而静态培养或恒定高压(280千帕、0赫兹)、低频(0.05赫兹、280千帕)或低幅度(70千帕、1赫兹)刺激机制的变化则没有成骨效果(结论:静水压是一种有效的成骨机制,可促进成骨:静水压是将间充质干细胞分化为高活性成骨细胞的有效刺激,因此可能是转化细胞工程的多功能工具。我们已经证明,触发成骨所需的最小力和频率水平,即压力 "开关",与细胞在其原生间充质生态位中经历的生理力相对应。支撑这些效应的机械传导机制是进一步研究的主题。
{"title":"Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells.","authors":"James R Henstock, Joshua C F A Price, Alicia J El Haj","doi":"10.1007/s13770-024-00666-w","DOIUrl":"10.1007/s13770-024-00666-w","url":null,"abstract":"<p><strong>Background: </strong>Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading.</p><p><strong>Methods: </strong>Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro.</p><p><strong>Results: </strong>Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts.</p><p><strong>Conclusions: </strong>Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1141-1151"},"PeriodicalIF":4.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue engineering and regenerative medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1