Pub Date : 2024-10-01Epub Date: 2024-06-19DOI: 10.1007/s13770-024-00656-y
Min Ji Kim, Ye Jin Song, Tae Gyun Kwon, Jin Ho Lee, So Young Chun, Se Heang Oh
Background: Uncontrollable and widespread bleeding caused by surgery or sudden accidents can lead to death if not treated with appropriate hemostasis. To prevent excessive life-threatening bleeding, various hemostatic agents based on polymeric biomaterials with various additives for accelerated blood coagulation have been adopted in clinical fields. In particular, platelet-rich plasma (PRP), which contains many blood coagulation factors that can accelerate blood clot formation, is considered as one of the most effective hemostatic additives.
Methods: We investigated a PRP-embedded porous film using discarded (expired) PRP and a film with a leaf-stacked structure (FLSS), as a hemostatic agent to induce rapid hemostasis. The film, which contained an LSS on one side (PCL-FLSS), was fabricated by a simple heating-cooling technique using tetraglycol and polycaprolactone (PCL) film. Activated PRP was obtained by the thawing of frozen PRP at the end of its expiration date (the platelet cell membrane is disrupted during the freezing and thawing of PRP, thus releasing various coagulation factors) and embedded in the PCL-FLSS (PRP-FLSS).
Results: From in vitro and in vivo experiments using a rat hepatic bleeding model, it was recognized that PRP-FLSS is not only biocompatible but also significantly accelerates blood clotting and thus prevents rapid bleeding, probably due to a synergistic effect of the sufficient supply of various blood coagulants from activated PRP embedded in the LSS layer and the large surface area of the LSS itself.
Conclusion: The study suggests that PRP-FLSS, a combination of a porous polymer matrix with a unique morphology and discarded biofunctional resources, can be an advanced hemostatic agent as well as an upcycling platform to avoid the waste of biofunctional resources.
{"title":"Platelet-Rich Plasma-Embedded Porous Polycaprolactone Film with a Large Surface Area for Effective Hemostasis.","authors":"Min Ji Kim, Ye Jin Song, Tae Gyun Kwon, Jin Ho Lee, So Young Chun, Se Heang Oh","doi":"10.1007/s13770-024-00656-y","DOIUrl":"10.1007/s13770-024-00656-y","url":null,"abstract":"<p><strong>Background: </strong>Uncontrollable and widespread bleeding caused by surgery or sudden accidents can lead to death if not treated with appropriate hemostasis. To prevent excessive life-threatening bleeding, various hemostatic agents based on polymeric biomaterials with various additives for accelerated blood coagulation have been adopted in clinical fields. In particular, platelet-rich plasma (PRP), which contains many blood coagulation factors that can accelerate blood clot formation, is considered as one of the most effective hemostatic additives.</p><p><strong>Methods: </strong>We investigated a PRP-embedded porous film using discarded (expired) PRP and a film with a leaf-stacked structure (FLSS), as a hemostatic agent to induce rapid hemostasis. The film, which contained an LSS on one side (PCL-FLSS), was fabricated by a simple heating-cooling technique using tetraglycol and polycaprolactone (PCL) film. Activated PRP was obtained by the thawing of frozen PRP at the end of its expiration date (the platelet cell membrane is disrupted during the freezing and thawing of PRP, thus releasing various coagulation factors) and embedded in the PCL-FLSS (PRP-FLSS).</p><p><strong>Results: </strong>From in vitro and in vivo experiments using a rat hepatic bleeding model, it was recognized that PRP-FLSS is not only biocompatible but also significantly accelerates blood clotting and thus prevents rapid bleeding, probably due to a synergistic effect of the sufficient supply of various blood coagulants from activated PRP embedded in the LSS layer and the large surface area of the LSS itself.</p><p><strong>Conclusion: </strong>The study suggests that PRP-FLSS, a combination of a porous polymer matrix with a unique morphology and discarded biofunctional resources, can be an advanced hemostatic agent as well as an upcycling platform to avoid the waste of biofunctional resources.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"995-1005"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1007/s13770-024-00670-0
Nicole Gorbenko, John C Vaccaro, Ryan Fagan, Robert A Cerro, Jonah M Khorrami, Lucia Galindo, Nick Merna
Background: Vascular grafts are mainly composed of synthetic materials, but are prone to thrombosis and intimal hyperplasia at small diameters. Decellularized plant scaffolds have emerged that provide promising alternatives for tissue engineering. We previously developed robust, endothelialized small-diameter vessels from decellularized leatherleaf viburnum. This is the first study to precondition and analyze plant-based vessels under physiological fluid flow and pressure waveforms. Using decellularized leatherleaf viburnum as tissue-engineered grafts for implantation can have profound impacts on healthcare due to their biocompatibility and cost-effective production.
Methods: A novel perfusion bioreactor was designed, capable of accurately controlling fluid flow rate and pressure waveforms for preconditioning of small-diameter vascular grafts. A closed-loop system controlled pressure waveforms, mimicking physiological values of 50-120 mmHg at a frequency of 8.75 Hz for fluid flow reaching 5 mL/min. Plant-based vascular grafts were recellularized with endothelial and vascular smooth muscle cells and cultured for up to 3 weeks in this bioreactor. Cell density, scaffold structure and mechanics, thrombogenicity, and immunogenicity of grafts were evaluated.
Results: Bioreactor treatment with fluid flow significantly increased luminal endothelial cell density, while pressure waveforms reduced thrombus formation and maintained viable vascular smooth muscle cells within inner layers of grafts compared to static controls. Suture retention of grafts met transplantation standards and white cell viability was suitable for vascular remodeling.
Conclusion: Low thrombogenicity of endothelialized leatherleaf viburnum holds great potential for vascular repair. This study provides insight into benefits of conditioning plant-based materials with hemodynamic forces at higher frequencies that have not previously been investigated.
{"title":"Perfusion Bioreactor Conditioning of Small-diameter Plant-based Vascular Grafts.","authors":"Nicole Gorbenko, John C Vaccaro, Ryan Fagan, Robert A Cerro, Jonah M Khorrami, Lucia Galindo, Nick Merna","doi":"10.1007/s13770-024-00670-0","DOIUrl":"https://doi.org/10.1007/s13770-024-00670-0","url":null,"abstract":"<p><strong>Background: </strong>Vascular grafts are mainly composed of synthetic materials, but are prone to thrombosis and intimal hyperplasia at small diameters. Decellularized plant scaffolds have emerged that provide promising alternatives for tissue engineering. We previously developed robust, endothelialized small-diameter vessels from decellularized leatherleaf viburnum. This is the first study to precondition and analyze plant-based vessels under physiological fluid flow and pressure waveforms. Using decellularized leatherleaf viburnum as tissue-engineered grafts for implantation can have profound impacts on healthcare due to their biocompatibility and cost-effective production.</p><p><strong>Methods: </strong>A novel perfusion bioreactor was designed, capable of accurately controlling fluid flow rate and pressure waveforms for preconditioning of small-diameter vascular grafts. A closed-loop system controlled pressure waveforms, mimicking physiological values of 50-120 mmHg at a frequency of 8.75 Hz for fluid flow reaching 5 mL/min. Plant-based vascular grafts were recellularized with endothelial and vascular smooth muscle cells and cultured for up to 3 weeks in this bioreactor. Cell density, scaffold structure and mechanics, thrombogenicity, and immunogenicity of grafts were evaluated.</p><p><strong>Results: </strong>Bioreactor treatment with fluid flow significantly increased luminal endothelial cell density, while pressure waveforms reduced thrombus formation and maintained viable vascular smooth muscle cells within inner layers of grafts compared to static controls. Suture retention of grafts met transplantation standards and white cell viability was suitable for vascular remodeling.</p><p><strong>Conclusion: </strong>Low thrombogenicity of endothelialized leatherleaf viburnum holds great potential for vascular repair. This study provides insight into benefits of conditioning plant-based materials with hemodynamic forces at higher frequencies that have not previously been investigated.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-02DOI: 10.1007/s13770-024-00658-w
Jung Min Park, Seock Hwan Choi, Eun-Shil Lee, Sang-Il Gum, Sungkuk Hong, Dong Sun Kim, Man-Hoon Han, Soung-Hoon Lee, Ji Won Oh
Background: Tissue clearing enables deep imaging in various tissues by increasing the transparency of tissues, but there were limitations of immunostaining of the large-volume tissues such as the whole brain.
Methods: Here, we cleared and immune-stained whole mouse brain tissues using a novel clearing technique termed high-speed clearing and high-resolution staining (HCHS). We observed neural structures within the cleared brains using both a confocal microscope and a light-sheet fluorescence microscope (LSFM). The reconstructed 3D images were analyzed using a computational reconstruction algorithm.
Results: Various neural structures were well observed in three-dimensional (3D) images of the cleared brains from Gad-green fluorescent protein (GFP) mice and Thy 1-yellow fluorescent protein (YFP) mice. The intrinsic fluorescence signals of both transgenic mice were preserved after HCHS. In addition, large-scale 3D imaging of brains, immune-stained by the HCHS method using a mild detergent-based solution, allowed for the global topological analysis of several neuronal markers such as c-Fos, neuronal nuclear protein (NeuN), Microtubule-associated protein 2 (Map2), Tuj1, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) in various anatomical regions in the whole mouse brain tissues. Finally, through comparisons with various existing tissue clearing methodologies such as CUBIC, Visikol, and 3DISCO, it was confirmed that the HCHS methodology results in relatively less tissue deformation and higher fluorescence retention.
Conclusion: In conclusion, the development of 3D imaging based on novel tissue-clearing techniques (HCHS) will enable detailed spatial analysis of neural and vascular networks present within the brain.
{"title":"High-Speed Clearing and High-Resolution Staining for Analysis of Various Markers for Neurons and Vessels.","authors":"Jung Min Park, Seock Hwan Choi, Eun-Shil Lee, Sang-Il Gum, Sungkuk Hong, Dong Sun Kim, Man-Hoon Han, Soung-Hoon Lee, Ji Won Oh","doi":"10.1007/s13770-024-00658-w","DOIUrl":"10.1007/s13770-024-00658-w","url":null,"abstract":"<p><strong>Background: </strong>Tissue clearing enables deep imaging in various tissues by increasing the transparency of tissues, but there were limitations of immunostaining of the large-volume tissues such as the whole brain.</p><p><strong>Methods: </strong>Here, we cleared and immune-stained whole mouse brain tissues using a novel clearing technique termed high-speed clearing and high-resolution staining (HCHS). We observed neural structures within the cleared brains using both a confocal microscope and a light-sheet fluorescence microscope (LSFM). The reconstructed 3D images were analyzed using a computational reconstruction algorithm.</p><p><strong>Results: </strong>Various neural structures were well observed in three-dimensional (3D) images of the cleared brains from Gad-green fluorescent protein (GFP) mice and Thy 1-yellow fluorescent protein (YFP) mice. The intrinsic fluorescence signals of both transgenic mice were preserved after HCHS. In addition, large-scale 3D imaging of brains, immune-stained by the HCHS method using a mild detergent-based solution, allowed for the global topological analysis of several neuronal markers such as c-Fos, neuronal nuclear protein (NeuN), Microtubule-associated protein 2 (Map2), Tuj1, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) in various anatomical regions in the whole mouse brain tissues. Finally, through comparisons with various existing tissue clearing methodologies such as CUBIC, Visikol, and 3DISCO, it was confirmed that the HCHS methodology results in relatively less tissue deformation and higher fluorescence retention.</p><p><strong>Conclusion: </strong>In conclusion, the development of 3D imaging based on novel tissue-clearing techniques (HCHS) will enable detailed spatial analysis of neural and vascular networks present within the brain.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1037-1048"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-17DOI: 10.1007/s13770-024-00661-1
Se-Young Oh, Ha Yeong Kim, Soo Yeon Jung, Han Su Kim
Background: Otorhinolaryngology is a medical specialty that focuses on the clinical study and treatments of diseases within head and neck regions, specifically including the ear, nose, and throat (ENT), but excluding eyes and brain. These anatomical structures play significant roles in a person's daily life, including eating, speaking as well as facial appearance and expression, thus greatly impacting one's overall satisfaction and quality of life. Consequently, injuries to these regions can significantly impact a person's well-being, leading to extensive research in the field of tissue engineering and regenerative medicine over many years.
Methods: This chapter provides an overview of the anatomical characteristics of otorhinolaryngologic tissues and explores the tissue engineering and regenerative medicine research in otology (ear), rhinology (nose), facial bone, larynx, and trachea.
Results and conclusion: The integration of tissue engineering and regenerative medicine in otorhinolaryngology holds the promise of broadening the therapeutic choices for a wide range of conditions, ultimately improving quality of a patient's life.
{"title":"Tissue Engineering and Regenerative Medicine in the Field of Otorhinolaryngology.","authors":"Se-Young Oh, Ha Yeong Kim, Soo Yeon Jung, Han Su Kim","doi":"10.1007/s13770-024-00661-1","DOIUrl":"10.1007/s13770-024-00661-1","url":null,"abstract":"<p><strong>Background: </strong>Otorhinolaryngology is a medical specialty that focuses on the clinical study and treatments of diseases within head and neck regions, specifically including the ear, nose, and throat (ENT), but excluding eyes and brain. These anatomical structures play significant roles in a person's daily life, including eating, speaking as well as facial appearance and expression, thus greatly impacting one's overall satisfaction and quality of life. Consequently, injuries to these regions can significantly impact a person's well-being, leading to extensive research in the field of tissue engineering and regenerative medicine over many years.</p><p><strong>Methods: </strong>This chapter provides an overview of the anatomical characteristics of otorhinolaryngologic tissues and explores the tissue engineering and regenerative medicine research in otology (ear), rhinology (nose), facial bone, larynx, and trachea.</p><p><strong>Results and conclusion: </strong>The integration of tissue engineering and regenerative medicine in otorhinolaryngology holds the promise of broadening the therapeutic choices for a wide range of conditions, ultimately improving quality of a patient's life.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"969-984"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1007/s13770-024-00667-9
Merel Gansevoort, Corien Oostendorp, Linde F Bouwman, Dorien M Tiemessen, Paul J Geutjes, Wout F J Feitz, Toin H van Kuppevelt, Willeke F Daamen
Background: The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration.
Methods: We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks.
Results: COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization.
Conclusion: These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
{"title":"Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model.","authors":"Merel Gansevoort, Corien Oostendorp, Linde F Bouwman, Dorien M Tiemessen, Paul J Geutjes, Wout F J Feitz, Toin H van Kuppevelt, Willeke F Daamen","doi":"10.1007/s13770-024-00667-9","DOIUrl":"https://doi.org/10.1007/s13770-024-00667-9","url":null,"abstract":"<p><strong>Background: </strong>The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration.</p><p><strong>Methods: </strong>We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks.</p><p><strong>Results: </strong>COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization.</p><p><strong>Conclusion: </strong>These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1007/s13770-024-00666-w
James R Henstock, Joshua C F A Price, Alicia J El Haj
Background: Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading.
Methods: Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro.
Results: Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts.
Conclusions: Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.
{"title":"Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells.","authors":"James R Henstock, Joshua C F A Price, Alicia J El Haj","doi":"10.1007/s13770-024-00666-w","DOIUrl":"https://doi.org/10.1007/s13770-024-00666-w","url":null,"abstract":"<p><strong>Background: </strong>Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading.</p><p><strong>Methods: </strong>Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro.</p><p><strong>Results: </strong>Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts.</p><p><strong>Conclusions: </strong>Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-21DOI: 10.1007/s13770-024-00648-y
Junhao Koh, Junqing Liu, Chi Him Poon, Jun Kang, Mohammed S Basabrain, Lee Wei Lim, Chengfei Zhang
Background: Stem cell-based transplantation therapy holds promise for peripheral nerve injury treatment, but adult availability is limited. A cell culture protocol utilizing a small-molecule cocktail effectively reprogrammed stem cells from apical papilla (SCAPs) into neural progenitor cells, subsequently differentiating into neuron-like cells. This study aims to evaluate neural-induced SCAPs, with and without small-molecule cocktail, for sciatic nerve repair potential.
Methods: A scaffold-free cell sheet technique was used to construct a three-dimensional cell sheet. Subsequently, this cell sheet was carefully rolled into a tube and seamlessly inserted into a collagen conduit, which was then transplanted into a 5 mm sciatic nerve injury rat model. Functional sciatic nerve regeneration was evaluated via toe spread test, walking track analysis and gastrocnemius muscle weight. Additionally, degree of sciatic nerve regeneration was determined based on total amount of myelinated fibers.
Results: Small-molecule cocktail induced SCAPs enhanced motor function recovery, evident in improved sciatic function index and gastrocnemius muscle retention. We also observed better host myelinated fiber retention than undifferentiated SCAPs or neural-induced SCAPs without small-molecule cocktail. However, clusters of neuron-like cell bodies (surrounded by sparse myelinated fibers) were found in all cell sheet-implanted groups in the implantation region. This suggests that while the implanted cells likely survived transplantation, integration was poor and would likely hinder long-term recovery by occupying the space needed for host nerve fibers to project through.
Conclusion: Neural-induced SCAPs with small-molecule cocktail demonstrated promising benefits for nerve repair; further research is needed to improve its integration and optimize its potential for long-term recovery.
{"title":"Transplantation of Neural Progenitor Cells Derived from Stem Cells from Apical Papilla Through Small-Molecule Induction in a Rat Model of Sciatic Nerve Injury.","authors":"Junhao Koh, Junqing Liu, Chi Him Poon, Jun Kang, Mohammed S Basabrain, Lee Wei Lim, Chengfei Zhang","doi":"10.1007/s13770-024-00648-y","DOIUrl":"10.1007/s13770-024-00648-y","url":null,"abstract":"<p><strong>Background: </strong>Stem cell-based transplantation therapy holds promise for peripheral nerve injury treatment, but adult availability is limited. A cell culture protocol utilizing a small-molecule cocktail effectively reprogrammed stem cells from apical papilla (SCAPs) into neural progenitor cells, subsequently differentiating into neuron-like cells. This study aims to evaluate neural-induced SCAPs, with and without small-molecule cocktail, for sciatic nerve repair potential.</p><p><strong>Methods: </strong>A scaffold-free cell sheet technique was used to construct a three-dimensional cell sheet. Subsequently, this cell sheet was carefully rolled into a tube and seamlessly inserted into a collagen conduit, which was then transplanted into a 5 mm sciatic nerve injury rat model. Functional sciatic nerve regeneration was evaluated via toe spread test, walking track analysis and gastrocnemius muscle weight. Additionally, degree of sciatic nerve regeneration was determined based on total amount of myelinated fibers.</p><p><strong>Results: </strong>Small-molecule cocktail induced SCAPs enhanced motor function recovery, evident in improved sciatic function index and gastrocnemius muscle retention. We also observed better host myelinated fiber retention than undifferentiated SCAPs or neural-induced SCAPs without small-molecule cocktail. However, clusters of neuron-like cell bodies (surrounded by sparse myelinated fibers) were found in all cell sheet-implanted groups in the implantation region. This suggests that while the implanted cells likely survived transplantation, integration was poor and would likely hinder long-term recovery by occupying the space needed for host nerve fibers to project through.</p><p><strong>Conclusion: </strong>Neural-induced SCAPs with small-molecule cocktail demonstrated promising benefits for nerve repair; further research is needed to improve its integration and optimize its potential for long-term recovery.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"867-879"},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-08DOI: 10.1007/s13770-024-00650-4
V E Getova, E Orozco-García, S Palmers, G Krenning, R Narvaez-Sanchez, M C Harmsen
Background: The extracellular vesicles (EVs) secreted by adipose tissue-derived stromal cells (ASC) are microenvironment modulators in tissue regeneration by releasing their molecular cargo, including miRNAs. However, the influence of ASC-derived extracellular vesicles (ASC-EVs) on endothelial cells (ECs) and vascularisation is poorly understood. The present study aimed to determine the pro-angiogenic effects of ASC-EVs and explore their miRNA profile.
Methods: EVs were isolated from normoxic and hypoxic cultured ASC conditioned culture medium. The miRNA expression profile was determined by miRseq, and EV markers were determined by Western blot and immunofluorescence staining. The uptake dynamics of fluorescently labelled EVs were monitored for 24 h. ASC-EVs' pro-angiogenic effect was assessed by sprouting ex vivo rat aorta rings in left ventricular-decellularized extracellular matrix (LV dECM) hydrogel or basement membrane hydrogel (Geltrex®).
Results: ASC-EVs augmented vascular network formation by aorta rings. The vascular network topology and stability were influenced in a hydrogel scaffold-dependent fashion. The ASC-EVs were enriched for several miRNA families/clusters, including Let-7 and miR-23/27/24. The miRNA-1290 was the highest enriched non-clustered miRNA, accounting for almost 20% of all reads in hypoxia EVs.
Conclusion: Our study revealed that ASC-EVs augment in vitro and ex vivo vascularisation, likely due to the enriched pro-angiogenic miRNAs in EVs, particularly miR-1290. Our results show promise for regenerative and revascularisation therapies based on ASC-EV-loaded ECM hydrogels.
{"title":"Extracellular Vesicles from Adipose Tissue-Derived Stromal Cells Stimulate Angiogenesis in a Scaffold-Dependent Fashion.","authors":"V E Getova, E Orozco-García, S Palmers, G Krenning, R Narvaez-Sanchez, M C Harmsen","doi":"10.1007/s13770-024-00650-4","DOIUrl":"10.1007/s13770-024-00650-4","url":null,"abstract":"<p><strong>Background: </strong>The extracellular vesicles (EVs) secreted by adipose tissue-derived stromal cells (ASC) are microenvironment modulators in tissue regeneration by releasing their molecular cargo, including miRNAs. However, the influence of ASC-derived extracellular vesicles (ASC-EVs) on endothelial cells (ECs) and vascularisation is poorly understood. The present study aimed to determine the pro-angiogenic effects of ASC-EVs and explore their miRNA profile.</p><p><strong>Methods: </strong>EVs were isolated from normoxic and hypoxic cultured ASC conditioned culture medium. The miRNA expression profile was determined by miRseq, and EV markers were determined by Western blot and immunofluorescence staining. The uptake dynamics of fluorescently labelled EVs were monitored for 24 h. ASC-EVs' pro-angiogenic effect was assessed by sprouting ex vivo rat aorta rings in left ventricular-decellularized extracellular matrix (LV dECM) hydrogel or basement membrane hydrogel (Geltrex®).</p><p><strong>Results: </strong>ASC-EVs augmented vascular network formation by aorta rings. The vascular network topology and stability were influenced in a hydrogel scaffold-dependent fashion. The ASC-EVs were enriched for several miRNA families/clusters, including Let-7 and miR-23/27/24. The miRNA-1290 was the highest enriched non-clustered miRNA, accounting for almost 20% of all reads in hypoxia EVs.</p><p><strong>Conclusion: </strong>Our study revealed that ASC-EVs augment in vitro and ex vivo vascularisation, likely due to the enriched pro-angiogenic miRNAs in EVs, particularly miR-1290. Our results show promise for regenerative and revascularisation therapies based on ASC-EV-loaded ECM hydrogels.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"881-895"},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-15DOI: 10.1007/s13770-024-00659-9
Zhixiang Li, Tao Zhou, Zhengqi Bao, Min Wu, Yingji Mao
Background: In the intricate pathological milieu post-spinal cord injury (SCI), neural stem cells (NSCs) frequently differentiate into astrocytes rather than neurons, significantly limiting nerve repair. Hence, the utilization of biocompatible hydrogel scaffolds in conjunction with exogenous factors to foster the differentiation of NSCs into neurons has the potential for SCI repair.
Methods: In this study, we engineered a 3D-printed porous SilMA hydrogel scaffold (SM) supplemented with pH-/temperature-responsive paclitaxel nanoparticles (PTX-NPs). We analyzed the biocompatibility of a specific concentration of PTX-NPs and its effect on NSC differentiation. We also established an SCI model to explore the ability of composite scaffolds for in vivo nerve repair.
Results: The physical adsorption of an optimal PTX-NPs dosage can simultaneously achieve pH/temperature-responsive release and commendable biocompatibility, primarily reflected in cell viability, morphology, and proliferation. An appropriate PTX-NPs concentration can steer NSC differentiation towards neurons over astrocytes, a phenomenon that is also efficacious in simulated injury settings. Immunoblotting analysis confirmed that PTX-NPs-induced NSC differentiation occurred via the MAPK/ERK signaling cascade. The repair of hemisected SCI in rats demonstrated that the composite scaffold augmented neuronal regeneration at the injury site, curtailed astrocyte and fibrotic scar production, and enhanced motor function recovery in rat hind limbs.
Conclusion: The scaffold's porous architecture serves as a cellular and drug carrier, providing a favorable microenvironment for nerve regeneration. These findings corroborate that this strategy amplifies neuronal expression within the injury milieu, significantly aiding in SCI repair.
{"title":"The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair.","authors":"Zhixiang Li, Tao Zhou, Zhengqi Bao, Min Wu, Yingji Mao","doi":"10.1007/s13770-024-00659-9","DOIUrl":"10.1007/s13770-024-00659-9","url":null,"abstract":"<p><strong>Background: </strong>In the intricate pathological milieu post-spinal cord injury (SCI), neural stem cells (NSCs) frequently differentiate into astrocytes rather than neurons, significantly limiting nerve repair. Hence, the utilization of biocompatible hydrogel scaffolds in conjunction with exogenous factors to foster the differentiation of NSCs into neurons has the potential for SCI repair.</p><p><strong>Methods: </strong>In this study, we engineered a 3D-printed porous SilMA hydrogel scaffold (SM) supplemented with pH-/temperature-responsive paclitaxel nanoparticles (PTX-NPs). We analyzed the biocompatibility of a specific concentration of PTX-NPs and its effect on NSC differentiation. We also established an SCI model to explore the ability of composite scaffolds for in vivo nerve repair.</p><p><strong>Results: </strong>The physical adsorption of an optimal PTX-NPs dosage can simultaneously achieve pH/temperature-responsive release and commendable biocompatibility, primarily reflected in cell viability, morphology, and proliferation. An appropriate PTX-NPs concentration can steer NSC differentiation towards neurons over astrocytes, a phenomenon that is also efficacious in simulated injury settings. Immunoblotting analysis confirmed that PTX-NPs-induced NSC differentiation occurred via the MAPK/ERK signaling cascade. The repair of hemisected SCI in rats demonstrated that the composite scaffold augmented neuronal regeneration at the injury site, curtailed astrocyte and fibrotic scar production, and enhanced motor function recovery in rat hind limbs.</p><p><strong>Conclusion: </strong>The scaffold's porous architecture serves as a cellular and drug carrier, providing a favorable microenvironment for nerve regeneration. These findings corroborate that this strategy amplifies neuronal expression within the injury milieu, significantly aiding in SCI repair.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"809-827"},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-14DOI: 10.1007/s13770-024-00647-z
Seong-Dae Yoon, Bum-Jin Shim, Seung-Hoon Baek, Shin-Yoon Kim
Background: Although core decompression (CD) with stem cell for the treatment of osteonecrosis of the femoral head (ONFH) showed promising results in many reports, the efficacy remains uncertain. We aimed to evaluate the efficacy of CD with culture-expanded autologous bone marrow-derived mesenchymal stem cell (BM-MSC) implantation in early stage ONFH.
Methods: A total of 18 patients (22 hips) with ONFH who underwent CD with culture-expanded BM-MSC implantation from September 2013 to July 2020 were retrospectively reviewed. The median age was 35.0 years [interquartile range (IQR), 28.5-42.0], and the median follow-up period was 4.0 years (IQR, 2.0-5.3). The median number of MSCs was 1.06 × 108. To evaluate radiographic and clinical outcomes, Association Research Circulation Osseous (ARCO) classifications, Japanese Investigation Committee classification, combined necrotic angle (CNA) visual analogue scale (VAS) and Harris Hip Score (HHS) were checked at each follow-up.
Results: The preoperative stage of ONFH was ARCO 2 in 14 hips and ARCO 3a in 8 hips. The ARCO staging was maintained in 7 hips in ARCO 2 and 4 hips in ARCO 3a. The radiographic failure rate of ARCO 2 and 3a was 14.3 and 50%, respectively. Furthermore, CNA decreased to more than 20° in 6 hips (four were ARCO 2 and two were ARCO 3a).There was no significant difference in the VAS and HHS (P = 0.052 and P = 0.535, respectively). Total hip arthroplasty was performed in 4 hips.
Conclusion: CD with culture-expanded autologous BM-MSCs showed promising results for the treatment of early stage ONFH.
{"title":"Implantation of Culture-Expanded Bone Marrow Derived Mesenchymal Stromal Cells for Treatment of Osteonecrosis of the Femoral Head.","authors":"Seong-Dae Yoon, Bum-Jin Shim, Seung-Hoon Baek, Shin-Yoon Kim","doi":"10.1007/s13770-024-00647-z","DOIUrl":"10.1007/s13770-024-00647-z","url":null,"abstract":"<p><strong>Background: </strong>Although core decompression (CD) with stem cell for the treatment of osteonecrosis of the femoral head (ONFH) showed promising results in many reports, the efficacy remains uncertain. We aimed to evaluate the efficacy of CD with culture-expanded autologous bone marrow-derived mesenchymal stem cell (BM-MSC) implantation in early stage ONFH.</p><p><strong>Methods: </strong>A total of 18 patients (22 hips) with ONFH who underwent CD with culture-expanded BM-MSC implantation from September 2013 to July 2020 were retrospectively reviewed. The median age was 35.0 years [interquartile range (IQR), 28.5-42.0], and the median follow-up period was 4.0 years (IQR, 2.0-5.3). The median number of MSCs was 1.06 × 10<sup>8</sup>. To evaluate radiographic and clinical outcomes, Association Research Circulation Osseous (ARCO) classifications, Japanese Investigation Committee classification, combined necrotic angle (CNA) visual analogue scale (VAS) and Harris Hip Score (HHS) were checked at each follow-up.</p><p><strong>Results: </strong>The preoperative stage of ONFH was ARCO 2 in 14 hips and ARCO 3a in 8 hips. The ARCO staging was maintained in 7 hips in ARCO 2 and 4 hips in ARCO 3a. The radiographic failure rate of ARCO 2 and 3a was 14.3 and 50%, respectively. Furthermore, CNA decreased to more than 20° in 6 hips (four were ARCO 2 and two were ARCO 3a).There was no significant difference in the VAS and HHS (P = 0.052 and P = 0.535, respectively). Total hip arthroplasty was performed in 4 hips.</p><p><strong>Conclusion: </strong>CD with culture-expanded autologous BM-MSCs showed promising results for the treatment of early stage ONFH.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"929-941"},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}