Pub Date : 2024-10-01Epub Date: 2024-06-25DOI: 10.1080/15376516.2024.2361070
Asma Hamzaoui, Amal Feki, Malek Eleroui, Zakaria Boujhoud, Rim Kallel, Christian Magné, Nathalie Deschamps, Amina Nasri, Jean Marc Pujo, Hatem Kallel, Ibtissem Ben Amara
This study aimed to investigate the effects of copper (CuSO4) and zinc (ZnSO4) overload on male reproductive toxicity and the potential of a polysaccharide extracted from green alga Chaetomorpha linum (PS) in mitigating their toxicities. Adult male mice strain of 25 ± 2 g of weight was subdivided into eight groups. Group 1 served as control; group 2 received PS (200 mg/kg), and groups 3 and 4 received intraperitoneally zinc (60 mg/kg b.w) and copper (33 mg/kg b.w), respectively. Group 5 received both zinc (60 mg/kg b.w) and copper (33 mg/kg b.w), group 6 received zinc (60 mg/kg b.w) associated with PS (200 mg/kg), group 7 received copper (33 mg/kg b.w) associated with PS (200 mg/kg), and group 8 received zinc (60 mg/kg b.w) and copper (33 mg/kg b.w) associated with PS (200 mg/kg). Results suggested that ZnSO4 and CuSO4 significantly decreased the functional sperm parameters. Furthermore, extended exposure to these elements increased oxidative stress biomarkers, including malondialdehyde (MDA) as a measure of lipid peroxidation and advanced oxidation protein products (AOPP) indicating protein oxidative damage. This process also reduces the activity of antioxidant enzymes such as glutathione (GSH) and glutathione peroxidase (GPx), which neutralize and catalyze free radicals. Histopathological changes in mice testis were also studied. However, the co-treatments with PS significantly reduced these effects and promoted the reproductive parameters in male mice. In conclusion, PS exhibited protective effects against zinc and copper-induced reproductive toxicity, making it a potential adjuvant treatment for testicular toxicity.
{"title":"Protective effects of polysaccharide extracted from green alga <i>Chaetomorpha linum</i> against zinc and copper-induced testicular toxicity in male mice.","authors":"Asma Hamzaoui, Amal Feki, Malek Eleroui, Zakaria Boujhoud, Rim Kallel, Christian Magné, Nathalie Deschamps, Amina Nasri, Jean Marc Pujo, Hatem Kallel, Ibtissem Ben Amara","doi":"10.1080/15376516.2024.2361070","DOIUrl":"10.1080/15376516.2024.2361070","url":null,"abstract":"<p><p>This study aimed to investigate the effects of copper (CuSO<sub>4</sub>) and zinc (ZnSO<sub>4</sub>) overload on male reproductive toxicity and the potential of a polysaccharide extracted from green alga <i>Chaetomorpha linum</i> (PS) in mitigating their toxicities. Adult male mice strain of 25 ± 2 g of weight was subdivided into eight groups. Group 1 served as control; group 2 received PS (200 mg/kg), and groups 3 and 4 received intraperitoneally zinc (60 mg/kg b.w) and copper (33 mg/kg b.w), respectively. Group 5 received both zinc (60 mg/kg b.w) and copper (33 mg/kg b.w), group 6 received zinc (60 mg/kg b.w) associated with PS (200 mg/kg), group 7 received copper (33 mg/kg b.w) associated with PS (200 mg/kg), and group 8 received zinc (60 mg/kg b.w) and copper (33 mg/kg b.w) associated with PS (200 mg/kg). Results suggested that ZnSO<sub>4</sub> and CuSO<sub>4</sub> significantly decreased the functional sperm parameters. Furthermore, extended exposure to these elements increased oxidative stress biomarkers, including malondialdehyde (MDA) as a measure of lipid peroxidation and advanced oxidation protein products (AOPP) indicating protein oxidative damage. This process also reduces the activity of antioxidant enzymes such as glutathione (GSH) and glutathione peroxidase (GPx), which neutralize and catalyze free radicals. Histopathological changes in mice testis were also studied. However, the co-treatments with PS significantly reduced these effects and promoted the reproductive parameters in male mice. In conclusion, PS exhibited protective effects against zinc and copper-induced reproductive toxicity, making it a potential adjuvant treatment for testicular toxicity.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"897-907"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fenugreek plant (Trigonella foenum-graecum) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the in vitro glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro® was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro® as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro®, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro® boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.
{"title":"Fenfuro®-mediated arrest in the formation of protein-methyl glyoxal adducts: a new dimension in the anti-hyperglycemic potential of a novel fenugreek seed extract.","authors":"Samudra Prosad Banik, Pawan Kumar, Debasis Bagchi, Souradip Paul, Apurva Goel, Manashi Bagchi, Sanjoy Chakraborty","doi":"10.1080/15376516.2024.2358520","DOIUrl":"10.1080/15376516.2024.2358520","url":null,"abstract":"<p><p>The fenugreek plant (<i>Trigonella foenum</i>-<i>graecum</i>) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the <i>in vitro</i> glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro<sup>®</sup> was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro<sup>®</sup> as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro<sup>®</sup>, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro<sup>®</sup> boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"877-885"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-18DOI: 10.1080/15376516.2024.2360051
Therese Featherston, Shaya Helem, Leon C D Smyth, Mark B Hampton, Martina Paumann-Page
The ability to assess cell proliferation and viability is essential for assessing new drug treatments, particularly in cancer drug discovery. This study describes a new method that uses a plate reader digital microscopy cell imaging and analysis system to assess cell proliferation and viability. This imaging system utilizes high throughput fluorescence microscopy with two fluorescent probes: cell membrane-impermeable SYTOX green and nuclear binding Hoechst-33342. Here we compare this technology to other known viability assays, namely: propidium iodide (PI)-based flow cytometry, and sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) based plate reader assays. These methods were assessed based on their effectiveness in detecting the cell numbers of two adherent cell lines and one suspension cell line. Automated cell imaging was most accurate at measuring cell number in both adherent and suspension cell lines. The PI-based flow cytometry method was more difficult to use with adherent cells, while the SRB and MTT assays had difficulties when monitoring cells in suspension. Despite these challenges, it was possible to obtain similar results when quantifying the effect of cytotoxic compounds. This study demonstrates that the digital microscopy automated cell imaging system is an effective method for assessing cell proliferation and the cytotoxic effect of compounds on both adherent and suspension cell lines.
{"title":"Comparing automated cell imaging with conventional methods of measuring cell proliferation and viability.","authors":"Therese Featherston, Shaya Helem, Leon C D Smyth, Mark B Hampton, Martina Paumann-Page","doi":"10.1080/15376516.2024.2360051","DOIUrl":"10.1080/15376516.2024.2360051","url":null,"abstract":"<p><p>The ability to assess cell proliferation and viability is essential for assessing new drug treatments, particularly in cancer drug discovery. This study describes a new method that uses a plate reader digital microscopy cell imaging and analysis system to assess cell proliferation and viability. This imaging system utilizes high throughput fluorescence microscopy with two fluorescent probes: cell membrane-impermeable SYTOX green and nuclear binding Hoechst-33342. Here we compare this technology to other known viability assays, namely: propidium iodide (PI)-based flow cytometry, and sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) based plate reader assays. These methods were assessed based on their effectiveness in detecting the cell numbers of two adherent cell lines and one suspension cell line. Automated cell imaging was most accurate at measuring cell number in both adherent and suspension cell lines. The PI-based flow cytometry method was more difficult to use with adherent cells, while the SRB and MTT assays had difficulties when monitoring cells in suspension. Despite these challenges, it was possible to obtain similar results when quantifying the effect of cytotoxic compounds. This study demonstrates that the digital microscopy automated cell imaging system is an effective method for assessing cell proliferation and the cytotoxic effect of compounds on both adherent and suspension cell lines.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"886-896"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-10DOI: 10.1080/15376516.2024.2364191
Xiaofei Xu, Jingde Li, Mingjun Liu, Baoyan Zhang
In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1β, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (p < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (p < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (p < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1β, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.
{"title":"Neuroprotective effect of marrubiin against MPTP-induced experimental Parkinson's disease in male wistar rats.","authors":"Xiaofei Xu, Jingde Li, Mingjun Liu, Baoyan Zhang","doi":"10.1080/15376516.2024.2364191","DOIUrl":"10.1080/15376516.2024.2364191","url":null,"abstract":"<p><p>In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1β, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (<i>p</i> < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (<i>p</i> < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (<i>p</i> < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1β, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"908-919"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-23DOI: 10.1080/15376516.2024.2356184
C Hoeffner, F Worek, N Amend
Organophosphate (OP) poisoning, both accidental and with suicidal intent, is a global medical challenge. While the primary toxicity of these pesticides is based on the inhibition of acetylcholinesterase (AChE), case reports describe patients developing OP-mediated renal insufficiency. We set out to investigate possible pathomechanisms utilizing rat precision-cut kidney slices (PCKS). Depending on the method of investigation, PCKS were observed for a maximum of 10 days. PCKS exposed to OP compounds (malaoxon, malathion, paraoxon, parathion) showed a dose-dependent loss of viability and a reduction of total protein content over the course of 10 days. A concentration of 500 µM OP showed the most differences between OP compounds. After two days of incubation parathion showed a significantly lower level of viability than malathion. The respective effects of paraoxon and malaoxon were not significantly different from the control. However, effects of OP were only observed in concentrations exceeding those that were needed to achieve significant AChE inhibition in rat kidney tissue. In addition, we observed histological changes, without inducing LDH leakage. Overall, results suggest that OP exert effects in kidney tissue, that exceed those expected from the sole inhibition of AChE and vary between compounds. Without signs of necrosis, findings call for studies that address other possible pathomechanisms, including inflammatory response, oxidative stress or activation of apoptosis to further understand the nephrotoxicity of OP compounds. Monitoring oxon concentration over time, we demonstrated reduced enzyme-inhibiting properties in the presence of PCKS, suggesting interactions between OP compound and kidney tissue.
有机磷(OP)中毒,包括意外中毒和自杀性中毒,是一项全球性的医学挑战。虽然这些杀虫剂的主要毒性是基于对乙酰胆碱酯酶(AChE)的抑制,但也有病例报告描述了由 OP 引起的肾功能不全。我们利用大鼠精切肾切片(PCKS)研究了可能的病理机制。根据不同的调查方法,我们对 PCKS 进行了最长 10 天的观察。暴露于 OP 化合物(马拉松、马拉硫磷、对氧松、对硫磷)的 PCKS 在 10 天的过程中显示出与剂量相关的活力丧失和总蛋白含量降低。浓度为 500 µM OP 的 OP 化合物之间的差异最大。培养两天后,对硫磷的活力明显低于马拉硫磷。对硫磷和马拉硫磷各自的效果与对照组没有明显差异。不过,只有在浓度超过对大鼠肾脏组织中 AChE 产生显著抑制作用所需的浓度时,才能观察到 OP 的作用。此外,我们还观察到组织学上的变化,但没有诱导 LDH 泄漏。总之,研究结果表明,OP 对肾脏组织的影响超出了单纯抑制 AChE 的预期,而且不同化合物的影响也不尽相同。在没有坏死迹象的情况下,研究结果要求研究其他可能的病理机制,包括炎症反应、氧化应激或细胞凋亡的激活,以进一步了解 OP 化合物的肾毒性。随着时间的推移,我们对氧杂蒽醌浓度进行了监测,结果表明在 PCKS 存在的情况下,酶抑制特性降低,这表明 OP 化合物与肾组织之间存在相互作用。
{"title":"Effects of organophosphates on precision-cut kidney slices.","authors":"C Hoeffner, F Worek, N Amend","doi":"10.1080/15376516.2024.2356184","DOIUrl":"10.1080/15376516.2024.2356184","url":null,"abstract":"<p><p>Organophosphate (OP) poisoning, both accidental and with suicidal intent, is a global medical challenge. While the primary toxicity of these pesticides is based on the inhibition of acetylcholinesterase (AChE), case reports describe patients developing OP-mediated renal insufficiency. We set out to investigate possible pathomechanisms utilizing rat precision-cut kidney slices (PCKS). Depending on the method of investigation, PCKS were observed for a maximum of 10 days. PCKS exposed to OP compounds (malaoxon, malathion, paraoxon, parathion) showed a dose-dependent loss of viability and a reduction of total protein content over the course of 10 days. A concentration of 500 µM OP showed the most differences between OP compounds. After two days of incubation parathion showed a significantly lower level of viability than malathion. The respective effects of paraoxon and malaoxon were not significantly different from the control. However, effects of OP were only observed in concentrations exceeding those that were needed to achieve significant AChE inhibition in rat kidney tissue. In addition, we observed histological changes, without inducing LDH leakage. Overall, results suggest that OP exert effects in kidney tissue, that exceed those expected from the sole inhibition of AChE and vary between compounds. Without signs of necrosis, findings call for studies that address other possible pathomechanisms, including inflammatory response, oxidative stress or activation of apoptosis to further understand the nephrotoxicity of OP compounds. Monitoring oxon concentration over time, we demonstrated reduced enzyme-inhibiting properties in the presence of PCKS, suggesting interactions between OP compound and kidney tissue.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"855-866"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-15DOI: 10.1080/15376516.2024.2358348
Betul Yalcın, Gozde Ozge Onder, Ozge Goktepe, Pınar Alisan Suna, Ozge Cengiz Mat, Eda Koseoglu, Emre Cetindag, Munevver Baran, Nazmiye Bitgen, Özlem Öz Gergı N, Arzu Yay
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
{"title":"Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats.","authors":"Betul Yalcın, Gozde Ozge Onder, Ozge Goktepe, Pınar Alisan Suna, Ozge Cengiz Mat, Eda Koseoglu, Emre Cetindag, Munevver Baran, Nazmiye Bitgen, Özlem Öz Gergı N, Arzu Yay","doi":"10.1080/15376516.2024.2358348","DOIUrl":"10.1080/15376516.2024.2358348","url":null,"abstract":"<p><p>Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"867-876"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-22DOI: 10.1080/15376516.2024.2353887
Gul Sahika Gokdemir, Ugur Seker, Berjan Demirtas, Seyhan Taskin
Acute carbon monoxide (CO) poisoning may cause liver damage and liver dysfunction. Therefore, in this study, we aimed to compare the efficiency of normobaric oxygen (NBO) and high-flow nasal cannula oxygen (HFNCO) treatments on liver injury. For that purpose, 28 male Wistar albino rats were divided into four groups (Control, CO, CO + NBO, and CO + HFNCO). The control group was allowed to breath room air for 30 min. Acute CO poisoning in CO, CO + NBO, CO + HFNCO was induced by CO exposure for 30 min. Thereafter, NBO group received 100% NBO with reservoir mask for 30 min. HFNCO group received high-flow oxygen through nasal cannula for 30 min. At the end of the experiment, all animals were sacrificed by cardiac puncture under anesthesia. Serum liver function tests were measured. Liver tissue total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels, tissue histomorphology and immunoexpression levels of Bax, Caspase 3, TNF-α, IL-1β, and NF-κB were also examined. Our observations indicated that acute CO poisoning caused significant increases in blood COHb, serum aminotransferase (AST), alanine aminotransferase (ALT0, alkaline phosphatase (ALP), total protein, albumin, and globulin levels but a decrease in albumin to globulin ratio (all, p < 0.05). Furthermore, acute CO poisoning significantly increased the OSI value, and the immunoexpresssion of Bax, Caspase 3, TNF-α, IL-1β, and NF-κB in liver tissue (all, p < 0.05). These pathological changes in serum and liver tissue were alleviated through both of the treatment methods. In conclusion, both the NBO and HFNCO treatments were beneficial to alleviate the acute CO poisoning associated with liver injury and dysfunction.
{"title":"Effects of acute carbon monoxide poisoning on liver damage and comparisons of related oxygen therapies in a rat model.","authors":"Gul Sahika Gokdemir, Ugur Seker, Berjan Demirtas, Seyhan Taskin","doi":"10.1080/15376516.2024.2353887","DOIUrl":"10.1080/15376516.2024.2353887","url":null,"abstract":"<p><p>Acute carbon monoxide (CO) poisoning may cause liver damage and liver dysfunction. Therefore, in this study, we aimed to compare the efficiency of normobaric oxygen (NBO) and high-flow nasal cannula oxygen (HFNCO) treatments on liver injury. For that purpose, 28 male Wistar albino rats were divided into four groups (Control, CO, CO + NBO, and CO + HFNCO). The control group was allowed to breath room air for 30 min. Acute CO poisoning in CO, CO + NBO, CO + HFNCO was induced by CO exposure for 30 min. Thereafter, NBO group received 100% NBO with reservoir mask for 30 min. HFNCO group received high-flow oxygen through nasal cannula for 30 min. At the end of the experiment, all animals were sacrificed by cardiac puncture under anesthesia. Serum liver function tests were measured. Liver tissue total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels, tissue histomorphology and immunoexpression levels of Bax, Caspase 3, TNF-α, IL-1β, and NF-κB were also examined. Our observations indicated that acute CO poisoning caused significant increases in blood COHb, serum aminotransferase (AST), alanine aminotransferase (ALT0, alkaline phosphatase (ALP), total protein, albumin, and globulin levels but a decrease in albumin to globulin ratio (all, <i>p</i> < 0.05). Furthermore, acute CO poisoning significantly increased the OSI value, and the immunoexpresssion of Bax, Caspase 3, TNF-α, IL-1β, and NF-κB in liver tissue (all, <i>p</i> < 0.05). These pathological changes in serum and liver tissue were alleviated through both of the treatment methods. In conclusion, both the NBO and HFNCO treatments were beneficial to alleviate the acute CO poisoning associated with liver injury and dysfunction.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"845-854"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-08DOI: 10.1080/15376516.2024.2365431
Esraa M Zakaria, Ebaa Mohammed, Amira Ebrahim Alsemeh, Asmaa Monir Eltaweel, Rania A Elrashidy
For economic purposes, cooking oil is repeatedly heated in food preparation, which imposes serious health threats. This study investigated the detrimental effects of multiple-heated cooking oil (MHO) on hepatic and renal tissues with particular focusing on cellular senescence (CS), and the potential regenerative capacity of oleuropein (OLE). Adult male rats were fed MHO-enriched diet for 8 weeks and OLE (50 mg/kg, PO) was administered daily for the last four weeks. Liver and kidney functions and oxidative stress markers were measured. Cell cycle markers p53, p21, cyclin D, and proliferating cell nuclear antigen (PCNA) were evaluated in hepatic and renal tissues. Tumor necrosis factor-α (TNF-α) and Bax were assessed by immunohistochemistry. General histology and collagen deposition were also examined. MHO disturbed hepatic and renal structures and functions. MHO-fed rats showed increased oxidative stress, TNF-α, Bax, and fibrosis in liver and kidney tissues. MHO also enhanced the renal and hepatic expression of p53, p21, cyclin D and PCNA. On the contrary, OLE mitigated MHO-induced oxidative stress, inflammatory burden, apoptotic and fibrotic changes. OLE also suppressed CS and preserved kidney and liver functions. Collectively, OLE displays marked regenerative capacity against MHO-induced hepatic and renal CS, via its potent antioxidant and anti-inflammatory effects.
{"title":"Multiple-heated cooking oil promotes early hepatic and renal senescence in adult male rats: the potential regenerative capacity of oleuropein.","authors":"Esraa M Zakaria, Ebaa Mohammed, Amira Ebrahim Alsemeh, Asmaa Monir Eltaweel, Rania A Elrashidy","doi":"10.1080/15376516.2024.2365431","DOIUrl":"10.1080/15376516.2024.2365431","url":null,"abstract":"<p><p>For economic purposes, cooking oil is repeatedly heated in food preparation, which imposes serious health threats. This study investigated the detrimental effects of multiple-heated cooking oil (MHO) on hepatic and renal tissues with particular focusing on cellular senescence (CS), and the potential regenerative capacity of oleuropein (OLE). Adult male rats were fed MHO-enriched diet for 8 weeks and OLE (50 mg/kg, PO) was administered daily for the last four weeks. Liver and kidney functions and oxidative stress markers were measured. Cell cycle markers p53, p21, cyclin D, and proliferating cell nuclear antigen (PCNA) were evaluated in hepatic and renal tissues. Tumor necrosis factor-α (TNF-α) and Bax were assessed by immunohistochemistry. General histology and collagen deposition were also examined. MHO disturbed hepatic and renal structures and functions. MHO-fed rats showed increased oxidative stress, TNF-α, Bax, and fibrosis in liver and kidney tissues. MHO also enhanced the renal and hepatic expression of p53, p21, cyclin D and PCNA. On the contrary, OLE mitigated MHO-induced oxidative stress, inflammatory burden, apoptotic and fibrotic changes. OLE also suppressed CS and preserved kidney and liver functions. Collectively, OLE displays marked regenerative capacity against MHO-induced hepatic and renal CS, <i>via</i> its potent antioxidant and anti-inflammatory effects.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"936-953"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urolithiasis is one of the most prevalent benign urological disorders globally with a high incidence rate. Male Sprague-Dawley rats were chemically induced to have urolithiasis and treated with triptonide and the standard antiurolithic drug cystone. Kidney weight was measured to detect calculi formation, and urinary parameters such as pH, 24-h urine volume, and protein content were measured to analyze the urolithiasis induction in rats. The inorganic ions, organic solutes, antioxidant levels, and inflammatory cytokines were measured in the experimental rats. Triptonide treatment significantly modulated the urinary pH, decreased the protein concentration, and increased the urinary outflow in urolithiasis induced rats. It also significantly decreased the urinary excretion of calcium and phosphorous and increased the excretion of magnesium, potassium, sodium, creatinine, and uric acid. SOD, CAT, and GPx levels were increased in triptonide-treated rats, and it significantly reduced the MDA levels. Triptonide treatment also decreased the levels of inflammatory cytokines and prevented the renal tissue from inflammation. To conclude, our results prove that triptonide significantly prevents calculi formation and protects renal tissue from urolithiasis-induced damage in rats. Further studies may prove triptonide a potent alternative to currently available antiurolithic drugs.
{"title":"Antiurolithiatic effect of triptonide in ethylene glycol-induced urolithiasis in rats.","authors":"Qiang Wang, Jinghong Zhang, Xiaosong Yin, Tongwei Liu, Chuangui Li, Haibo Yuan, Ding Li","doi":"10.1080/15376516.2024.2364882","DOIUrl":"10.1080/15376516.2024.2364882","url":null,"abstract":"<p><p>Urolithiasis is one of the most prevalent benign urological disorders globally with a high incidence rate. Male Sprague-Dawley rats were chemically induced to have urolithiasis and treated with triptonide and the standard antiurolithic drug cystone. Kidney weight was measured to detect calculi formation, and urinary parameters such as pH, 24-h urine volume, and protein content were measured to analyze the urolithiasis induction in rats. The inorganic ions, organic solutes, antioxidant levels, and inflammatory cytokines were measured in the experimental rats. Triptonide treatment significantly modulated the urinary pH, decreased the protein concentration, and increased the urinary outflow in urolithiasis induced rats. It also significantly decreased the urinary excretion of calcium and phosphorous and increased the excretion of magnesium, potassium, sodium, creatinine, and uric acid. SOD, CAT, and GPx levels were increased in triptonide-treated rats, and it significantly reduced the MDA levels. Triptonide treatment also decreased the levels of inflammatory cytokines and prevented the renal tissue from inflammation. To conclude, our results prove that triptonide significantly prevents calculi formation and protects renal tissue from urolithiasis-induced damage in rats. Further studies may prove triptonide a potent alternative to currently available antiurolithic drugs.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"926-935"},"PeriodicalIF":3.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1080/15376516.2024.2402865
Zhongna Yu,Weili Yang,Qinwei Zhang,Mengyu Zheng
This study examines the impact of estrogenic compounds like bisphenol A (BPA), estradiol (E2), and zearalenone (ZEA) on human ovarian cancer, focusing on constructing a risk model, conducting Gene Set Variation Analysis (GSVA), and evaluating immune infiltration. Differential gene expression analysis identified 980 shared differentially expressed genes (DEGs) in human ovarian cells exposed to BPA, E2, and ZEA, indicating disruptions in ribosome biogenesis and RNA processing. Using the Cancer Genome Atlas Ovarian Cancer (TCGA-OV) dataset, a least absolute shrinkage and selection operator (LASSO)-based risk model was developed incorporating prognostic genes 4-Hydroxyphenylpyruvate Dioxygenase Like (HPDL), Thy-1 Cell Surface Antigen (THY1), and Peptidase Inhibitor 3 (PI3). This model effectively stratified ovarian cancer patients into high-risk and low-risk categories, showing significant differences in overall survival, disease-specific survival, and progression-free survival. GSVA analysis linked HPDL expression to pathways related to the cell cycle, DNA damage, and repair, while THY1 and PI3 were associated with apoptosis, hypoxia, and proliferation pathways. Immune infiltration analysis revealed distinct immune cell profiles for high and low expression groups of HPDL, THY1, and PI3, indicating their influence on the tumor microenvironment. The findings demonstrate that estrogenic compounds significantly alter gene expression and oncogenic pathways in ovarian cancer. The risk model integrating HPDL, THY1, and PI3 offers a strong prognostic tool, with GSVA and immune infiltration analyses providing insights into the interplay between these genes and the tumor microenvironment, suggesting potential targets for personalized therapies.
{"title":"Unveiling the impact of estrogen exposure on ovarian cancer: A comprehensive risk model and immune landscape analysis.","authors":"Zhongna Yu,Weili Yang,Qinwei Zhang,Mengyu Zheng","doi":"10.1080/15376516.2024.2402865","DOIUrl":"https://doi.org/10.1080/15376516.2024.2402865","url":null,"abstract":"This study examines the impact of estrogenic compounds like bisphenol A (BPA), estradiol (E2), and zearalenone (ZEA) on human ovarian cancer, focusing on constructing a risk model, conducting Gene Set Variation Analysis (GSVA), and evaluating immune infiltration. Differential gene expression analysis identified 980 shared differentially expressed genes (DEGs) in human ovarian cells exposed to BPA, E2, and ZEA, indicating disruptions in ribosome biogenesis and RNA processing. Using the Cancer Genome Atlas Ovarian Cancer (TCGA-OV) dataset, a least absolute shrinkage and selection operator (LASSO)-based risk model was developed incorporating prognostic genes 4-Hydroxyphenylpyruvate Dioxygenase Like (HPDL), Thy-1 Cell Surface Antigen (THY1), and Peptidase Inhibitor 3 (PI3). This model effectively stratified ovarian cancer patients into high-risk and low-risk categories, showing significant differences in overall survival, disease-specific survival, and progression-free survival. GSVA analysis linked HPDL expression to pathways related to the cell cycle, DNA damage, and repair, while THY1 and PI3 were associated with apoptosis, hypoxia, and proliferation pathways. Immune infiltration analysis revealed distinct immune cell profiles for high and low expression groups of HPDL, THY1, and PI3, indicating their influence on the tumor microenvironment. The findings demonstrate that estrogenic compounds significantly alter gene expression and oncogenic pathways in ovarian cancer. The risk model integrating HPDL, THY1, and PI3 offers a strong prognostic tool, with GSVA and immune infiltration analyses providing insights into the interplay between these genes and the tumor microenvironment, suggesting potential targets for personalized therapies.","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"180 1","pages":"1-15"},"PeriodicalIF":3.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}