首页 > 最新文献

Traffic最新文献

英文 中文
Dynamics of axonal β-actin mRNA in live hippocampal neurons. 活海马神经元轴突β-肌动蛋白mRNA的动态变化。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-10-01 DOI: 10.1111/tra.12865
Byung Hun Lee, Seokyoung Bang, Seung-Ryeol Lee, Noo Li Jeon, Hye Yoon Park

Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.

mRNA的定位促进了神经元中时空控制的蛋白表达。在轴突中,mRNA转运和局部蛋白合成在轴突生长和引导中起着关键作用。然而,目前还不清楚mRNA是如何转运到轴突亚细胞位置的,以及是什么调节轴突mRNA的定位。利用荧光标记内源性β-肌动蛋白mRNA的转基因小鼠模型,研究了海马神经元轴突中β-肌动蛋白mRNA的运动。我们在微流体装置中培养神经元,分离轴突和树突,并对轴突β-肌动蛋白mRNA进行单颗粒跟踪。与树突β-肌动蛋白mRNA相比,轴突β-肌动蛋白mRNA的定向运动较少,主要表现为亚弥漫性运动,特别是在成熟的游离海马神经元丝状伪足和钮孔附近。我们发现轴突β-肌动蛋白mRNA可能与肌动蛋白斑块(APs)共定位,APs是具有高密度丝状肌动蛋白(F-actin)的区域,已知在分支起始中起作用。此外,活神经元中F-actin和轴突β-actin mRNA的同时成像显示,移动的β-actin mRNA倾向于停靠在APs中。我们的研究结果表明,轴突β-肌动蛋白mRNA的定位是由肌动蛋白网络促进的,并且表明定位的β-肌动蛋白mRNA在轴突分支的形成中起潜在的作用。
{"title":"Dynamics of axonal β-actin mRNA in live hippocampal neurons.","authors":"Byung Hun Lee,&nbsp;Seokyoung Bang,&nbsp;Seung-Ryeol Lee,&nbsp;Noo Li Jeon,&nbsp;Hye Yoon Park","doi":"10.1111/tra.12865","DOIUrl":"https://doi.org/10.1111/tra.12865","url":null,"abstract":"<p><p>Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10464797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correction to: Evolution of factors shaping the endoplasmic reticulum. 修正为:内质网形成因素的进化。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-10-01 DOI: 10.1111/tra.12867
Aspasia Kontou, Emily K Herman, Mark C Field, Joel B Dacks, V Lila Koumandou
Correction to: Evolution of factors shaping the endoplasmic reticulum Aspasia Kontou | Emily K. Herman | Mark C. Field | Joel B. Dacks | V. Lila Koumandou Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada School of Life Sciences, University of Dundee, Dundee, UK Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK
{"title":"Correction to: Evolution of factors shaping the endoplasmic reticulum.","authors":"Aspasia Kontou,&nbsp;Emily K Herman,&nbsp;Mark C Field,&nbsp;Joel B Dacks,&nbsp;V Lila Koumandou","doi":"10.1111/tra.12867","DOIUrl":"https://doi.org/10.1111/tra.12867","url":null,"abstract":"Correction to: Evolution of factors shaping the endoplasmic reticulum Aspasia Kontou | Emily K. Herman | Mark C. Field | Joel B. Dacks | V. Lila Koumandou Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada School of Life Sciences, University of Dundee, Dundee, UK Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117599/pdf/TRA-23-521.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9333468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A LRRK2/dLRRK-mediated lysosomal pathway that contributes to glial cell death and DA neuron survival. LRRK2/ dlrrk介导的溶酶体途径参与胶质细胞死亡和DA神经元存活。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-10-01 Epub Date: 2022-09-11 DOI: 10.1111/tra.12866
Linfang Wang, Honglei Wang, Shuanglong Yi, Shiping Zhang, Margaret S Ho

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease. A plethora of evidence has indicated a role for LRRK2 in endolysosomal trafficking in neurons, while LRRK2 function in glia, although highly expressed, remains largely unknown. Here, we present evidence that LRRK2/dLRRK mediates a lysosomal pathway that contributes to glial cell death and the survival of dopaminergic (DA) neurons. LRRK2/dLRRK knockdown in the immortalized microglia or flies results in enlarged and swelling lysosomes fewer in number. These lysosomes are less mobile, wrongly acidified, exhibit defective membrane permeability and reduced activity of the lysosome hydrolase cathepsin B. In addition, LRRK2/dLRRK depletion causes glial apoptosis, DA neurodegeneration, and locomotor deficits in an age-dependent manner. Taken together, these findings demonstrate a functional role of LRRK2/dLRRK in regulating the glial lysosomal pathway; deficits in lysosomal biogenesis and function linking to glial apoptosis potentially underlie the mechanism of DA neurodegeneration, providing insights on LRRK2/dLRRK function in normal and pathological brains.

富亮氨酸重复激酶2 (LRRK2)突变是家族性和散发性帕金森病的最常见原因。大量证据表明,LRRK2在神经元内溶酶体运输中发挥作用,而LRRK2在胶质细胞中的功能,虽然高表达,但仍不清楚。在这里,我们提出证据表明LRRK2/dLRRK介导溶酶体途径,有助于胶质细胞死亡和多巴胺能(DA)神经元的存活。LRRK2/dLRRK在永生化小胶质细胞或果蝇中的敲低导致溶酶体数量增加和肿胀。这些溶酶体流动性较差,被错误酸化,表现出膜通透性缺陷和溶酶体水解酶组织蛋白酶b活性降低。此外,LRRK2/dLRRK耗损导致胶质细胞凋亡、DA神经退行性变和运动障碍,并以年龄依赖的方式发生。综上所述,这些发现证明了LRRK2/dLRRK在调节胶质溶酶体途径中的功能作用;与神经胶质细胞凋亡相关的溶酶体生物发生和功能缺陷可能是DA神经退行性变的机制基础,为正常和病理大脑中的LRRK2/dLRRK功能提供了新的见解。
{"title":"A LRRK2/dLRRK-mediated lysosomal pathway that contributes to glial cell death and DA neuron survival.","authors":"Linfang Wang,&nbsp;Honglei Wang,&nbsp;Shuanglong Yi,&nbsp;Shiping Zhang,&nbsp;Margaret S Ho","doi":"10.1111/tra.12866","DOIUrl":"https://doi.org/10.1111/tra.12866","url":null,"abstract":"<p><p>Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease. A plethora of evidence has indicated a role for LRRK2 in endolysosomal trafficking in neurons, while LRRK2 function in glia, although highly expressed, remains largely unknown. Here, we present evidence that LRRK2/dLRRK mediates a lysosomal pathway that contributes to glial cell death and the survival of dopaminergic (DA) neurons. LRRK2/dLRRK knockdown in the immortalized microglia or flies results in enlarged and swelling lysosomes fewer in number. These lysosomes are less mobile, wrongly acidified, exhibit defective membrane permeability and reduced activity of the lysosome hydrolase cathepsin B. In addition, LRRK2/dLRRK depletion causes glial apoptosis, DA neurodegeneration, and locomotor deficits in an age-dependent manner. Taken together, these findings demonstrate a functional role of LRRK2/dLRRK in regulating the glial lysosomal pathway; deficits in lysosomal biogenesis and function linking to glial apoptosis potentially underlie the mechanism of DA neurodegeneration, providing insights on LRRK2/dLRRK function in normal and pathological brains.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40345091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evolution of factors shaping the endoplasmic reticulum. 内质网形成因素的演化。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-09-01 DOI: 10.1111/tra.12863
Aspasia Kontou, Emily K Herman, Mark C Field, Joel B Dacks, V Lila Koumandou

Endomembrane system compartments are significant elements in virtually all eukaryotic cells, supporting functions including protein synthesis, post-translational modifications and protein/lipid targeting. In terms of membrane area the endoplasmic reticulum (ER) is the largest intracellular organelle, but the origins of proteins defining the organelle and the nature of lineage-specific modifications remain poorly studied. To understand the evolution of factors mediating ER morphology and function we report a comparative genomics analysis of experimentally characterized ER-associated proteins involved in maintaining ER structure. We find that reticulons, REEPs, atlastins, Ufe1p, Use1p, Dsl1p, TBC1D20, Yip3p and VAPs are highly conserved, suggesting an origin at least as early as the last eukaryotic common ancestor (LECA), although many of these proteins possess additional non-ER functions in modern eukaryotes. Secondary losses are common in individual species and in certain lineages, for example lunapark is missing from the Stramenopiles and the Alveolata. Lineage-specific innovations include protrudin, Caspr1, Arl6IP1, p180, NogoR, kinectin and CLIMP-63, which are restricted to the Opisthokonta. Hence, much of the machinery required to build and maintain the ER predates the LECA, but alternative strategies for the maintenance and elaboration of ER shape and function are present in modern eukaryotes. Moreover, experimental investigations for ER maintenance factors in diverse eukaryotes are expected to uncover novel mechanisms.

膜系统室是几乎所有真核细胞的重要组成部分,支持蛋白质合成、翻译后修饰和蛋白质/脂质靶向等功能。就膜面积而言,内质网(ER)是细胞内最大的细胞器,但定义细胞器的蛋白质的起源和谱系特异性修饰的性质仍然缺乏研究。为了了解介导内质网形态和功能的因素的进化,我们报道了一项比较基因组学分析,实验表征了内质网相关蛋白参与维持内质网结构。我们发现网状蛋白、REEPs、atlastins、Ufe1p、Use1p、Dsl1p、TBC1D20、Yip3p和VAPs是高度保守的,这表明它们的起源至少早于最后的真核共同祖先(LECA),尽管这些蛋白中的许多在现代真核生物中具有额外的非er功能。在个别物种和某些谱系中,继发性损失是常见的,例如,在层桩和Alveolata中缺失了lunapark。谱系特异性创新包括proudin, Caspr1, Arl6IP1, p180, NogoR, kinectin和clip -63,这些仅限于Opisthokonta。因此,构建和维持内质网所需的许多机制早于LECA,但在现代真核生物中存在维持和完善内质网形状和功能的替代策略。此外,对多种真核生物内质网维持因子的实验研究有望揭示新的机制。
{"title":"Evolution of factors shaping the endoplasmic reticulum.","authors":"Aspasia Kontou,&nbsp;Emily K Herman,&nbsp;Mark C Field,&nbsp;Joel B Dacks,&nbsp;V Lila Koumandou","doi":"10.1111/tra.12863","DOIUrl":"https://doi.org/10.1111/tra.12863","url":null,"abstract":"<p><p>Endomembrane system compartments are significant elements in virtually all eukaryotic cells, supporting functions including protein synthesis, post-translational modifications and protein/lipid targeting. In terms of membrane area the endoplasmic reticulum (ER) is the largest intracellular organelle, but the origins of proteins defining the organelle and the nature of lineage-specific modifications remain poorly studied. To understand the evolution of factors mediating ER morphology and function we report a comparative genomics analysis of experimentally characterized ER-associated proteins involved in maintaining ER structure. We find that reticulons, REEPs, atlastins, Ufe1p, Use1p, Dsl1p, TBC1D20, Yip3p and VAPs are highly conserved, suggesting an origin at least as early as the last eukaryotic common ancestor (LECA), although many of these proteins possess additional non-ER functions in modern eukaryotes. Secondary losses are common in individual species and in certain lineages, for example lunapark is missing from the Stramenopiles and the Alveolata. Lineage-specific innovations include protrudin, Caspr1, Arl6IP1, p180, NogoR, kinectin and CLIMP-63, which are restricted to the Opisthokonta. Hence, much of the machinery required to build and maintain the ER predates the LECA, but alternative strategies for the maintenance and elaboration of ER shape and function are present in modern eukaryotes. Moreover, experimental investigations for ER maintenance factors in diverse eukaryotes are expected to uncover novel mechanisms.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10496488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Defective axonal transport of endo-lysosomes and dense core vesicles in a Drosophila model of C9-ALS/FTD. 果蝇C9-ALS/FTD模型中内溶酶体轴突运输缺陷和致密核囊泡。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-09-01 Epub Date: 2022-08-17 DOI: 10.1111/tra.12861
Hyun Sung, Thomas E Lloyd

A GGGGCC (G4 C2 ) repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although disruptions in axonal transport are implicated in the pathogenesis of multiple neurodegenerative diseases, the underlying mechanisms causing these defects remain unclear. Here, we performed live imaging of Drosophila motor neurons expressing expanded G4 C2 repeats in third-instar larvae and investigated the axonal transport of multiple organelles in vivo. Expression of expanded G4 C2 repeats causes an increase in static axonal lysosomes, while it impairs trafficking of late endosomes (LEs) and dense core vesicles (DCVs). Surprisingly, however, axonal transport of mitochondria is unaffected in motor axons expressing expanded G4 C2 repeats. Thus, our data indicate that expanded G4 C2 repeat expression differentially impacts axonal transport of vesicular organelles and mitochondria in Drosophila models of C9orf72-associated ALS/FTD.

C9orf72基因中的GGGGCC (G4 C2)重复扩增是肌萎缩性侧索硬化症(ALS)和额颞叶痴呆(FTD)最常见的遗传原因。尽管轴突运输的中断与多种神经退行性疾病的发病机制有关,但导致这些缺陷的潜在机制尚不清楚。在这里,我们对3龄幼虫中表达扩增G4 C2重复序列的果蝇运动神经元进行了实时成像,并研究了体内多个细胞器的轴突转运。扩增的G4 C2重复序列的表达导致静态轴突溶酶体的增加,同时它损害了晚期核内体(LEs)和致密核囊泡(DCVs)的运输。然而,令人惊讶的是,在表达扩增G4 C2重复序列的运动轴突中,线粒体的轴突运输不受影响。因此,我们的数据表明,在c9orf72相关ALS/FTD的果蝇模型中,扩大的G4 C2重复表达对囊泡细胞器和线粒体的轴突运输有不同的影响。
{"title":"Defective axonal transport of endo-lysosomes and dense core vesicles in a Drosophila model of C9-ALS/FTD.","authors":"Hyun Sung,&nbsp;Thomas E Lloyd","doi":"10.1111/tra.12861","DOIUrl":"https://doi.org/10.1111/tra.12861","url":null,"abstract":"<p><p>A GGGGCC (G<sub>4</sub> C<sub>2</sub> ) repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although disruptions in axonal transport are implicated in the pathogenesis of multiple neurodegenerative diseases, the underlying mechanisms causing these defects remain unclear. Here, we performed live imaging of Drosophila motor neurons expressing expanded G<sub>4</sub> C<sub>2</sub> repeats in third-instar larvae and investigated the axonal transport of multiple organelles in vivo. Expression of expanded G<sub>4</sub> C<sub>2</sub> repeats causes an increase in static axonal lysosomes, while it impairs trafficking of late endosomes (LEs) and dense core vesicles (DCVs). Surprisingly, however, axonal transport of mitochondria is unaffected in motor axons expressing expanded G<sub>4</sub> C<sub>2</sub> repeats. Thus, our data indicate that expanded G<sub>4</sub> C<sub>2</sub> repeat expression differentially impacts axonal transport of vesicular organelles and mitochondria in Drosophila models of C9orf72-associated ALS/FTD.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40568830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in Plasmodium falciparum blood stage parasites. 疟疾风险药物疟疾箱含有恶性疟原虫血期寄生虫蛋白分泌抑制剂。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-09-01 Epub Date: 2022-08-15 DOI: 10.1111/tra.12862
Oliver Looker, Madeline G Dans, Hayley E Bullen, Brad E Sleebs, Brendan S Crabb, Paul R Gilson

Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs-modifications which are both mediated by parasite-derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.

导致疟疾的恶性疟原虫寄生虫会将数百种蛋白质运送到它们感染的红细胞中。这些输出的蛋白质重塑它们的红细胞,使宿主通过细胞粘附等过程逃避免疫,极大地帮助了寄生虫的生存。由于对所有现有抗疟疾化合物的耐药性正在上升,需要确定新的化合物,而那些能够抑制寄生虫蛋白质分泌和输出的化合物将迅速降低寄生虫的毒力,并最终导致寄生虫死亡。为了鉴定抑制蛋白质输出的化合物,我们使用了表达输出的纳米荧光素酶报告基因的转基因寄生虫,筛选了400种抗疟疾药物,这些抗疟疾药物的靶点大多未知。在该筛选中发现的最有效的抑制剂是MMV396797,其应用导致报告蛋白和内源性输出蛋白的输出抑制。MMV396797介导了蛋白质输出的阻断,减缓了感染红细胞修饰的僵化和细胞粘附,这两种修饰都是由寄生虫衍生的输出蛋白介导的。总之,我们在恶性疟原虫中发现了一种新的蛋白输出抑制剂,其靶点虽然未知,但可以开发成一种未来的抗疟药,在消灭宿主寄生虫之前迅速抑制寄生虫的毒力。
{"title":"The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in Plasmodium falciparum blood stage parasites.","authors":"Oliver Looker,&nbsp;Madeline G Dans,&nbsp;Hayley E Bullen,&nbsp;Brad E Sleebs,&nbsp;Brendan S Crabb,&nbsp;Paul R Gilson","doi":"10.1111/tra.12862","DOIUrl":"https://doi.org/10.1111/tra.12862","url":null,"abstract":"<p><p>Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs-modifications which are both mediated by parasite-derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/bd/TRA-23-442.PMC9543830.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33447099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
α‐Synuclein fibrils explore actin‐mediated macropinocytosis for cellular entry into model neuroblastoma neurons α -突触核蛋白原纤维探索肌动蛋白介导的巨噬细胞进入模型神经母细胞瘤神经元
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-05-23 DOI: 10.1111/tra.12859
Pravin Hivare, Joshna Gadhavi, D. Bhatia, Sharad Gupta
Alpha‐synuclein (α‐Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α‐synucleinopathies. Recent investigations propose the transmission of α‐Syn protein fibrils, in a prion‐like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell‐based model of human neuroblastoma‐derived differentiated neurons, we present the cellular internalization of α‐Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin‐mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin‐independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae‐mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α‐Syn PFF mainly internalizes into the SH‐SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α‐Syn PFF internalization will help improve the understanding of α‐synucleinopathies including PD, and further design specific inhibitors for the same.
α -突触核蛋白(α - Syn)是一种内在失调蛋白(IDP),与神经退行性疾病有关,包括帕金森病(PD)或其他α -突触核蛋白病。最近的研究表明,在PD中,α - Syn蛋白原纤维以类似朊病毒的方式进入近端细胞,从而进一步形成纤维。尽管最近取得了进展,但细胞外蛋白聚集到细胞内部的机制仍然知之甚少。利用人类神经母细胞瘤衍生分化神经元的简单细胞模型,我们提出了α - Syn PFF的细胞内化,以检查细胞摄取和循环动力学,以及标准的内吞标志物转铁蛋白(Tf)标记网格蛋白介导的内吞作用(CME)和半乳糖凝聚素3 (Gal3)标记网格蛋白独立内吞作用(CIE)。化学抑制剂对内吞途径的特异性抑制表明,CME、CIE和小泡介导的内吞作用(CvME)没有明显的影响。在扰乱肌动蛋白聚合和使用巨肽体抑制剂治疗后,观察到细胞摄取的实质性减少。我们的研究结果表明,α‐Syn PFF主要通过巨噬细胞作用途径内化到SH‐SY5Y细胞和分化的神经元中。阐明参与α‐Syn PFF内化的分子和细胞机制将有助于提高对包括PD在内的α‐突触核蛋白病的理解,并进一步设计针对该疾病的特异性抑制剂。
{"title":"α‐Synuclein fibrils explore actin‐mediated macropinocytosis for cellular entry into model neuroblastoma neurons","authors":"Pravin Hivare, Joshna Gadhavi, D. Bhatia, Sharad Gupta","doi":"10.1111/tra.12859","DOIUrl":"https://doi.org/10.1111/tra.12859","url":null,"abstract":"Alpha‐synuclein (α‐Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α‐synucleinopathies. Recent investigations propose the transmission of α‐Syn protein fibrils, in a prion‐like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell‐based model of human neuroblastoma‐derived differentiated neurons, we present the cellular internalization of α‐Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin‐mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin‐independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae‐mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α‐Syn PFF mainly internalizes into the SH‐SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α‐Syn PFF internalization will help improve the understanding of α‐synucleinopathies including PD, and further design specific inhibitors for the same.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89127590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Myosin V facilitates polarised E‐cadherin secretion 肌凝蛋白V促进E -钙粘蛋白的极化分泌
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-05-16 DOI: 10.1111/tra.12846
Dajana Tanasic, N. Berns, V. Riechmann
E‐cadherin has a fundamental role in epithelial tissues by providing cell–cell adhesion. Polarised E‐cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E‐cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E‐cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E‐cadherin secretion. Our data reveal that Myosin V and F‐actin are required for the formation of a continuous apicolateral E‐cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E‐cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal‐most region of the lateral membrane. E‐cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E‐cadherin by showing how Rab7 and Snx16 cooperate in moving E‐cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E‐cadherin secretion maintains epithelial architecture and prevents metastasis.
E‐钙粘蛋白通过提供细胞-细胞粘附在上皮组织中起着重要作用。极化的E -钙粘蛋白胞外分泌到侧质膜对细胞极性和上皮稳态至关重要。E -钙粘蛋白分泌的缺失损害了组织的完整性,是转移的先决条件。尽管E‐钙粘蛋白分泌具有关键作用,但其转运机制仍不清楚。在这里,我们确定肌凝蛋白V是E‐钙粘蛋白分泌的马达。我们的数据显示,肌凝蛋白V和F - actin是形成连续的顶端外侧E -钙粘蛋白带所必需的,小带粘附。我们通过实时成像展示了肌凝蛋白V如何将E -钙粘蛋白囊泡运输到质膜,并区分了两种不同的运输路径:顶端肌动蛋白网络通向小带粘附体,平行肌动蛋白束通向外侧膜的最基底区域。E‐钙粘蛋白分泌始于核内体,Rab11和Sec15招募肌凝蛋白V运输到小带粘附体。我们还通过展示Rab7和Snx16如何合作将E - cadherin移动到Rab11室来阐明E - cadherin的内体分选。因此,我们的数据有助于理解极化E -钙粘蛋白分泌如何维持上皮结构并防止转移。
{"title":"Myosin V facilitates polarised E‐cadherin secretion","authors":"Dajana Tanasic, N. Berns, V. Riechmann","doi":"10.1111/tra.12846","DOIUrl":"https://doi.org/10.1111/tra.12846","url":null,"abstract":"E‐cadherin has a fundamental role in epithelial tissues by providing cell–cell adhesion. Polarised E‐cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E‐cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E‐cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E‐cadherin secretion. Our data reveal that Myosin V and F‐actin are required for the formation of a continuous apicolateral E‐cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E‐cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal‐most region of the lateral membrane. E‐cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E‐cadherin by showing how Rab7 and Snx16 cooperate in moving E‐cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E‐cadherin secretion maintains epithelial architecture and prevents metastasis.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90245460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Current methods to analyze lysosome morphology, positioning, motility and function. 目前分析溶酶体形态、定位、运动和功能的方法。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-05-01 Epub Date: 2022-04-24 DOI: 10.1111/tra.12839
Duarte C Barral, Leopoldo Staiano, Cláudia Guimas Almeida, Dan F Cutler, Emily R Eden, Clare E Futter, Antony Galione, André R A Marques, Diego Luis Medina, Gennaro Napolitano, Carmine Settembre, Otília V Vieira, Johannes M F G Aerts, Peace Atakpa-Adaji, Gemma Bruno, Antonella Capuozzo, Elvira De Leonibus, Chiara Di Malta, Cristina Escrevente, Alessandra Esposito, Paolo Grumati, Michael J Hall, Rita O Teodoro, Susana S Lopes, J Paul Luzio, Jlenia Monfregola, Sandro Montefusco, Frances M Platt, Roman Polishchuck, Maria De Risi, Irene Sambri, Chiara Soldati, Miguel C Seabra

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.

自从 70 多年前发现溶酶体以来,人们对这些细胞器的功能有了很多了解。溶酶体曾被认为是唯一的降解细胞器,但最近的研究表明,溶酶体在营养传感、细胞内信号传导和新陈代谢等其他几种细胞功能中发挥着重要作用。方法学的进步对我们目前了解这种多层面细胞器的生物学特性起到了关键作用。在这篇综述中,我们将介绍目前用于分析溶酶体形态、定位、运动和功能的方法。我们将重点介绍这些方法背后的原理、方法策略及其优势和局限性。为了提取准确的信息并避免误读,我们讨论了识别溶酶体并评估其特征和功能的最佳策略。通过这篇综述,我们希望促进溶酶体研究数量和质量的提高,并进一步推动细胞生物学家对这一细胞器的突破性发现。
{"title":"Current methods to analyze lysosome morphology, positioning, motility and function.","authors":"Duarte C Barral, Leopoldo Staiano, Cláudia Guimas Almeida, Dan F Cutler, Emily R Eden, Clare E Futter, Antony Galione, André R A Marques, Diego Luis Medina, Gennaro Napolitano, Carmine Settembre, Otília V Vieira, Johannes M F G Aerts, Peace Atakpa-Adaji, Gemma Bruno, Antonella Capuozzo, Elvira De Leonibus, Chiara Di Malta, Cristina Escrevente, Alessandra Esposito, Paolo Grumati, Michael J Hall, Rita O Teodoro, Susana S Lopes, J Paul Luzio, Jlenia Monfregola, Sandro Montefusco, Frances M Platt, Roman Polishchuck, Maria De Risi, Irene Sambri, Chiara Soldati, Miguel C Seabra","doi":"10.1111/tra.12839","DOIUrl":"10.1111/tra.12839","url":null,"abstract":"<p><p>Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10857319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular 20S proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectin‐3 agglutination activity 通过微泡分泌的胞外20S蛋白酶体可以降解折叠不良的蛋白质并抑制凝集素- 3的凝集活性
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-04-24 DOI: 10.1111/tra.12840
A. Bonhoure, L. Henry, C. Bich, L. Blanc, Blanche Bergeret, M. Bousquet, O. Coux, P. Stoebner, M. Vidal
Proteasomes are major non‐lysosomal proteolytic complexes localized in the cytoplasm and in the nucleus of eukaryotic cells. Strikingly, high levels of extracellular proteasome have also been evidenced in the plasma (p‐proteasome) of patients with specific diseases. Here, we examined the process by which proteasomes are secreted, as well as their structural and functional features once in the extracellular space. We demonstrate that assembled 20S core particles are secreted by cells within microvesicles budding from the plasma membrane. Part of the extracellular proteasome pool is also free of membranes in the supernatant of cultured cells, and likely originates from microvesicles leakage. We further demonstrate that this free proteasome released by cells (cc‐proteasome for cell culture proteasome) possesses latent proteolytic activity and can degrade various extracellular proteins. Both standard (no immune‐subunits) and intermediate (containing some immune‐subunits) forms of 20S are observed. Moreover, we show that galectin‐3, which displays a highly disordered N‐terminal region, is efficiently cleaved by purified cc‐proteasome, without SDS activation, likely after its binding to PSMA3 (α7) subunit through its intrinsically disordered region. As a consequence, galectin‐3 is unable to induce red blood cells agglutination when preincubated with cc‐proteasome. These results highlight potential novel physio‐ and pathologic functions for the extracellular proteasome.
蛋白酶体是一种主要的非溶酶体蛋白水解复合物,存在于真核细胞的细胞质和细胞核中。引人注目的是,高水平的细胞外蛋白酶体也被证实存在于特定疾病患者的血浆(p -蛋白酶体)中。在这里,我们研究了蛋白酶体分泌的过程,以及它们在细胞外空间的结构和功能特征。我们证明组装的20S核心颗粒是由细胞质膜出芽的微泡内的细胞分泌的。部分细胞外蛋白酶体池在培养细胞的上清液中也无膜,可能来源于微泡渗漏。我们进一步证明,这种由细胞释放的游离蛋白酶体(cc -蛋白酶体为细胞培养蛋白酶体)具有潜在的蛋白水解活性,可以降解各种细胞外蛋白。标准型(无免疫亚基)和中间型(含一些免疫亚基)的20S均被观察到。此外,我们发现具有高度无序N端区域的凝集素- 3可以被纯化的cc -蛋白酶体有效地切割,而不需要SDS激活,这可能是在它通过其内在无序区域与PSMA3 (α7)亚基结合之后。因此,当与cc -蛋白酶体预孵育时,凝集素- 3不能诱导红细胞凝集。这些结果强调了细胞外蛋白酶体潜在的新的生理和病理功能。
{"title":"Extracellular 20S proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectin‐3 agglutination activity","authors":"A. Bonhoure, L. Henry, C. Bich, L. Blanc, Blanche Bergeret, M. Bousquet, O. Coux, P. Stoebner, M. Vidal","doi":"10.1111/tra.12840","DOIUrl":"https://doi.org/10.1111/tra.12840","url":null,"abstract":"Proteasomes are major non‐lysosomal proteolytic complexes localized in the cytoplasm and in the nucleus of eukaryotic cells. Strikingly, high levels of extracellular proteasome have also been evidenced in the plasma (p‐proteasome) of patients with specific diseases. Here, we examined the process by which proteasomes are secreted, as well as their structural and functional features once in the extracellular space. We demonstrate that assembled 20S core particles are secreted by cells within microvesicles budding from the plasma membrane. Part of the extracellular proteasome pool is also free of membranes in the supernatant of cultured cells, and likely originates from microvesicles leakage. We further demonstrate that this free proteasome released by cells (cc‐proteasome for cell culture proteasome) possesses latent proteolytic activity and can degrade various extracellular proteins. Both standard (no immune‐subunits) and intermediate (containing some immune‐subunits) forms of 20S are observed. Moreover, we show that galectin‐3, which displays a highly disordered N‐terminal region, is efficiently cleaved by purified cc‐proteasome, without SDS activation, likely after its binding to PSMA3 (α7) subunit through its intrinsically disordered region. As a consequence, galectin‐3 is unable to induce red blood cells agglutination when preincubated with cc‐proteasome. These results highlight potential novel physio‐ and pathologic functions for the extracellular proteasome.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73191740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Traffic
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1