首页 > 最新文献

Traffic最新文献

英文 中文
Cholangiocytes express an isoform of soluble adenylyl cyclase that is N-linked glycosylated and secreted in extracellular vesicles. 胆管细胞表达一种可溶性腺苷酸环化酶的异构体,该酶被n链糖基化并在细胞外囊泡中分泌。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1111/tra.12904
Simei Go, Hang Lam Li, Jung-Chin Chang, Arthur J Verhoeven, Ronald P J Oude Elferink

Soluble adenylyl cyclase (sAC)-derived cAMP regulates various cellular processes; however, the regulatory landscape mediating sAC protein levels remains underexplored. We consistently observed a 85 kD (sAC85 ) or 75 kD (sAC75 ) sAC protein band under glucose-sufficient or glucose-deprived states, respectively, in H69 cholangiocytes by immunoblotting. Deglycosylation by PNGase-F demonstrated that both sAC75 and sAC85 are N-linked glycosylated proteins with the same polypeptide backbone. Deglycosylation with Endo-H further revealed that sAC75 and sAC85 carry distinct sugar chains. We observed release of N-linked glycosylated sAC (sACEV ) in extracellular vesicles under conditions that support intracellular sAC85 (glucose-sufficient) as opposed to sAC75 (glucose-deprived) conditions. Consistently, disrupting the vesicular machinery affects the maturation of intracellular sAC and inhibits the release of sACEV into extracellular vesicles. The intracellular turnover of sAC85 is extremely short (t1/2 ~30 min) and release of sACEV in the medium was detected within 3 h. Our observations support the maturation and trafficking in cholangiocytes of an N-linked glycosylated sAC isoform that is rapidly released into extracellular vesicles.

可溶性腺苷酸环化酶(sAC)衍生的cAMP调节多种细胞过程;然而,调节sAC蛋白水平的调控景观仍未得到充分探索。通过免疫印迹,我们在H69胆管细胞中分别观察到一个85 kD (sAC85)或75 kD (sAC75)的sAC蛋白带处于葡萄糖充足或葡萄糖缺乏状态。pnase - f去糖基化表明sAC75和sAC85都是具有相同多肽主链的n -链糖基化蛋白。用Endo-H去糖基化进一步揭示sAC75和sAC85携带不同的糖链。我们观察到在支持细胞内sAC85(葡萄糖充足)而不是sAC75(葡萄糖缺乏)条件下,细胞外囊泡中n -连接糖基化sAC (sACEV)的释放。一致地,破坏囊泡机制会影响细胞内sAC的成熟并抑制sACEV向细胞外囊泡的释放。sAC85的胞内转换极短(t1/2 ~ 30min),在3 h内检测到sACEV在培养基中的释放。我们的观察结果支持了一种n链糖基化sAC异构体在胆管细胞中的成熟和运输,这种异构体被迅速释放到细胞外囊泡中。
{"title":"Cholangiocytes express an isoform of soluble adenylyl cyclase that is N-linked glycosylated and secreted in extracellular vesicles.","authors":"Simei Go,&nbsp;Hang Lam Li,&nbsp;Jung-Chin Chang,&nbsp;Arthur J Verhoeven,&nbsp;Ronald P J Oude Elferink","doi":"10.1111/tra.12904","DOIUrl":"https://doi.org/10.1111/tra.12904","url":null,"abstract":"<p><p>Soluble adenylyl cyclase (sAC)-derived cAMP regulates various cellular processes; however, the regulatory landscape mediating sAC protein levels remains underexplored. We consistently observed a 85 kD (sAC<sub>85</sub> ) or 75 kD (sAC<sub>75</sub> ) sAC protein band under glucose-sufficient or glucose-deprived states, respectively, in H69 cholangiocytes by immunoblotting. Deglycosylation by PNGase-F demonstrated that both sAC<sub>75</sub> and sAC<sub>85</sub> are N-linked glycosylated proteins with the same polypeptide backbone. Deglycosylation with Endo-H further revealed that sAC<sub>75</sub> and sAC<sub>85</sub> carry distinct sugar chains. We observed release of N-linked glycosylated sAC (sAC<sub>EV</sub> ) in extracellular vesicles under conditions that support intracellular sAC<sub>85</sub> (glucose-sufficient) as opposed to sAC<sub>75</sub> (glucose-deprived) conditions. Consistently, disrupting the vesicular machinery affects the maturation of intracellular sAC and inhibits the release of sAC<sub>EV</sub> into extracellular vesicles. The intracellular turnover of sAC<sub>85</sub> is extremely short (t<sub>1/2</sub> ~30 min) and release of sAC<sub>EV</sub> in the medium was detected within 3 h. Our observations support the maturation and trafficking in cholangiocytes of an N-linked glycosylated sAC isoform that is rapidly released into extracellular vesicles.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 9","pages":"413-430"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. 哺乳动物内质网相关蛋白降解的遗传破坏:人类表型和动物及细胞疾病模型。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-08-01 DOI: 10.1111/tra.12902
Sally Badawi, Feda E Mohamed, Divya Saro Varghese, Bassam R Ali

Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.

内质网相关蛋白降解(ERAD)是一种严格的质量控制机制,通过这种机制,错误折叠、不组装和一些天然蛋白被降解,以维持适当的细胞和细胞器稳态。一些体外和体内与ERAD相关的研究已经提供了ERAD通路激活及其后续事件的机制见解;然而,其中大多数研究都研究了ERAD底物的影响及其随后影响降解过程的疾病。在这篇综述中,我们介绍了所有报道的人类单基因疾病,这些疾病是由编码ERAD成分的基因而不是其底物的遗传变异引起的。此外,经过广泛的文献调查,我们提出了各种基因操纵的高等细胞和哺乳动物模型,这些模型缺乏参与ERAD途径各个阶段的特定成分。
{"title":"Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models.","authors":"Sally Badawi,&nbsp;Feda E Mohamed,&nbsp;Divya Saro Varghese,&nbsp;Bassam R Ali","doi":"10.1111/tra.12902","DOIUrl":"https://doi.org/10.1111/tra.12902","url":null,"abstract":"<p><p>Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 8","pages":"312-333"},"PeriodicalIF":4.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Syntaxin-5's flexibility in SNARE pairing supports Golgi functions. Syntaxin-5 在 SNARE 配对中的灵活性支持高尔基体的功能。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-08-01 Epub Date: 2023-06-21 DOI: 10.1111/tra.12903
Zinia D'Souza, Irina Pokrovskaya, Vladimir V Lupashin

Deficiency in the conserved oligomeric Golgi (COG) complex that orchestrates SNARE-mediated tethering/fusion of vesicles that recycle the Golgi's glycosylation machinery results in severe glycosylation defects. Although two major Golgi v-SNAREs, GS28/GOSR1, and GS15/BET1L, are depleted in COG-deficient cells, the complete knockout of GS28 and GS15 only modestly affects Golgi glycosylation, indicating the existence of an adaptation mechanism in Golgi SNARE. Indeed, quantitative mass-spectrometry analysis of STX5-interacting proteins revealed two novel Golgi SNARE complexes-STX5/SNAP29/VAMP7 and STX5/VTI1B/STX8/YKT6. These complexes are present in wild-type cells, but their usage is significantly increased in both GS28- and COG-deficient cells. Upon GS28 deletion, SNAP29 increased its Golgi residency in a STX5-dependent manner. While STX5 depletion and Retro2-induced diversion from the Golgi severely affect protein glycosylation, GS28/SNAP29 and GS28/VTI1B double knockouts alter glycosylation similarly to GS28 KO, indicating that a single STX5-based SNARE complex is sufficient to support Golgi glycosylation. Importantly, co-depletion of three Golgi SNARE complexes in GS28/SNAP29/VTI1B TKO cells resulted in severe glycosylation defects and a reduced capacity for glycosylation enzyme retention at the Golgi. This study demonstrates the remarkable plasticity in SXT5-mediated membrane trafficking, uncovering a novel adaptive response to the failure of canonical intra-Golgi vesicle tethering/fusion machinery.

保守的寡聚高尔基体(COG)复合体能协调SNARE介导的囊泡的系留/融合,这些囊泡能循环利用高尔基体的糖基化机制,缺乏这种复合体会导致严重的糖基化缺陷。虽然COG缺陷细胞中的两个主要高尔基体v-SNARE--GS28/GOSR1和GS15/BET1L被耗尽,但完全敲除GS28和GS15对高尔基体糖基化的影响不大,这表明高尔基体SNARE存在一种适应机制。事实上,对与 STX5 相互作用的蛋白质进行的定量质谱分析发现了两种新型高尔基体 SNARE 复合物--STX5/SNAP29/VAMP7 和 STX5/VTI1B/STX8/YKT6。这些复合物存在于野生型细胞中,但在 GS28 和 COG 缺陷细胞中的使用率显著增加。删除 GS28 后,SNAP29 会以 STX5 依赖性方式增加其高尔基驻留。STX5 缺失和 Retro2- 诱导的高尔基体分流严重影响了蛋白质糖基化,而 GS28/SNAP29 和 GS28/VTI1B 双基因敲除对糖基化的改变与 GS28 KO 相似,这表明基于 STX5 的单一 SNARE 复合物足以支持高尔基体糖基化。重要的是,在 GS28/SNAP29/VTI1B TKO 细胞中同时缺失三种高尔基体 SNARE 复合物会导致严重的糖基化缺陷,并降低糖基化酶在高尔基体的保留能力。这项研究证明了 SXT5 介导的膜贩运具有显著的可塑性,揭示了对高尔基体内典型囊泡系留/融合机制失效的一种新的适应性反应。
{"title":"Syntaxin-5's flexibility in SNARE pairing supports Golgi functions.","authors":"Zinia D'Souza, Irina Pokrovskaya, Vladimir V Lupashin","doi":"10.1111/tra.12903","DOIUrl":"10.1111/tra.12903","url":null,"abstract":"<p><p>Deficiency in the conserved oligomeric Golgi (COG) complex that orchestrates SNARE-mediated tethering/fusion of vesicles that recycle the Golgi's glycosylation machinery results in severe glycosylation defects. Although two major Golgi v-SNAREs, GS28/GOSR1, and GS15/BET1L, are depleted in COG-deficient cells, the complete knockout of GS28 and GS15 only modestly affects Golgi glycosylation, indicating the existence of an adaptation mechanism in Golgi SNARE. Indeed, quantitative mass-spectrometry analysis of STX5-interacting proteins revealed two novel Golgi SNARE complexes-STX5/SNAP29/VAMP7 and STX5/VTI1B/STX8/YKT6. These complexes are present in wild-type cells, but their usage is significantly increased in both GS28- and COG-deficient cells. Upon GS28 deletion, SNAP29 increased its Golgi residency in a STX5-dependent manner. While STX5 depletion and Retro2-induced diversion from the Golgi severely affect protein glycosylation, GS28/SNAP29 and GS28/VTI1B double knockouts alter glycosylation similarly to GS28 KO, indicating that a single STX5-based SNARE complex is sufficient to support Golgi glycosylation. Importantly, co-depletion of three Golgi SNARE complexes in GS28/SNAP29/VTI1B TKO cells resulted in severe glycosylation defects and a reduced capacity for glycosylation enzyme retention at the Golgi. This study demonstrates the remarkable plasticity in SXT5-mediated membrane trafficking, uncovering a novel adaptive response to the failure of canonical intra-Golgi vesicle tethering/fusion machinery.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 8","pages":"355-379"},"PeriodicalIF":3.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9769259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deacidification of endolysosomes by neuronal aging drives synapse loss. 神经元老化导致内溶酶体脱酸,导致突触丢失。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-08-01 DOI: 10.1111/tra.12889
Tatiana Burrinha, César Cunha, Michael J Hall, Mafalda Lopes-da-Silva, Miguel C Seabra, Cláudia Guimas Almeida

Previously, we found that age-dependent accumulation of beta-amyloid is not sufficient to cause synaptic decline. Late-endocytic organelles (LEOs) may be driving synaptic decline as lysosomes (Lys) are a target of cellular aging and relevant for synapses. We found that LAMP1-positive LEOs increased in size and number and accumulated near synapses in aged neurons and brains. LEOs' distal accumulation might relate to the increased anterograde movement in aged neurons. Dissecting the LEOs, we found that late-endosomes accumulated while there are fewer terminal Lys in aged neurites, but not in the cell body. The most abundant LEOs were degradative Lys or endolysosomes (ELys), especially in neurites. ELys activity was reduced because of acidification defects, supported by the reduction in v-ATPase subunit V0a1 with aging. Increasing the acidification of aged ELys recovered degradation and reverted synaptic decline, while alkalinization or v-ATPase inhibition, mimicked age-dependent Lys and synapse dysfunction. We identify ELys deacidification as a neuronal mechanism of age-dependent synapse loss. Our findings suggest that future therapeutic strategies to address endolysosomal defects might be able to delay age-related synaptic decline.

先前,我们发现β -淀粉样蛋白的年龄依赖性积累不足以引起突触衰退。由于溶酶体(Lys)是细胞衰老的靶点,与突触相关,晚期内吞细胞器(LEOs)可能会导致突触的衰退。我们发现,在衰老的神经元和大脑中,lamp1阳性的LEOs的大小和数量增加,并在突触附近积聚。LEOs远端积累可能与老龄神经元逆行运动增加有关。通过对LEOs的解剖,我们发现在衰老的神经突中晚期核内体积累,而终末赖氨酸较少,但在细胞体中没有。最丰富的LEOs是降解赖氨酸或内溶酶体(ELys),尤其是在神经突中。随着年龄的增长,v-ATPase亚基V0a1的减少也支持了ELys活性的降低。增加衰老的赖氨酸酸化可以恢复退化和恢复突触衰退,而碱化或v- atp酶抑制则模拟年龄依赖性赖氨酸和突触功能障碍。我们确定ELys脱酸是年龄依赖性突触丧失的神经元机制。我们的研究结果表明,未来解决内溶酶体缺陷的治疗策略可能能够延缓与年龄相关的突触衰退。
{"title":"Deacidification of endolysosomes by neuronal aging drives synapse loss.","authors":"Tatiana Burrinha,&nbsp;César Cunha,&nbsp;Michael J Hall,&nbsp;Mafalda Lopes-da-Silva,&nbsp;Miguel C Seabra,&nbsp;Cláudia Guimas Almeida","doi":"10.1111/tra.12889","DOIUrl":"https://doi.org/10.1111/tra.12889","url":null,"abstract":"<p><p>Previously, we found that age-dependent accumulation of beta-amyloid is not sufficient to cause synaptic decline. Late-endocytic organelles (LEOs) may be driving synaptic decline as lysosomes (Lys) are a target of cellular aging and relevant for synapses. We found that LAMP1-positive LEOs increased in size and number and accumulated near synapses in aged neurons and brains. LEOs' distal accumulation might relate to the increased anterograde movement in aged neurons. Dissecting the LEOs, we found that late-endosomes accumulated while there are fewer terminal Lys in aged neurites, but not in the cell body. The most abundant LEOs were degradative Lys or endolysosomes (ELys), especially in neurites. ELys activity was reduced because of acidification defects, supported by the reduction in v-ATPase subunit V0a1 with aging. Increasing the acidification of aged ELys recovered degradation and reverted synaptic decline, while alkalinization or v-ATPase inhibition, mimicked age-dependent Lys and synapse dysfunction. We identify ELys deacidification as a neuronal mechanism of age-dependent synapse loss. Our findings suggest that future therapeutic strategies to address endolysosomal defects might be able to delay age-related synaptic decline.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 8","pages":"334-354"},"PeriodicalIF":4.5,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10126393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. 假磷酸酶 STYXL1 的耗竭可通过 ER 压力增强葡萄糖脑苷脂向溶酶体的贩运。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-07-01 Epub Date: 2023-05-17 DOI: 10.1111/tra.12886
Saloni Patel, Anshul Milap Bhatt, Priyanka Bhansali, Subba Rao Gangi Setty

Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.

伪磷酸酶没有催化作用,但在序列和结构上与经典磷酸酶相似。STYXL1 是一种伪磷酸酶,属于双特异性磷酸酶家族,已知可调节不同类型细胞中应激颗粒的形成、神经元的形成和细胞凋亡。然而,STYXL1 在调节细胞贩运或溶酶体功能方面的作用尚未阐明。在这里,我们发现敲除 STYXL1 会增强 HeLa 细胞中 β-葡糖脑苷脂(β-GC)的运输及其溶酶体活性。重要的是,去除了 STYXL1 的细胞显示内质网(ER)、晚期内质体和溶酶体的分布增强。此外,敲除 STYXL1 会导致未折叠蛋白反应(UPR)和溶酶体生物发生转录因子的核转位。然而,在 STYXL1 敲除的细胞中,溶酶体中上调的 β-GC 活性与 TFEB/TFE3 的核定位无关。用 4-PBA(ER 应激减弱剂)处理 STYXL1 敲除细胞可显著降低溶酶体中的β-GC 活性,其降低程度与对照细胞相当,但与ER 应激激活剂硫辛加精(thapsigargin)的作用不相加。此外,去除了 STYXL1 的细胞显示溶酶体与 ER 的接触增强,这可能是通过 UPR 的增加实现的。在来源于戈谢病人的人类原代成纤维细胞中缺失 STYXL1 后,溶酶体酶活性适度增强。总之,这些研究说明了假磷酸酶 STYXL1 在正常细胞和溶酶体储存障碍细胞类型中调节溶酶体功能的独特作用。因此,设计针对 STYXL1 的小分子可能会通过增强戈谢病的 ER 压力来恢复溶酶体活性。
{"title":"Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress.","authors":"Saloni Patel, Anshul Milap Bhatt, Priyanka Bhansali, Subba Rao Gangi Setty","doi":"10.1111/tra.12886","DOIUrl":"10.1111/tra.12886","url":null,"abstract":"<p><p>Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 7","pages":"254-269"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9622093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages. 氧化胆固醇酯可诱导脂质巨噬细胞中功能失调溶酶体的外泌。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-07-01 Epub Date: 2023-05-02 DOI: 10.1111/tra.12888
Neuza Domingues, André R A Marques, Rita Diogo Almeida Calado, Inês S Ferreira, Cristiano Ramos, José Ramalho, Maria I L Soares, Telmo Pereira, Luís Oliveira, José R Vicente, Louise H Wong, Inês C M Simões, Teresa M V D Pinho E Melo, Andrew Peden, Cláudia Guimas Almeida, Clare E Futter, Rosa Puertollano, Winchil L C Vaz, Otília V Vieira

A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.

动脉粥样硬化发生过程中的一个关键事件是脂质负载巨噬细胞(脂质细胞)的形成,这种细胞会在溶酶体中不可逆转地积聚未消化的改良低密度脂蛋白(LDL)。这一事件最终导致细胞失去平衡、炎症和细胞死亡。然而,动脉粥样硬化发生的确切化学病因以及斑块巨噬细胞溶酶体功能受损的分子和细胞机制仍不清楚。在这里,我们证明了巨噬细胞暴露于胆固醇庚二酸酯(ChA)(低密度脂蛋白衍生胆固醇酯氧化的最常见产物之一)后,会表现出外周溶酶体增大和功能障碍,其中充满了未消化的胆固醇庚二酸酯和中性脂质。溶酶体面积和中性脂质的积累都是部分不可逆的。有趣的是,功能失调的外周溶酶体更容易与质膜融合,将其未消化的内腔内容物分泌到细胞外环境中,从而对病理产生潜在影响。我们进一步证明,这种表型与 MiT/TFE 家族转录因子的核转位有机理上的联系。ChA 诱导溶酶体生物生成似乎能部分保护巨噬细胞免受脂质诱导的细胞毒性。总之,我们的数据表明,ChA 参与了溶酶体功能障碍的病因学研究,并促进了这些细胞器的外泌。后者是动脉粥样硬化发病机制中可能很重要的一种新机制。
{"title":"Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages.","authors":"Neuza Domingues, André R A Marques, Rita Diogo Almeida Calado, Inês S Ferreira, Cristiano Ramos, José Ramalho, Maria I L Soares, Telmo Pereira, Luís Oliveira, José R Vicente, Louise H Wong, Inês C M Simões, Teresa M V D Pinho E Melo, Andrew Peden, Cláudia Guimas Almeida, Clare E Futter, Rosa Puertollano, Winchil L C Vaz, Otília V Vieira","doi":"10.1111/tra.12888","DOIUrl":"10.1111/tra.12888","url":null,"abstract":"<p><p>A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 7","pages":"284-307"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9978553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole. Syntaxin 3 SPI-2 依赖性串联促进了含有液泡的沙门氏菌的分裂。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-07-01 Epub Date: 2023-04-28 DOI: 10.1111/tra.12887
Ritika Chatterjee, Abhilash Vijay Nair, Anmol Singh, Nishi Mehta, Subba Rao Gangi Setty, Dipshikha Chakravortty

Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.

细胞内膜融合是由可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)的膜桥复合物介导的。SNARE 蛋白是囊泡运输的关键角色之一。一些报道揭示了细胞内细菌通过调节宿主的 SNARE 机制来成功建立感染。巨噬细胞中负责吞噬体成熟的关键 SNARE 蛋白是合成轴突蛋白 3(STX3)和合成轴突蛋白 4(STX4)。报告还表明,沙门氏菌会主动调节其液泡膜成分,以逃避溶酶体融合。含沙门氏菌的液泡(SCV)含有回收内体 SNARE 合成酶 12(STX12)。然而,宿主 SNARE 在 SCV 生物发生和致病过程中的作用仍不清楚。在敲除 STX3 后,我们观察到细菌增殖减少,而在过表达 STX3 后细菌增殖同时恢复。沙门氏菌感染细胞的活细胞成像显示,STX3 定位于 SCV 膜上,因此可能有助于 SCV 与胞内囊泡融合,从而获得用于分裂的膜。我们还发现,当我们感染 SPI-2 编码的 3 型分泌系统(T3SS)装置突变体(STM ∆ssaV)而不是 SPI-1 编码的 T3SS 装置突变体(STM ∆invC)时,STX3-SCV 之间的相互作用被削弱。这些观察结果在沙门氏菌感染小鼠模型中也是一致的。总之,这些结果揭示了通过 SPI-2 编码的 T3SS 分泌的效应分子,它们可能参与了与宿主 SNARE STX3 的相互作用。
{"title":"Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole.","authors":"Ritika Chatterjee, Abhilash Vijay Nair, Anmol Singh, Nishi Mehta, Subba Rao Gangi Setty, Dipshikha Chakravortty","doi":"10.1111/tra.12887","DOIUrl":"10.1111/tra.12887","url":null,"abstract":"<p><p>Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 7","pages":"270-283"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9664687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. 走出 ESCPE 会议室:内体 SNX-BAR 在受体转运和宿主与病原体相互作用中的新作用。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-06-01 Epub Date: 2023-04-23 DOI: 10.1111/tra.12885
Boris Simonetti, James L Daly, Peter J Cullen

Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.

人类细胞的一些功能,如感知营养物质、细胞运动以及与周围环境的相互作用,都依赖于无数跨膜蛋白及其相关蛋白和脂质(统称为 "货物")。为了成功地完成任务,必须对货物进行分类,并在适当的时间以适当的数量运送到适当的地点。为了实现这一目标,真核细胞进化出了一个高度组织化的分拣平台--内体网络。在这里,各种特化的多蛋白复合物将货物分拣到不同的路线上,导致其降解或被回收到不同的细胞器中进行下一轮再利用。内体SNX-BAR分拣复合物(ESCPE-1)是一个关键的分拣复合物,它能促进一系列货物循环到质膜和/或跨高尔基网络。ESCPE-1 能识别众多货物中的疏水性分拣图案,并将它们包装成管状载体,从内质体中分离出来,运往目标细胞器。多种病原体会模仿这种分拣图案,劫持 ESCPE-1 的运输,以促进它们在受感染细胞内的入侵和存活。在其他情况下,ESCPE-1 通过限制病原体的复制和感染,对病原体发挥限制功能。在这篇综述中,我们将讨论 ESCPE-1 的组装和功能,尤其关注最近在了解 ESCPE-1 在膜转运、细胞稳态和宿主与病原体相互作用中的作用方面取得的进展。
{"title":"Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction.","authors":"Boris Simonetti, James L Daly, Peter J Cullen","doi":"10.1111/tra.12885","DOIUrl":"10.1111/tra.12885","url":null,"abstract":"<p><p>Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed \"cargoes\"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 6","pages":"234-250"},"PeriodicalIF":2.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SWIP mediates retromer-independent membrane recruitment of the WASH complex. SWIP介导WASH复合物的逆转录酶非依赖性膜募集。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-05-01 Epub Date: 2023-03-30 DOI: 10.1111/tra.12884
Vojtěch Dostál, Tereza Humhalová, Pavla Beránková, Ondřej Pácalt, Lenka Libusová

The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2 ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.

五聚体WASH复合物通过激活Arp2/3促进内体蛋白质分选,这反过来又导致在内体表面形成特异性的F-肌动蛋白斑块。通常认为,WASH复合物通过其亚基FAM21与逆转录酶亚基VPS35的相互作用附着在内涵体膜上。然而,我们观察到即使在没有VPS35的情况下,WASH复合物和F-肌动蛋白也存在于内体上。我们发现WASH复合物以反转录物依赖性和反转录物非依赖性的方式与内体表面结合。反转录酶非依赖性膜锚是由SWIP亚基直接介导的。此外,SWIP可以与许多磷酸肌醇物种相互作用。其中,我们的数据表明,与磷脂酰肌醇-3,5-二磷酸(PI(3,5)P2)的相互作用对SWIP的内体结合至关重要。总的来说,这项研究揭示了讲卫生运动复合体亚单位SWIP的新作用,并强调讲卫生运动综合体是一个独立、自给自足的贩运监管机构。
{"title":"SWIP mediates retromer-independent membrane recruitment of the WASH complex.","authors":"Vojtěch Dostál,&nbsp;Tereza Humhalová,&nbsp;Pavla Beránková,&nbsp;Ondřej Pácalt,&nbsp;Lenka Libusová","doi":"10.1111/tra.12884","DOIUrl":"10.1111/tra.12884","url":null,"abstract":"<p><p>The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P<sub>2</sub> ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 5","pages":"216-230"},"PeriodicalIF":4.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9691748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cysteinyl leukotriene receptor 1 is a potent regulator of the endosomal-lysosomal system in the ARPE-19 retinal pigment epithelial cell line. 半胱氨酸白三烯受体1是ARPE-19视网膜色素上皮细胞系内溶酶体系统的有效调节剂。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2023-04-01 DOI: 10.1111/tra.12881
Andreas Koller, Susanne Maria Brunner, Julia Preishuber-Pflügl, Christian Runge, Anja-Maria Ladek, Herbert Anton Reitsamer, Andrea Trost

The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.

核内体-溶酶体系统是细胞稳态的中心,包括核内体、溶酶体和自噬体等特定细胞器的功能和动力学。在之前的研究中,我们发现在基础细胞条件下,半胱氨酸白三烯受体1 (CysLTR1)调节视网膜色素上皮细胞系ARPE-19的自噬。然而,CysLTR1调控自噬的潜在机制尚不清楚。因此,在本研究中,我们将详细分析抑制CysLTR1对内体-溶酶体系统的影响,以确定CysLTR1在细胞稳态和自噬调节中的作用。CysLTR1拮抗剂Zafirlukast对ARPE-19细胞的CysLTR1抑制作用耗尽了溶酶体库。此外,CysLTR1拮抗剂降低了内吞能力和表皮生长因子的内化,降低了转铁蛋白受体CD71的水平。血清饥饿消除了Zafirlukast对自噬通量的影响,这表明CysLTR1对血清成分的内吞调节是一种重要的自噬调节机制。CysLTR1在炎症和细胞应激中的作用已被广泛研究,但其在内体-溶酶体途径中的作用在很大程度上是未知的。本研究对CysLTR1在细胞内吞作用中的基础活性及其对自噬等下游过程的影响提供了新的见解。
{"title":"Cysteinyl leukotriene receptor 1 is a potent regulator of the endosomal-lysosomal system in the ARPE-19 retinal pigment epithelial cell line.","authors":"Andreas Koller,&nbsp;Susanne Maria Brunner,&nbsp;Julia Preishuber-Pflügl,&nbsp;Christian Runge,&nbsp;Anja-Maria Ladek,&nbsp;Herbert Anton Reitsamer,&nbsp;Andrea Trost","doi":"10.1111/tra.12881","DOIUrl":"https://doi.org/10.1111/tra.12881","url":null,"abstract":"<p><p>The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 4","pages":"177-189"},"PeriodicalIF":4.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9550154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Traffic
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1