首页 > 最新文献

Traffic最新文献

英文 中文
Peroxisome population control by phosphoinositide signaling at the endoplasmic reticulum-plasma membrane interface. 通过内质网-质膜界面的磷酸肌醇信号控制过氧化物酶体群体。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2023-11-05 DOI: 10.1111/tra.12923
Barbara Knoblach, Richard A Rachubinski

Phosphoinositides are lipid signaling molecules acting at the interface of membranes and the cytosol to regulate membrane trafficking, lipid transport and responses to extracellular stimuli. Peroxisomes are multicopy organelles that are highly responsive to changes in metabolic and environmental conditions. In yeast, peroxisomes are tethered to the cell cortex at defined focal structures containing the peroxisome inheritance protein, Inp1p. We investigated the potential impact of changes in cortical phosphoinositide levels on the peroxisome compartment of the yeast cell. Here we show that the phosphoinositide, phosphatidylinositol-4-phosphate (PI4P), found at the junction of the cortical endoplasmic reticulum and plasma membrane (cER-PM) acts to regulate the cell's peroxisome population. In cells lacking a cER-PM tether or the enzymatic activity of the lipid phosphatase Sac1p, cortical PI4P is elevated, peroxisome numbers and motility are increased, and peroxisomes are no longer firmly tethered to Inp1p-containing foci. Reattachment of the cER to the PM through an artificial ER-PM "staple" in cells lacking the cER-PM tether does not restore peroxisome populations to the wild-type condition, demonstrating that integrity of PI4P signaling at the cell cortex is required for peroxisome homeostasis.

磷脂酰肌醇是脂质信号分子,作用于膜和胞质溶胶的界面,调节膜运输、脂质运输和对细胞外刺激的反应。过氧化物酶体是一种多拷贝细胞器,对代谢和环境条件的变化具有高度反应性。在酵母中,过氧化物酶体与细胞皮层相连,位于含有过氧化物酶遗传蛋白Inp1p的特定局灶结构。我们研究了皮层磷酸肌醇水平变化对酵母细胞过氧化物酶体区室的潜在影响。在这里,我们发现在皮质内质网和质膜(cER-PM)连接处发现的磷脂酰肌醇-4-磷酸(PI4P)起到调节细胞过氧化物酶体群体的作用。在缺乏cER-PM系链或脂质磷酸酶Sac1p的酶活性的细胞中,皮层PI4P升高,过氧化物酶体数量和运动性增加,过氧化物酶不再牢固地束缚在含有Inp1p的病灶上。在缺乏cER-PM系链的细胞中,通过人工ER-PM“钉”将cER重新连接到PM并不能将过氧化物酶体群体恢复到野生型状态,这表明细胞皮层PI4P信号的完整性是过氧化物酶物稳态所必需的。
{"title":"Peroxisome population control by phosphoinositide signaling at the endoplasmic reticulum-plasma membrane interface.","authors":"Barbara Knoblach, Richard A Rachubinski","doi":"10.1111/tra.12923","DOIUrl":"10.1111/tra.12923","url":null,"abstract":"<p><p>Phosphoinositides are lipid signaling molecules acting at the interface of membranes and the cytosol to regulate membrane trafficking, lipid transport and responses to extracellular stimuli. Peroxisomes are multicopy organelles that are highly responsive to changes in metabolic and environmental conditions. In yeast, peroxisomes are tethered to the cell cortex at defined focal structures containing the peroxisome inheritance protein, Inp1p. We investigated the potential impact of changes in cortical phosphoinositide levels on the peroxisome compartment of the yeast cell. Here we show that the phosphoinositide, phosphatidylinositol-4-phosphate (PI4P), found at the junction of the cortical endoplasmic reticulum and plasma membrane (cER-PM) acts to regulate the cell's peroxisome population. In cells lacking a cER-PM tether or the enzymatic activity of the lipid phosphatase Sac1p, cortical PI4P is elevated, peroxisome numbers and motility are increased, and peroxisomes are no longer firmly tethered to Inp1p-containing foci. Reattachment of the cER to the PM through an artificial ER-PM \"staple\" in cells lacking the cER-PM tether does not restore peroxisome populations to the wild-type condition, demonstrating that integrity of PI4P signaling at the cell cortex is required for peroxisome homeostasis.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71486491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A vesicular Warburg effect: Aerobic glycolysis occurs on axonal vesicles for local NAD+ recycling and transport 水泡沃伯格效应有氧糖酵解发生在轴突小泡上,用于局部 NAD+ 循环和运输
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-12 DOI: 10.1111/tra.12926
Maximilian Mc Cluskey, Hervé Dubouchaud, Anne-Sophie Nicot, Frédéric Saudou
In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.
在神经元中,囊泡的快速轴突运输(FAT)发生在长距离上,并且需要以三磷酸腺苷(ATP)的形式为分子马达提供持续和局部的能量供应。脂肪独立于线粒体代谢。事实上,糖酵解机制存在于囊泡上,局部产生ATP,以及以葡萄糖为底物与氢结合的烟酰胺腺嘌呤二核苷酸(NADH)和丙酮酸。目前尚不清楚丙酮酸是否从囊泡转移到线粒体,以及NADH如何在囊泡上循环成NAD+以进行持续的糖酵解活性。优化的亚细胞区室糖酵解活性测试允许对脑内囊泡糖酵解动力学进行评估。这表明糖酵解在囊泡上比在细胞质上更有效。我们还发现乳酸脱氢酶(LDH)酶活性是有效的囊泡ATP生产所必需的。事实上,抑制LDH或丙酮酸的强制降解会抑制轴突囊泡产生ATP。我们发现LDHA而不是B异构体在轴突囊泡上富集,这表明丙酮酸优先转化为乳酸,NADH同时在囊泡上再循环为NAD+。最后,我们发现LDHA抑制显著降低了芯片上重建皮质纹状体回路中致密核囊泡和突触囊泡前体的脂肪。综上所述,这表明有氧糖酵解是为神经元囊泡运输提供能量所必需的,类似于Warburg效应。
{"title":"A vesicular Warburg effect: Aerobic glycolysis occurs on axonal vesicles for local NAD+ recycling and transport","authors":"Maximilian Mc Cluskey, Hervé Dubouchaud, Anne-Sophie Nicot, Frédéric Saudou","doi":"10.1111/tra.12926","DOIUrl":"https://doi.org/10.1111/tra.12926","url":null,"abstract":"In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD<sup>+</sup> on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamond controls epithelial polarity through the dynactin-dynein complex. 金刚石通过动力蛋白-动力蛋白复合物控制上皮极性。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-08-29 DOI: 10.1111/tra.12917
Hang Zhao, Lin Shi, Zhengran Li, Ruiyan Kong, Lemei Jia, Shan Lu, Jian-Hua Wang, Meng-Qiu Dong, Xuan Guo, Zhouhua Li

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.

上皮极性对上皮组织的正常功能、肿瘤发生和转移至关重要。进化上保守的跨膜蛋白碎屑(Crb)是上皮极性的关键调节因子。Crb蛋白及其转录本均位于上皮细胞的顶端。然而,目前还不完全清楚它们是如何靶向于顶域的。在这里,我们以果蝇卵巢滤泡上皮为模型,发现在缺少金刚石(Dind)的情况下,滤泡细胞(FCs)的上皮极性丢失,Crb蛋白在顶端结构域缺失。有趣的是,通过co-IP-MS分析,发现Dind与动力蛋白复合物的不同组分相关联。Dind稳定了动力蛋白,而动力蛋白的缺失导致的缺陷几乎与Dind缺陷fc中观察到的缺陷相同。最后,Dind和dynactin对于FCs中crb转录本的顶端定位也是必需的。因此,我们的数据表明,Dind通过动力蛋白/动力蛋白介导的Crb蛋白及其转录物的转运到顶端结构域来控制上皮的顶基(A/B)极性。
{"title":"Diamond controls epithelial polarity through the dynactin-dynein complex.","authors":"Hang Zhao, Lin Shi, Zhengran Li, Ruiyan Kong, Lemei Jia, Shan Lu, Jian-Hua Wang, Meng-Qiu Dong, Xuan Guo, Zhouhua Li","doi":"10.1111/tra.12917","DOIUrl":"10.1111/tra.12917","url":null,"abstract":"<p><p>Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10167112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper-independent lysosomal localisation of the Wilson disease protein ATP7B. Wilson病蛋白ATP7B的铜非依赖性溶酶体定位。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-10-17 DOI: 10.1111/tra.12919
Saptarshi Maji, Marinella Pirozzi, Ruturaj, Raviranjan Pandey, Tamal Ghosh, Santanu Das, Arnab Gupta

In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.

在肝细胞中,Wilson病蛋白ATP7B位于反式高尔基体网络(TGN)上,并通过溶酶体胞吐作用转运至外周溶酶体,输出过量的细胞内铜。我们发现,在基础铜中,甚至在铜螯合时,大量的ATP7B存在于肝细胞的内溶酶体室中,但不存在于非肝细胞中。这些携带ATP7B的溶酶体位于约10 nm至TGN。ATP7B自身组成性地分布在具有较低pH的TGN的亚结构域和TGN近端溶酶体区室之间。高尔基体破坏后,ATP7B在TGN溶酶体共生位点上的存在表明ATP7B可能直接在TGN及其近端溶酶体之间交换。操纵溶酶体定位显著改变ATP7B在细胞中的定位。与先前的理解相反,我们发现在富含铜的肝细胞中进行铜螯合时,ATP7B不会从外周溶酶体中回收回TGN;相反,ATP7B循环到这些TGN近端溶酶体,以启动下一个铜转运周期。我们报道了迄今为止未知的ATP7B的铜非依赖性溶酶体定位,以及TGN近端溶酶体而不是TGN作为ATP7B逆行途径中的末端受体细胞器的重要性。
{"title":"Copper-independent lysosomal localisation of the Wilson disease protein ATP7B.","authors":"Saptarshi Maji, Marinella Pirozzi, Ruturaj, Raviranjan Pandey, Tamal Ghosh, Santanu Das, Arnab Gupta","doi":"10.1111/tra.12919","DOIUrl":"10.1111/tra.12919","url":null,"abstract":"<p><p>In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-chaperone BAG3 enters autophagic pathway via its interaction with microtubule associated protein 1 light chain 3 beta. 协同伴侣蛋白BAG3通过与微管相关蛋白1轻链3 β的相互作用进入自噬途径。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-09-01 DOI: 10.1111/tra.12916
Hagen Körschgen, Marius Baeken, Daniel Schmitt, Heike Nagel, Christian Behl

The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control.

通过其多个结构域以及与HSP70家族或小HSPs的伴侣蛋白相互作用,共同伴侣蛋白BAG3是多种细胞通路的枢纽。在衰老过程中,特别是在细胞应激条件下,BAG3与分子伴侣一起,通过泛素受体确保聚集或易于聚集的泛素化蛋白被隔离到自噬-溶酶体系统。越来越多的证据表明,BAG3介导的选择性自噬独立于货物泛素化,导致分析预测BAG3与LC3蛋白的直接相互作用。在系统发育上,BAG3包含几个高度保守的潜在lir, lc3相互作用区域,这可能允许BAG3及其货物直接靶向自噬体并驱动其自噬降解。基于下拉实验、肽阵列和接近连接实验,我们的研究结果提供了BAG3与LC3B相互作用的证据。此外,我们可以证明,与野生型BAG3相比,禁用所有预测的lir可以消除BAG3与lc3b阳性结构共定位的诱导性,并导致纯化的天然自噬囊泡中BAG3水平大幅降低。这些结果表明BAG3通过与LC3B的相互作用而自噬靶向。因此,我们得出结论,除了作为HSP70的关键共伴侣外,BAG3还可能作为客户蛋白的货物受体,这将显著扩展BAG3在选择性巨噬和蛋白质质量控制中的作用。
{"title":"Co-chaperone BAG3 enters autophagic pathway via its interaction with microtubule associated protein 1 light chain 3 beta.","authors":"Hagen Körschgen, Marius Baeken, Daniel Schmitt, Heike Nagel, Christian Behl","doi":"10.1111/tra.12916","DOIUrl":"10.1111/tra.12916","url":null,"abstract":"<p><p>The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interferon induction by STING requires its translocation to the late endosomes. STING诱导干扰素需要将其转移到晚期内体。
IF 3.6 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-01 Epub Date: 2023-09-02 DOI: 10.1111/tra.12918
Chenyao Wang, Nikhil Sharma, Patricia M Kessler, Ganes C Sen

To combat microbial infections, mammalian cells use a variety of innate immune response pathways to induce synthesis of anti-microbial proteins. The cGAS/STING pathway recognizes cytoplasmic viral or cellular DNA to elicit signals that lead to type I interferon and other cytokine synthesis. cGAMP, synthesized by DNA-activated cGAS, activates the ER-associated protein, STING, which oligomerizes and translocates to other intracellular membrane compartments to trigger different branches of signaling. We have reported that, in the ER, EGFR-mediated phosphorylation of Tyr245 of STING is required for its transit to the late endosomes, where it recruits and activates the transcription factor IRF3 required for IFN induction. In the current study, we inquired whether STING Tyr245 phosphorylation per se or STING's location in the late endosomes was critical for its ability to recruit IRF3 and induce IFN. Using pharmacological inhibitors or genetic ablation of proteins that are essential for specific steps of STING trafficking, we demonstrated that the presence of STING in the late endosomal membranes, even without Tyr245 phosphorylation, was sufficient for IRF3-mediated IFN induction.

为了对抗微生物感染,哺乳动物细胞利用各种先天免疫反应途径诱导抗微生物蛋白的合成。cGAS/STING途径识别细胞质病毒或细胞DNA,以引发导致I型干扰素和其他细胞因子合成的信号。cGAMP由DNA激活的cGAS合成,激活ER相关蛋白STING,STING低聚并转移到其他细胞内膜区室,以触发不同的信号分支。我们已经报道,在ER中,EGFR介导的STING的Tyr245磷酸化是其转运到晚期内体所必需的,在那里它募集并激活IFN诱导所需的转录因子IRF3。在目前的研究中,我们询问STING Tyr245磷酸化本身或STING在晚期内体中的位置是否对其募集IRF3和诱导IFN的能力至关重要。使用药理学抑制剂或对STING运输特定步骤所必需的蛋白质进行基因消融,我们证明了STING在晚期内体膜中的存在,即使没有Tyr245磷酸化,也足以诱导IRF3介导的IFN。
{"title":"Interferon induction by STING requires its translocation to the late endosomes.","authors":"Chenyao Wang, Nikhil Sharma, Patricia M Kessler, Ganes C Sen","doi":"10.1111/tra.12918","DOIUrl":"10.1111/tra.12918","url":null,"abstract":"<p><p>To combat microbial infections, mammalian cells use a variety of innate immune response pathways to induce synthesis of anti-microbial proteins. The cGAS/STING pathway recognizes cytoplasmic viral or cellular DNA to elicit signals that lead to type I interferon and other cytokine synthesis. cGAMP, synthesized by DNA-activated cGAS, activates the ER-associated protein, STING, which oligomerizes and translocates to other intracellular membrane compartments to trigger different branches of signaling. We have reported that, in the ER, EGFR-mediated phosphorylation of Tyr245 of STING is required for its transit to the late endosomes, where it recruits and activates the transcription factor IRF3 required for IFN induction. In the current study, we inquired whether STING Tyr245 phosphorylation per se or STING's location in the late endosomes was critical for its ability to recruit IRF3 and induce IFN. Using pharmacological inhibitors or genetic ablation of proteins that are essential for specific steps of STING trafficking, we demonstrated that the presence of STING in the late endosomal membranes, even without Tyr245 phosphorylation, was sufficient for IRF3-mediated IFN induction.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10201531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anterograde trafficking of Toll-like receptors requires the cargo sorting adaptors TMED-2 and 7. Toll样受体的反向贩运需要货物分拣适配器TMED-2和7。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-07-26 DOI: 10.1111/tra.12912
Julia E J Holm, Sandro G Soares, Martyn F Symmons, Afiqah Saleh Huddin, Martin C Moncrieffe, Nicholas J Gay

Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.

Toll样受体(TLRs)通过识别病原体的保守结构特征和启动先天免疫反应,在免疫中发挥着关键作用。TLR信号传导受到复杂的调控,但人们对此知之甚少。在这里,我们发现两种小的I型跨膜受体,TMED2和7,在早期分泌途径中作为货物分拣适配器发挥作用,是将TLR从内质网转运到高尔基体所必需的。蛋白质相互作用研究表明,TMED7与TLR2、TLR4和TLR5相互作用,但与TLR3和TLR9不相互作用。另一方面,TMED2与TLR2、TLR4和TLR3相互作用。TMED7的显性阴性形式抑制细胞表面TLR从内质网向高尔基体的输出。相比之下,TMED2是质膜和内体TLR的ER输出所必需的。总之,这些发现表明TMED2和TMED7与TLRs的结合促进了从ER到高尔基体的顺行运输。
{"title":"Anterograde trafficking of Toll-like receptors requires the cargo sorting adaptors TMED-2 and 7.","authors":"Julia E J Holm, Sandro G Soares, Martyn F Symmons, Afiqah Saleh Huddin, Martin C Moncrieffe, Nicholas J Gay","doi":"10.1111/tra.12912","DOIUrl":"10.1111/tra.12912","url":null,"abstract":"<p><p>Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics. 树突中mRNP转运的统计模型:β-肌动蛋白和Arc mRNP动力学的比较分析。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-08-06 DOI: 10.1111/tra.12913
Hyerim Ahn, Xavier Durang, Jae Youn Shim, Gaeun Park, Jae-Hyung Jeon, Hye Yoon Park

Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous β-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both β-actin and Arc mRNP transport in proximal dendrites. A critical difference between β-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of β-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed β-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing β-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.

信使核糖核酸(信使核糖核酸)在树突中的定位对于调节长期记忆形成过程中的基因表达至关重要。mRNA与RNA结合蛋白(RBP)结合,形成信使核糖核蛋白(mRNP)复合物,由运动蛋白沿微管转运至其靶突触。然而,mRNP在树突中找到目标位置的动力学尚未得到很好的理解。在这里,我们分别使用MS2和PP7干环系统研究了分离的小鼠海马神经元中内源性β-肌动蛋白和Arc-mRNPs的运动。通过评估mRNP运动的统计特性,我们发现衰老的Lévy行走模型有效地描述了近端树突中的β-肌动蛋白和Arc mRNP转运。β-肌动蛋白和Arc-mRNPs之间的关键差异是老化时间、转运起始和测量起始之间的时间滞后。β-肌动蛋白mRNP(~100 s) 与Arc mRNP(~30 s) 反映了组成型表达的β-肌动蛋白mRNP的半衰期更长。此外,我们的模型还允许我们估计树突中新产生和预先存在的β-肌动蛋白mRNPs的比例。这项研究为mRNP转运提供了一个强大的理论框架,深入了解了mRNP如何在神经元中定位其靶点。
{"title":"Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics.","authors":"Hyerim Ahn, Xavier Durang, Jae Youn Shim, Gaeun Park, Jae-Hyung Jeon, Hye Yoon Park","doi":"10.1111/tra.12913","DOIUrl":"10.1111/tra.12913","url":null,"abstract":"<p><p>Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous β-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both β-actin and Arc mRNP transport in proximal dendrites. A critical difference between β-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of β-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed β-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing β-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of hydrophobicity and codon usage bias determines sorting of model K+ channel protein to either mitochondria or endoplasmic reticulum. 疏水性和密码子使用偏差的组合决定了模型K+通道蛋白向线粒体或内质网的分选。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-08-14 DOI: 10.1111/tra.12915
Anja J Engel, Steffen Paech, Markus Langhans, James L van Etten, Anna Moroni, Gerhard Thiel, Oliver Rauh

When the K+ channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.

当来自Ectocarpus siliculosus病毒1的K+通道样蛋白Kesv在哺乳动物细胞中异源表达时,它被分选到线粒体中。这种靶向可以通过改变基因不同区域的密码子使用或通过将疏水性氨基酸(AAs)的三联体插入蛋白质的C末端跨膜结构域(ct-TMD)而重定向到内质网(ER)。插入的AA的风味和/或其密码子使用的系统变化表明,插入的AA三联体中的正电荷单独作为线粒体分选的强信号。在中性AA三联体的情况下,亲水性AA和很少使用的密码子的组合有利于线粒体分选;对ER的排序表现出相反的依赖性。当AA三联体中一个常见密码子跟随一个罕见密码子时,这种ER排序的倾向特别高;相比之下,线粒体的排序得到了密码子一致性的支持。由于已知正电荷、疏水性AAs和常见密码子等参数有助于核糖体中新生蛋白质的延伸,因此数据表明,ct-TMD中延伸速度和共翻译折叠的局部变化影响细胞内蛋白质分选的机制。
{"title":"Combination of hydrophobicity and codon usage bias determines sorting of model K<sup>+</sup> channel protein to either mitochondria or endoplasmic reticulum.","authors":"Anja J Engel,&nbsp;Steffen Paech,&nbsp;Markus Langhans,&nbsp;James L van Etten,&nbsp;Anna Moroni,&nbsp;Gerhard Thiel,&nbsp;Oliver Rauh","doi":"10.1111/tra.12915","DOIUrl":"10.1111/tra.12915","url":null,"abstract":"<p><p>When the K<sup>+</sup> channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10362730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic tandem proximity-based proteomics-Protein trafficking at the proteome-scale. 基于动态串联邻近度的蛋白质组学蛋白质组学规模的蛋白质运输。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-08-15 DOI: 10.1111/tra.12914
Eric Chevet, Maria Antonietta De Matteis, Eeva-Liisa Eskelinen, Hesso Farhan

TransitID is a new methodology based on proximity labeling allowing for the study of protein trafficking a the proteome scale.

TransitID是一种基于邻近标记的新方法,可用于蛋白质组规模的蛋白质运输研究。
{"title":"Dynamic tandem proximity-based proteomics-Protein trafficking at the proteome-scale.","authors":"Eric Chevet,&nbsp;Maria Antonietta De Matteis,&nbsp;Eeva-Liisa Eskelinen,&nbsp;Hesso Farhan","doi":"10.1111/tra.12914","DOIUrl":"10.1111/tra.12914","url":null,"abstract":"<p><p>TransitID is a new methodology based on proximity labeling allowing for the study of protein trafficking a the proteome scale.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10353677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Traffic
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1