Froth flotation is a widely used technique for the beneficiation of fine coals, specifically those whose size less than 0.5 mm. In this study, the flotation performance of Karma coal samples from Central Coalfields Limited (CCL) was analysed using the release analysis technique. The experimental samples had a size range of − 0.15 to + 0.074 mm. Various operational parameters such as collector dosage (kg/tonne), frother dosage (kg/tonne), and pulp density (%) were modified to assess their impact on flotation performance. Release curves were plotted to determine the cumulative product percentage and the product ash percentage for different operating parameters. The highest yield achieved was 92.33% with a combination of diesel oil and pine oil at dosages of 0.75 kg/tonne and 0.5 kg/tonne, respectively. This yield had an ash level of 30.65% at a pulp density of 15%. Conversely, the lowest yield of 53.26% was obtained using a single MIBC frother at a dosage of 0.15 kg/tonne.
{"title":"Release Analysis by Combining Different Reagents and Choosing Best Reagent in Batch Type Froth Flotation Process for Central Coalfields Limited (CCL) Karma Coal","authors":"Subha Ranjan Paul, Ashish Kumar Dash, Satyajeet Parida, Sanjay Bhargav","doi":"10.1007/s12666-023-03140-8","DOIUrl":"https://doi.org/10.1007/s12666-023-03140-8","url":null,"abstract":"<p>Froth flotation is a widely used technique for the beneficiation of fine coals, specifically those whose size less than 0.5 mm. In this study, the flotation performance of Karma coal samples from Central Coalfields Limited (CCL) was analysed using the release analysis technique. The experimental samples had a size range of − 0.15 to + 0.074 mm. Various operational parameters such as collector dosage (kg/tonne), frother dosage (kg/tonne), and pulp density (%) were modified to assess their impact on flotation performance. Release curves were plotted to determine the cumulative product percentage and the product ash percentage for different operating parameters. The highest yield achieved was 92.33% with a combination of diesel oil and pine oil at dosages of 0.75 kg/tonne and 0.5 kg/tonne, respectively. This yield had an ash level of 30.65% at a pulp density of 15%. Conversely, the lowest yield of 53.26% was obtained using a single MIBC frother at a dosage of 0.15 kg/tonne.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1007/s12666-024-03358-0
Feride N. Türk, Hasan Arslanoğlu
In this study, the dissolution conditions and dissolution kinetics of copper from malachite in the presence of organic acid (C4H6O6) as an organic leaching reagent were examined. The effects of particle size, acid concentration, time, solid/liquid ratio, temperature, and mixing speed on the dissolution process of copper were investigated. According to the test results, optimum dissolution conditions are as follows: particle size was 74 µm; organic acid concentration was 0.2 mol/L; duration was 60 min; solid/liquid ratio was 1/10; the temperature was determined as 25 °C and the stirring speed was 300 rpm; and the copper extraction value was obtained as 73.18% under optimum experimental conditions. Kinetic models were applied to the dissolution efficiencies obtained to determine the dissolution kinetics of copper in the presence of organic acid, and it was found that the dissolution process was controlled by the film diffusion model. In light of the data obtained, it can be said that organic acid, which is an economical and environmentally friendly leaching reagent, can be used in the dissolution of copper from malachite ((text{Cu}(text{OH}{)}_{2}{text{CuCO}}_{3})), as well as in the leaching of other precious metals such as copper, zinc, and cobalt from oxide and carbonate ores.
{"title":"Investigation of Leaching Conditions and Leaching Kinetics of Oxidized Copper Ore Malachite at Atmospheric Pressure Using Tartaric Acid Solution","authors":"Feride N. Türk, Hasan Arslanoğlu","doi":"10.1007/s12666-024-03358-0","DOIUrl":"https://doi.org/10.1007/s12666-024-03358-0","url":null,"abstract":"<p>In this study, the dissolution conditions and dissolution kinetics of copper from malachite in the presence of organic acid (C<sub>4</sub>H<sub>6</sub>O<sub>6</sub>) as an organic leaching reagent were examined. The effects of particle size, acid concentration, time, solid/liquid ratio, temperature, and mixing speed on the dissolution process of copper were investigated. According to the test results, optimum dissolution conditions are as follows: particle size was 74 µm; organic acid concentration was 0.2 mol/L; duration was 60 min; solid/liquid ratio was 1/10; the temperature was determined as 25 °C and the stirring speed was 300 rpm; and the copper extraction value was obtained as 73.18% under optimum experimental conditions. Kinetic models were applied to the dissolution efficiencies obtained to determine the dissolution kinetics of copper in the presence of organic acid, and it was found that the dissolution process was controlled by the film diffusion model. In light of the data obtained, it can be said that organic acid, which is an economical and environmentally friendly leaching reagent, can be used in the dissolution of copper from malachite <span>((text{Cu}(text{OH}{)}_{2}{text{CuCO}}_{3}))</span>, as well as in the leaching of other precious metals such as copper, zinc, and cobalt from oxide and carbonate ores.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"50 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, a new Double Rotating Shoulder (DRS) tool is designed to create a preheating effect and promote material flow in the shoulder-affected area during friction stir welding (FSW). A comparative study of the temperature field, strain field and material flow of AA 6061 aluminium alloy during FSW using a DRS tool and a conventional tool was carried out using numerical simulation. The model was verified according to the actual temperature field in both cases. Further, the macroscopic morphology and mechanical properties of both joints were investigated. The results showed that the simulated temperature field during FSW using a DRS tool has a good correlation with the actual temperature field. The DRS tool does lead to different macroscopic profiles but has almost no impact on mechanical properties.
{"title":"Simulation and Experimental Analysis of Double Rotating Shoulder Friction Stir Welding","authors":"Jianhui Wu, Tao Sun, Zhenkui Liang, Yongqi Yang, Xiaomei Feng, Yifu Shen","doi":"10.1007/s12666-024-03356-2","DOIUrl":"https://doi.org/10.1007/s12666-024-03356-2","url":null,"abstract":"<p>In this work, a new Double Rotating Shoulder (DRS) tool is designed to create a preheating effect and promote material flow in the shoulder-affected area during friction stir welding (FSW). A comparative study of the temperature field, strain field and material flow of AA 6061 aluminium alloy during FSW using a DRS tool and a conventional tool was carried out using numerical simulation. The model was verified according to the actual temperature field in both cases. Further, the macroscopic morphology and mechanical properties of both joints were investigated. The results showed that the simulated temperature field during FSW using a DRS tool has a good correlation with the actual temperature field. The DRS tool does lead to different macroscopic profiles but has almost no impact on mechanical properties.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"37 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1007/s12666-024-03349-1
Sharareh Mirzaee, Kamran Sabahi
In this work, the magnetic hysteresis loop of the polyvinyl alcohol@CoFe2O4 nanocomposite has been predicted and simulated using a deep artificial neural network (ANN) and Monte Carlo (MC) methods. To increase the capability of the traditional neural networks in modeling and forecasting problems, the proposed deep ANN has two hidden layers that benefit from deep learning techniques to overcome well-known issues such as overfitting and gradient vanishing. The deep ANN predicted results were compared with the simulated and experimental hysteresis loops of the synthesized polyvinyl alcohol@CoFe2O4 nanocomposites obtained from the vibrating sample magnetometer and MC method. The interaction between polymer and nanoparticles, their structure, and morphology were analyzed employing Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and field emission scanning electron microscopy. Comparison between the hysteresis loops revealed that the deep ANN method that has been trained with the previous published data was successful in the prediction of the shape and coercive field of particles in a polymer matrix relative to the MC method, which considered only the uniaxial anisotropy and Zeeman energy of the nanoparticles. The coercivity and remanence magnetization measured with the accuracy of about 93.33% and 62.23% for deep ANN method and 80.76% and 66.66% for MC method, respectively.
在这项工作中,使用深度人工神经网络(ANN)和蒙特卡罗(MC)方法预测和模拟了聚乙烯醇@CoFe2O4纳米复合材料的磁滞回线。为了提高传统神经网络在建模和预测问题上的能力,所提出的深度人工神经网络有两个隐藏层,受益于深度学习技术,克服了众所周知的问题,如过拟合和梯度消失。将深度神经网络的预测结果与振动样品磁力计和 MC 方法获得的合成聚乙烯醇@CoFe2O4 纳米复合材料的模拟和实验磁滞回线进行了比较。利用傅立叶变换红外光谱、X 射线衍射光谱和场发射扫描电子显微镜分析了聚合物与纳米粒子之间的相互作用、它们的结构和形态。滞后环之间的比较显示,与只考虑纳米粒子的单轴各向异性和泽曼能量的 MC 方法相比,利用以前公布的数据训练的深度 ANN 方法在预测聚合物基体中粒子的形状和矫顽力场方面取得了成功。深度 ANN 方法测得的矫顽力和剩磁的准确率分别为 93.33% 和 62.23%,MC 方法为 80.76% 和 66.66%。
{"title":"Deep Artificial Neural Network Method for Magnetic Hysteresis Loop Prediction of Polyvinyl Alcohol@CoFe2O4 Nanocomposites","authors":"Sharareh Mirzaee, Kamran Sabahi","doi":"10.1007/s12666-024-03349-1","DOIUrl":"https://doi.org/10.1007/s12666-024-03349-1","url":null,"abstract":"<p>In this work, the magnetic hysteresis loop of the polyvinyl alcohol@CoFe<sub>2</sub>O<sub>4</sub> nanocomposite has been predicted and simulated using a deep artificial neural network (ANN) and Monte Carlo (MC) methods. To increase the capability of the traditional neural networks in modeling and forecasting problems, the proposed deep ANN has two hidden layers that benefit from deep learning techniques to overcome well-known issues such as overfitting and gradient vanishing. The deep ANN predicted results were compared with the simulated and experimental hysteresis loops of the synthesized polyvinyl alcohol@CoFe<sub>2</sub>O<sub>4</sub> nanocomposites obtained from the vibrating sample magnetometer and MC method. The interaction between polymer and nanoparticles, their structure, and morphology were analyzed employing Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and field emission scanning electron microscopy. Comparison between the hysteresis loops revealed that the deep ANN method that has been trained with the previous published data was successful in the prediction of the shape and coercive field of particles in a polymer matrix relative to the MC method, which considered only the uniaxial anisotropy and Zeeman energy of the nanoparticles. The coercivity and remanence magnetization measured with the accuracy of about 93.33% and 62.23% for deep ANN method and 80.76% and 66.66% for MC method, respectively.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"16 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1007/s12666-024-03353-5
Fatih Özen
A dissimilar TWIP/304L joint was produced using oscillation fiber laser welding with welding speeds of 80 mm/s and 120 mm/s, as well as different power levels. Tensile tests, hardness measurements, and SEM/EDS/EBSD analyses were conducted to reveal the characterization of dissimilar TWIP/304L steel joint. Oscillation of the laser beam resulted in layered marks in the fusion zone. These layered marks contain primary austenitic dendrites and inertinitic secondary austenite. Both steels exhibited narrow heat-affected zones. An interlayer of an unmixed zone was formed between the fusion zone and the heat-affected zone of 304L due to differences in their liquidus points. Some intergranular gaps were observed in the heat-affected zone of the TWIP steel. The maximum tensile strength, 561.3 MPa, was achieved at a laser power of 3600 W and a welding speed of 80 mm/s. All specimens failed from the fusion zone of the dissimilar joint due to high hardness difference and underfill induced notch effect. The hardness difference reached 51.4 Hv10 due to the heterogeneous composition of the fusion zone. This variation in the microstructure resulted in both ductile and brittle fractures.
{"title":"Effect of Welding Parameters on Mechanical Performance and Microstructural Characterization of Fiber Laser Oscillation Welded Dissimilar TWIP/304L Steel Joints","authors":"Fatih Özen","doi":"10.1007/s12666-024-03353-5","DOIUrl":"https://doi.org/10.1007/s12666-024-03353-5","url":null,"abstract":"<p>A dissimilar TWIP/304L joint was produced using oscillation fiber laser welding with welding speeds of 80 mm/s and 120 mm/s, as well as different power levels. Tensile tests, hardness measurements, and SEM/EDS/EBSD analyses were conducted to reveal the characterization of dissimilar TWIP/304L steel joint. Oscillation of the laser beam resulted in layered marks in the fusion zone. These layered marks contain primary austenitic dendrites and inertinitic secondary austenite. Both steels exhibited narrow heat-affected zones. An interlayer of an unmixed zone was formed between the fusion zone and the heat-affected zone of 304L due to differences in their liquidus points. Some intergranular gaps were observed in the heat-affected zone of the TWIP steel. The maximum tensile strength, 561.3 MPa, was achieved at a laser power of 3600 W and a welding speed of 80 mm/s. All specimens failed from the fusion zone of the dissimilar joint due to high hardness difference and underfill induced notch effect. The hardness difference reached 51.4 Hv10 due to the heterogeneous composition of the fusion zone. This variation in the microstructure resulted in both ductile and brittle fractures.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"86 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25DOI: 10.1007/s12666-024-03345-5
Chandan Prasad, A. Gali
Aluminum matrix composites incorporating titanium carbide (TiC) and nickel (Ni) were fabricated through the ultrasonic-assisted stir-casting technique. Micrographs revealed the uniform dispersion of TiC particles within the matrix, while Ni reacted with aluminum, forming the intermetallic compound Al3Ni, dispersed along the grain boundaries. The incorporation of TiC and Ni resulted in a considerable decrease in grain size from ~ 130 to ~ 49 µm. Notably, the incorporation of 3 wt% TiC and 6 wt% Ni (sample S(3,6)) exhibited a substantial increase in yield strength (YS), ultimate tensile strength (UTS), and hardness by 51.11%, 32.57%, and 46.96%, respectively, compared to the unreinforced sample S(0,0). The observed improvements in these properties can be ascribed to a mix of factors, including grain refinement, Al3Ni precipitate hardening, and dispersion hardening facilitated by the TiC particles. The increase in reinforcement weight percentage results in a decrease in the wear rate of reinforced composites, while wear rates for these composites exhibit a linear increase with a change in load from 10 to 20 N.
{"title":"Microstructure, Mechanical, and Tribological Properties of TiC- and Ni-Reinforced AA6061 Matrix Composite Fabricated Through Stir Casting","authors":"Chandan Prasad, A. Gali","doi":"10.1007/s12666-024-03345-5","DOIUrl":"https://doi.org/10.1007/s12666-024-03345-5","url":null,"abstract":"<p>Aluminum matrix composites incorporating titanium carbide (TiC) and nickel (Ni) were fabricated through the ultrasonic-assisted stir-casting technique. Micrographs revealed the uniform dispersion of TiC particles within the matrix, while Ni reacted with aluminum, forming the intermetallic compound Al<sub>3</sub>Ni, dispersed along the grain boundaries. The incorporation of TiC and Ni resulted in a considerable decrease in grain size from ~ 130 to ~ 49 µm. Notably, the incorporation of 3 wt% TiC and 6 wt% Ni (sample S(3,6)) exhibited a substantial increase in yield strength (YS), ultimate tensile strength (UTS), and hardness by 51.11%, 32.57%, and 46.96%, respectively, compared to the unreinforced sample S(0,0). The observed improvements in these properties can be ascribed to a mix of factors, including grain refinement, Al<sub>3</sub>Ni precipitate hardening, and dispersion hardening facilitated by the TiC particles. The increase in reinforcement weight percentage results in a decrease in the wear rate of reinforced composites, while wear rates for these composites exhibit a linear increase with a change in load from 10 to 20 N.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"130 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25DOI: 10.1007/s12666-024-03342-8
Xianman Zhang, Qi Hu, Zhenhai Zheng
The reaction between MoAlB MAB phase and molten ZnCl2 salt resulted in the formation of metastable Mo2AlB2 MAB phase. In our previous work, it was first discovered by us that the periodic layered structure (PLS) was formed at the solid (Cr, Fe)2B/molten Al interface during hot-dip aluminizing and subsequent thermal diffusion treatment of Fe–Cr–B cast steel. The interaction between PLS form in situ, especially the Cr–Al–B MAB phase contained in the PLS, and molten ZnCl2 salt was studied for the first time in this work. There were complex reactions between the PLS and molten ZnCl2. Specially, the Zn2+ in the molten ZnCl2 salt could partially occupy the positions of Al atoms in the Cr–Al–B MAB phase contained in the PLS through the A-site replacement reaction. The topochemical reaction was: Cr3AlB4(s) + ZnCl2(l) → Cr3(Al, Zn)B4(s) + Zn(l) + AlCl3(g).