Guaranteeing the anonymity of the vehicle and the integrity of the transmitted message are two indispensable conditions in vehicular ad-hoc network. Anonymous signature can achieve the two function. However, existing anonymous signature schemes constructed based on traditional cryptosystems cannot withstand quantum attacks. In addition, in some cases, the schemes need to satisfy the non-transferability of signatures to solve the problem of signature misuse due to publicly verified signatures. In order to resist quantum attacks and address the problem of signature misuse, this article proposes a lattice-based chameleon signcryption scheme, which aims to protect vehicle identity and data security. The scheme is resistant to quantum attacks and satisfies signature non-transferability, signer rejectability and non-repudiation. Especially, we prove that the proposed scheme is secure in the Standard Model based on the error learning problem and the classical lattice small integer solution problem.
{"title":"LBCSC: Lattice-based chameleon signcryption scheme for secure and privacy-preserving vehicular communications","authors":"Jianhong Zhang, Xinyan Cui","doi":"10.1002/ett.5040","DOIUrl":"https://doi.org/10.1002/ett.5040","url":null,"abstract":"<p>Guaranteeing the anonymity of the vehicle and the integrity of the transmitted message are two indispensable conditions in vehicular ad-hoc network. Anonymous signature can achieve the two function. However, existing anonymous signature schemes constructed based on traditional cryptosystems cannot withstand quantum attacks. In addition, in some cases, the schemes need to satisfy the non-transferability of signatures to solve the problem of signature misuse due to publicly verified signatures. In order to resist quantum attacks and address the problem of signature misuse, this article proposes a lattice-based chameleon signcryption scheme, which aims to protect vehicle identity and data security. The scheme is resistant to quantum attacks and satisfies signature non-transferability, signer rejectability and non-repudiation. Especially, we prove that the proposed scheme is secure in the Standard Model based on the error learning problem and the classical lattice small integer solution problem.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless sensor networks have sensing functions which made up of small sensor nodes that are processing and communication capabilities. However, the traditional approach of designating a single sensor node as the cluster head often leads to a faster depletion of its energy resources than another node. So, periodic reassignment of the cluster head role among different sensor nodes is crucial to extend operational lifetime and ensure sustained performance. Therefore, this research proposes an Enhanced Agglomerative Hierarchy Algorithm based on the Low Energy Adaptive Clustering Hierarchy (EAHALEACH) protocol, coupled with an enhanced time-controlled optimization algorithm, to enhance energy efficiency by selecting the optimal cluster head from a candidate pool. The proposed method enhances energy efficiency by optimally selecting cluster heads, which reduces energy consumption and extends the lifespan of the network. Additionally, a lightweight energy-aware cluster head rotation algorithm is introduced to efficiently rotate the cluster head role within the sensor node network, minimizing unnecessary data transmissions and extending the network lifetime. A hybrid approach combining Carrier Sense and Time Division Multiple Access (CSTDMA) optimizes packet forwarding by dynamically allocating time slots, reducing collisions and contention to improve packet forwarding efficiency. Comparative analysis with existing techniques demonstrates that the hybrid clustering-based LEACH protocol achieves superior performance in terms of throughput 4600 bps by 2000 rounds, energy consumption 50 J, latency as 1 ms and network lifetime in 1000th node attains 3500 s. These advancements contribute to prolonged operational efficiency and sustained performance in wireless sensor network deployments.
无线传感器网络具有传感功能,由具有处理和通信能力的小型传感器节点组成。然而,指定单个传感器节点作为簇头的传统方法往往会导致其能源耗尽速度快于其他节点。因此,在不同的传感器节点之间定期重新分配簇头角色对于延长运行寿命和确保持续性能至关重要。因此,本研究提出了一种基于低能耗自适应聚类层次结构(EAHALEACH)协议的增强聚类层次结构算法,并结合一种增强的时间控制优化算法,通过从候选池中选择最佳簇头来提高能效。所提出的方法通过优化选择簇头提高了能效,从而降低了能耗,延长了网络的寿命。此外,还引入了一种轻量级能量感知簇头轮换算法,在传感器节点网络内有效轮换簇头角色,最大限度地减少不必要的数据传输,延长网络寿命。载波感应和时分多址(CSTDMA)相结合的混合方法通过动态分配时隙、减少碰撞和争用来优化数据包转发,从而提高数据包转发效率。与现有技术的对比分析表明,基于混合聚类的 LEACH 协议在 2000 轮吞吐量 4600 bps、能耗 50 J、延迟 1 ms 以及第 1000 个节点的网络寿命达到 3500 s 等方面表现出色。这些进步有助于提高无线传感器网络部署的运行效率和持续性能。
{"title":"Delay sensitive and energy adaptive clustering hierarchy protocol using enhanced agglomerative hierarchy algorithm with time-controlled jellyfish optimization","authors":"Atul Kumar Agnihotri, Vishal Awasthi","doi":"10.1002/ett.5039","DOIUrl":"https://doi.org/10.1002/ett.5039","url":null,"abstract":"<p>Wireless sensor networks have sensing functions which made up of small sensor nodes that are processing and communication capabilities. However, the traditional approach of designating a single sensor node as the cluster head often leads to a faster depletion of its energy resources than another node. So, periodic reassignment of the cluster head role among different sensor nodes is crucial to extend operational lifetime and ensure sustained performance. Therefore, this research proposes an Enhanced Agglomerative Hierarchy Algorithm based on the Low Energy Adaptive Clustering Hierarchy (EAHALEACH) protocol, coupled with an enhanced time-controlled optimization algorithm, to enhance energy efficiency by selecting the optimal cluster head from a candidate pool. The proposed method enhances energy efficiency by optimally selecting cluster heads, which reduces energy consumption and extends the lifespan of the network. Additionally, a lightweight energy-aware cluster head rotation algorithm is introduced to efficiently rotate the cluster head role within the sensor node network, minimizing unnecessary data transmissions and extending the network lifetime. A hybrid approach combining Carrier Sense and Time Division Multiple Access (CSTDMA) optimizes packet forwarding by dynamically allocating time slots, reducing collisions and contention to improve packet forwarding efficiency. Comparative analysis with existing techniques demonstrates that the hybrid clustering-based LEACH protocol achieves superior performance in terms of throughput 4600 bps by 2000 rounds, energy consumption 50 J, latency as 1 ms and network lifetime in 1000th node attains 3500 s. These advancements contribute to prolonged operational efficiency and sustained performance in wireless sensor network deployments.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saeed Ullah Jan, Anwar Ghani, Abdulrahman Alzahrani, Muhammad Usman Tariq, Fahad Algarni, Husnain Abbas Naqvi
The Internet of Things (IoT) is a transformative technology that has found applications in diverse domains, including automation, logistics, grid, transportation, healthcare, and more. In these domains, IoT systems generate a significant amount of data, which can be stored in a cloud. However, cloud computing may not be practical in certain delay-sensitive IoT applications with complex operations. To address this, fog and edge computing paradigms have been introduced, but they rely on a reliable internet connection for proper functioning. The dew computing paradigm, a novel concept, allows the execution of various applications in the IoT environment, with or without internet connectivity. However, ensuring data confidentiality and integrity during transmission and storage in such an environment remains a significant challenge. Therefore, a fail-safe and highly effective security mechanism is yet to be proposed. This study introduces a protocol that utilizes the elliptic curve cryptography and secure hash algorithm to design a secure key agreement and lightweight protocol (SKALP). SKALP security is formally analyzed using BAN (Burrows-Abadi-Needham) logic, ROM (Random Oracle Model), RoR (Real-Or-Random) model, and ProVerif (Protocol Verifier) simulation while informally discussing it to evaluate its resistance against well-known attacks. Additionally, the performance analysis of SKALP considers the costs associated with communication and computation. The findings from the comparative analysis indicate that the SKALP demonstrates a higher level of superiority than its competitors.
{"title":"SKALP: Secure key agreement and lightweight protocol for dew-assisted IoT enabled edge computing","authors":"Saeed Ullah Jan, Anwar Ghani, Abdulrahman Alzahrani, Muhammad Usman Tariq, Fahad Algarni, Husnain Abbas Naqvi","doi":"10.1002/ett.5035","DOIUrl":"https://doi.org/10.1002/ett.5035","url":null,"abstract":"<p>The Internet of Things (IoT) is a transformative technology that has found applications in diverse domains, including automation, logistics, grid, transportation, healthcare, and more. In these domains, IoT systems generate a significant amount of data, which can be stored in a cloud. However, cloud computing may not be practical in certain delay-sensitive IoT applications with complex operations. To address this, fog and edge computing paradigms have been introduced, but they rely on a reliable internet connection for proper functioning. The dew computing paradigm, a novel concept, allows the execution of various applications in the IoT environment, with or without internet connectivity. However, ensuring data confidentiality and integrity during transmission and storage in such an environment remains a significant challenge. Therefore, a fail-safe and highly effective security mechanism is yet to be proposed. This study introduces a protocol that utilizes the elliptic curve cryptography and secure hash algorithm to design a secure key agreement and lightweight protocol (SKALP). SKALP security is formally analyzed using BAN (Burrows-Abadi-Needham) logic, ROM (Random Oracle Model), RoR (Real-Or-Random) model, and ProVerif (Protocol Verifier) simulation while informally discussing it to evaluate its resistance against well-known attacks. Additionally, the performance analysis of SKALP considers the costs associated with communication and computation. The findings from the comparative analysis indicate that the SKALP demonstrates a higher level of superiority than its competitors.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 9","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}