Pub Date : 2024-09-25DOI: 10.1016/j.tins.2024.09.003
Florencia Vassallu, Lionel M Igaz
RNA-binding proteins (RBPs) can undergo phase separation and form condensates, processes that, in turn, can be critical for their functionality. In a recent study, Huang, Ellis, and colleagues show that cellular stress can trigger transient alterations in nuclear TAR DNA-binding protein 43 (TDP-43), leading to changes crucial for proper neuronal function. These findings have implications for understanding neurological TDP-43 proteinopathies.
RNA 结合蛋白(RBPs)会发生相分离并形成凝聚物,而这一过程反过来又对其功能至关重要。在最近的一项研究中,Huang、Ellis 及其同事表明,细胞应激可引发核 TAR DNA 结合蛋白 43(TDP-43)的瞬时改变,从而导致对神经元正常功能至关重要的变化。这些发现对理解神经系统 TDP-43 蛋白病症具有重要意义。
{"title":"TDP-43 nuclear condensation and neurodegenerative proteinopathies.","authors":"Florencia Vassallu, Lionel M Igaz","doi":"10.1016/j.tins.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.tins.2024.09.003","url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) can undergo phase separation and form condensates, processes that, in turn, can be critical for their functionality. In a recent study, Huang, Ellis, and colleagues show that cellular stress can trigger transient alterations in nuclear TAR DNA-binding protein 43 (TDP-43), leading to changes crucial for proper neuronal function. These findings have implications for understanding neurological TDP-43 proteinopathies.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.tins.2024.08.015
Mia R Burke, Ioannis Sotiropoulos, Clarissa L Waites
Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.
慢性压力和伴随而来的糖皮质激素(GCs)(人体的压力荷尔蒙)的长期升高会增加阿尔茨海默病(AD)的风险并加速其进展。阿尔茨海默病的特征包括细胞内 tau(MAPT)缠结、细胞外淀粉样β(Aβ)斑块和神经炎症。越来越多的研究表明,应激和 GCs 通过对蛋白质稳态和贩运、线粒体生物能以及对损伤相关刺激的反应的失调,启动了这些病症的细胞过程。在这篇综述中,我们整合了啮齿类动物和细胞模型机理研究的结果,其中明确的慢性应激方案或 GC 给药已被证明可诱发 AD 相关病理。我们特别讨论了慢性应激和 GCs 对 tau 发病机制的影响,包括高磷酸化、聚集和扩散,淀粉样前体蛋白 (APP) 加工和贩运最终导致 Aβ 生成,促炎细胞因子和疾病相关分子模式的免疫诱导,以及神经胶质细胞和血脑屏障 (BBB) 功能的改变。
{"title":"The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis.","authors":"Mia R Burke, Ioannis Sotiropoulos, Clarissa L Waites","doi":"10.1016/j.tins.2024.08.015","DOIUrl":"https://doi.org/10.1016/j.tins.2024.08.015","url":null,"abstract":"<p><p>Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.tins.2024.08.013
Benjamin Tsang, Robert Gerlai
Although zebrafish (Danio rerio) neuroscience research is rapidly expanding, the fundamental question of how these fish should be maintained in research laboratories remains largely unstudied. This may explain the diverse practices and broad range of environmental parameters used in zebrafish facilities. Here, we provide examples of these parameters and practices, including housing density, tank size, and water chemistry. We discuss the principles of stochastic resonance versus homeostasis and provide hypothetical examples to explain why keeping zebrafish outside of their tolerated range of environmental parameters may increase phenotypical variance and reduce replicability. We call for systematic studies to establish the optimal maintenance conditions for zebrafish. Furthermore, we discuss why knowing more about the natural behavior and ecology of this species could be a guiding principle for these studies.
{"title":"Nature versus laboratory: how to optimize housing conditions for zebrafish neuroscience research.","authors":"Benjamin Tsang, Robert Gerlai","doi":"10.1016/j.tins.2024.08.013","DOIUrl":"https://doi.org/10.1016/j.tins.2024.08.013","url":null,"abstract":"<p><p>Although zebrafish (Danio rerio) neuroscience research is rapidly expanding, the fundamental question of how these fish should be maintained in research laboratories remains largely unstudied. This may explain the diverse practices and broad range of environmental parameters used in zebrafish facilities. Here, we provide examples of these parameters and practices, including housing density, tank size, and water chemistry. We discuss the principles of stochastic resonance versus homeostasis and provide hypothetical examples to explain why keeping zebrafish outside of their tolerated range of environmental parameters may increase phenotypical variance and reduce replicability. We call for systematic studies to establish the optimal maintenance conditions for zebrafish. Furthermore, we discuss why knowing more about the natural behavior and ecology of this species could be a guiding principle for these studies.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.tins.2024.08.011
Cecilia Anna Brunello, Cecilia Cannarozzo, Eero Castrén
Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.
{"title":"Rethinking the role of TRKB in the action of antidepressants and psychedelics","authors":"Cecilia Anna Brunello, Cecilia Cannarozzo, Eero Castrén","doi":"10.1016/j.tins.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.tins.2024.08.011","url":null,"abstract":"<p>Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.tins.2024.08.012
Sarah Louise Christensen, Dan Levy
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
{"title":"Meningeal brain borders and migraine headache genesis","authors":"Sarah Louise Christensen, Dan Levy","doi":"10.1016/j.tins.2024.08.012","DOIUrl":"https://doi.org/10.1016/j.tins.2024.08.012","url":null,"abstract":"<p>Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.tins.2024.08.009
Jintao Zhang, Roli Simoes, Tingting Guo, Yu-Qing Cao
Migraine is highly prevalent and debilitating. The persistent headaches in this condition are thought to arise from the activation and sensitization of the trigeminovascular pathway. Both clinical and animal model studies have suggested that neuroimmune interactions contribute to the pathophysiology of migraine headache. In this review, we first summarize the findings from human studies implicating the dysregulation of the immune system in migraine, including genetic analyses, measurement of circulatory factors, and neuroimaging data. We next discuss recent advances from rodent studies aimed at elucidating the neuroimmune interactions that manifest at various levels of the trigeminovascular pathway and lead to the recruitment of innate and adaptive immune cells as well as immunocompetent glial cells. These cells reciprocally modulate neuronal activity via multiple pro- and anti-inflammatory mediators, thereby regulating peripheral and central sensitization. Throughout the discussions, we highlight the potential clinical and translational implications of the findings.
{"title":"Neuroimmune interactions in the development and chronification of migraine headache","authors":"Jintao Zhang, Roli Simoes, Tingting Guo, Yu-Qing Cao","doi":"10.1016/j.tins.2024.08.009","DOIUrl":"https://doi.org/10.1016/j.tins.2024.08.009","url":null,"abstract":"<p>Migraine is highly prevalent and debilitating. The persistent headaches in this condition are thought to arise from the activation and sensitization of the trigeminovascular pathway. Both clinical and animal model studies have suggested that neuroimmune interactions contribute to the pathophysiology of migraine headache. In this review, we first summarize the findings from human studies implicating the dysregulation of the immune system in migraine, including genetic analyses, measurement of circulatory factors, and neuroimaging data. We next discuss recent advances from rodent studies aimed at elucidating the neuroimmune interactions that manifest at various levels of the trigeminovascular pathway and lead to the recruitment of innate and adaptive immune cells as well as immunocompetent glial cells. These cells reciprocally modulate neuronal activity via multiple pro- and anti-inflammatory mediators, thereby regulating peripheral and central sensitization. Throughout the discussions, we highlight the potential clinical and translational implications of the findings.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.tins.2024.08.007
Florian Krause, David E.J. Linden, Erno J. Hermans
Stress-related disorders are among the biggest global health challenges. Despite significant progress in understanding their neurocognitive basis, the promise of applying insights from fundamental research to prevention and treatment remains largely unfulfilled. We argue that neurofeedback – a method for training voluntary control over brain activity – has the potential to fill this translational gap. We provide a contemporary perspective on neurofeedback as endogenous neuromodulation that can target complex brain network dynamics, is transferable to real-world scenarios outside a laboratory or treatment facility, can be trained prospectively, and is individually adaptable. This makes neurofeedback a prime candidate for a personalized preventive neuroscience-based intervention strategy that focuses on the ecological momentary neuromodulation of stress-related brain networks in response to actual stressors in real life.
{"title":"Getting stress-related disorders under control: the untapped potential of neurofeedback","authors":"Florian Krause, David E.J. Linden, Erno J. Hermans","doi":"10.1016/j.tins.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.tins.2024.08.007","url":null,"abstract":"<p>Stress-related disorders are among the biggest global health challenges. Despite significant progress in understanding their neurocognitive basis, the promise of applying insights from fundamental research to prevention and treatment remains largely unfulfilled. We argue that neurofeedback – a method for training voluntary control over brain activity – has the potential to fill this translational gap. We provide a contemporary perspective on neurofeedback as endogenous neuromodulation that can target complex brain network dynamics, is transferable to real-world scenarios outside a laboratory or treatment facility, can be trained prospectively, and is individually adaptable. This makes neurofeedback a prime candidate for a personalized preventive neuroscience-based intervention strategy that focuses on the ecological momentary neuromodulation of stress-related brain networks in response to actual stressors in real life.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/s0166-2236(24)00159-0
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s0166-2236(24)00159-0","DOIUrl":"https://doi.org/10.1016/s0166-2236(24)00159-0","url":null,"abstract":"No Abstract","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/s0166-2236(24)00162-0
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s0166-2236(24)00162-0","DOIUrl":"https://doi.org/10.1016/s0166-2236(24)00162-0","url":null,"abstract":"No Abstract","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-20DOI: 10.1016/j.tins.2024.06.007
Rebecca M Shansky
The field of rodent behavioral neuroscience is undergoing two major sea changes: an ever-growing technological revolution, and worldwide calls to consider sex as a biological variable (SABV) in experimental design. Both have enormous potential to improve the precision and rigor with which the brain can be studied, but the convergence of these shifts in scientific practice has exposed critical limitations in classic and widely used behavioral paradigms. While our tools have advanced, our behavioral metrics - mostly developed in males and often allowing for only binary outcomes - have not. This opinion article explores how this disconnect has presented challenges for the accurate depiction and interpretation of sex differences in brain function, arguing for the expansion of current behavioral constructs to better account for behavioral diversity.
{"title":"Behavioral neuroscience's inevitable SABV growing pains.","authors":"Rebecca M Shansky","doi":"10.1016/j.tins.2024.06.007","DOIUrl":"10.1016/j.tins.2024.06.007","url":null,"abstract":"<p><p>The field of rodent behavioral neuroscience is undergoing two major sea changes: an ever-growing technological revolution, and worldwide calls to consider sex as a biological variable (SABV) in experimental design. Both have enormous potential to improve the precision and rigor with which the brain can be studied, but the convergence of these shifts in scientific practice has exposed critical limitations in classic and widely used behavioral paradigms. While our tools have advanced, our behavioral metrics - mostly developed in males and often allowing for only binary outcomes - have not. This opinion article explores how this disconnect has presented challenges for the accurate depiction and interpretation of sex differences in brain function, arguing for the expansion of current behavioral constructs to better account for behavioral diversity.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}