首页 > 最新文献

Trends in Neurosciences最新文献

英文 中文
Principles of intensive human neuroimaging. 强化人类神经成像原理
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-01 Epub Date: 2024-10-24 DOI: 10.1016/j.tins.2024.09.011
Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay

The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.

人类神经科学领域公开共享的大型功能磁共振成像(fMRI)数据集的兴起,主要集中在获取许多人的几小时数据("广度 "fMRI)或少数人的几小时数据("深度 "fMRI)。在这篇观点文章中,我们将重点介绍深度 fMRI 中的一种新兴方法,我们称之为 "密集型 "fMRI:这种方法致力于对认知现象进行广泛采样,以支持单体素水平的计算建模和大脑功能的详细研究。我们将讨论密集型 fMRI 的基本原理、权衡和实际考虑因素。我们还强调,密集型 fMRI 并不意味着简单地收集更多数据:它需要精心设计实验以实现丰富的假设空间、优化数据质量,以及战略性地策划公共资源以最大限度地扩大社区影响。
{"title":"Principles of intensive human neuroimaging.","authors":"Eline R Kupers, Tomas Knapen, Elisha P Merriam, Kendrick N Kay","doi":"10.1016/j.tins.2024.09.011","DOIUrl":"10.1016/j.tins.2024.09.011","url":null,"abstract":"<p><p>The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"856-864"},"PeriodicalIF":14.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward actionable neural markers of depression risk? 抑郁症风险的可操作神经标记?
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-01 Epub Date: 2024-09-27 DOI: 10.1016/j.tins.2024.09.007
Diego A Pizzagalli

The search for neural markers of depression remains challenging. Despite progress, neuroimaging results have generally not yielded actionable findings that could transform how we understand and treat this disorder. However, in a recent study, Lynch and colleagues identified enlargement of the frontrostriatal salience network as a reproducible, trait-like marker of depression.

寻找抑郁症的神经标志物仍然充满挑战。尽管取得了一些进展,但神经成像结果一般都没有产生可操作的发现,而这些发现可能会改变我们对这种疾病的理解和治疗方法。然而,在最近的一项研究中,Lynch 及其同事发现前额纹状体显著性网络的扩大是一种可重复的、类似于抑郁症特质的标志物。
{"title":"Toward actionable neural markers of depression risk?","authors":"Diego A Pizzagalli","doi":"10.1016/j.tins.2024.09.007","DOIUrl":"10.1016/j.tins.2024.09.007","url":null,"abstract":"<p><p>The search for neural markers of depression remains challenging. Despite progress, neuroimaging results have generally not yielded actionable findings that could transform how we understand and treat this disorder. However, in a recent study, Lynch and colleagues identified enlargement of the frontrostriatal salience network as a reproducible, trait-like marker of depression.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"851-852"},"PeriodicalIF":14.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining resilience to Alzheimer's disease through the lens of monoaminergic neuromodulator systems. 从单胺类神经调节系统的角度研究阿尔茨海默氏症的恢复能力。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-01 Epub Date: 2024-10-04 DOI: 10.1016/j.tins.2024.09.004
Jennifer L Crawford, Anne S Berry

The monoaminergic nuclei are thought to be some of the earliest sites of Alzheimer's disease (AD) pathology in the brain, with tau-containing pretangles appearing in these nuclei decades before the onset of clinical impairments. It has increasingly been recognized that monoamine systems represent a critical target of investigation towards understanding the progression of AD and designing early detection and treatment approaches. This review synthesizes evidence across animal studies, human neuropathology, and state-of-the-art neuroimaging and daily life assessment methods in humans, which demonstrate robust relationships between monoamine systems and AD pathophysiology and behavior. Further, the review highlights the promise of multimethod, multisystem approaches to studying monoaminergic mechanisms of resilience to AD pathology.

单胺能核团被认为是阿尔茨海默病(AD)在大脑中最早出现病理变化的部位,在临床症状出现前几十年,这些核团中就已经出现了含tau的前斑。越来越多的人认识到,单胺系统是了解阿兹海默病进展以及设计早期检测和治疗方法的关键研究目标。本综述综合了动物研究、人类神经病理学以及最先进的人类神经影像学和日常生活评估方法的证据,这些证据证明了单胺类系统与AD病理生理学和行为之间的密切关系。此外,该综述还强调了采用多方法、多系统方法研究单胺类药物对AD病理学的复原机制的前景。
{"title":"Examining resilience to Alzheimer's disease through the lens of monoaminergic neuromodulator systems.","authors":"Jennifer L Crawford, Anne S Berry","doi":"10.1016/j.tins.2024.09.004","DOIUrl":"10.1016/j.tins.2024.09.004","url":null,"abstract":"<p><p>The monoaminergic nuclei are thought to be some of the earliest sites of Alzheimer's disease (AD) pathology in the brain, with tau-containing pretangles appearing in these nuclei decades before the onset of clinical impairments. It has increasingly been recognized that monoamine systems represent a critical target of investigation towards understanding the progression of AD and designing early detection and treatment approaches. This review synthesizes evidence across animal studies, human neuropathology, and state-of-the-art neuroimaging and daily life assessment methods in humans, which demonstrate robust relationships between monoamine systems and AD pathophysiology and behavior. Further, the review highlights the promise of multimethod, multisystem approaches to studying monoaminergic mechanisms of resilience to AD pathology.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"892-903"},"PeriodicalIF":14.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unweaving type I interferons in age-related neuroinflammation. 解开 I 型干扰素在与年龄相关的神经炎症中的作用。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI: 10.1016/j.tins.2024.08.014
David P J Hunt, Markus J Hofer

Neuroinflammation is a feature of both neurodegenerative disease and normal brain aging. The roles of type I interferon (IFN-I) in the aged brain are incompletely understood. A recent article by Roy et al. reveals pervasive IFN-I activity in normal mouse brain aging, and highlights the importance of microglial IFN-I signaling in neuroinflammation.

神经炎症是神经退行性疾病和正常脑衰老的一个特征。人们对 I 型干扰素(IFN-I)在大脑老化过程中的作用尚不完全清楚。罗伊等人最近发表的一篇文章揭示了正常小鼠大脑衰老过程中普遍存在的 IFN-I 活性,并强调了小胶质细胞 IFN-I 信号在神经炎症中的重要性。
{"title":"Unweaving type I interferons in age-related neuroinflammation.","authors":"David P J Hunt, Markus J Hofer","doi":"10.1016/j.tins.2024.08.014","DOIUrl":"10.1016/j.tins.2024.08.014","url":null,"abstract":"<p><p>Neuroinflammation is a feature of both neurodegenerative disease and normal brain aging. The roles of type I interferon (IFN-I) in the aged brain are incompletely understood. A recent article by Roy et al. reveals pervasive IFN-I activity in normal mouse brain aging, and highlights the importance of microglial IFN-I signaling in neuroinflammation.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"751-752"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When sensory input meets spontaneous brain activity. 当感官输入与大脑自发活动相遇时。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-08-31 DOI: 10.1016/j.tins.2024.08.010
Natalia Zaretskaya

A recent study by Wu, Podvalny, and colleagues investigated how ongoing spontaneous brain activity interacts with sensory input and shapes conscious perception. It reports diverse effects of prestimulus activity in several key networks, revealing new roles of the prefrontal cortex and the default mode network in perception and consciousness.

Wu 和 Podvalny 及其同事最近的一项研究调查了持续的自发大脑活动如何与感觉输入相互作用并形成有意识的感知。该研究报告了预刺激活动对几个关键网络的不同影响,揭示了前额叶皮层和默认模式网络在感知和意识中的新作用。
{"title":"When sensory input meets spontaneous brain activity.","authors":"Natalia Zaretskaya","doi":"10.1016/j.tins.2024.08.010","DOIUrl":"10.1016/j.tins.2024.08.010","url":null,"abstract":"<p><p>A recent study by Wu, Podvalny, and colleagues investigated how ongoing spontaneous brain activity interacts with sensory input and shapes conscious perception. It reports diverse effects of prestimulus activity in several key networks, revealing new roles of the prefrontal cortex and the default mode network in perception and consciousness.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"749-750"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformers and cortical waves: encoders for pulling in context across time. 变压器和皮质波:跨时空语境牵引的编码器。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-09-27 DOI: 10.1016/j.tins.2024.08.006
Lyle Muller, Patricia S Churchland, Terrence J Sejnowski

The capabilities of transformer networks such as ChatGPT and other large language models (LLMs) have captured the world's attention. The crucial computational mechanism underlying their performance relies on transforming a complete input sequence - for example, all the words in a sentence - into a long 'encoding vector' that allows transformers to learn long-range temporal dependencies in naturalistic sequences. Specifically, 'self-attention' applied to this encoding vector enhances temporal context in transformers by computing associations between pairs of words in the input sequence. We suggest that waves of neural activity traveling across single cortical areas, or multiple regions on the whole-brain scale, could implement a similar encoding principle. By encapsulating recent input history into a single spatial pattern at each moment in time, cortical waves may enable a temporal context to be extracted from sequences of sensory inputs, the same computational principle as that used in transformers.

ChatGPT 等转换器网络和其他大型语言模型(LLM)的能力吸引了全世界的目光。其性能背后的关键计算机制依赖于将一个完整的输入序列(例如,一个句子中的所有单词)转换为一个长的 "编码向量",从而使转换器能够学习自然序列中的长程时间依赖关系。具体来说,应用于该编码向量的 "自我注意 "通过计算输入序列中词对之间的关联,增强了转换器的时间上下文。我们认为,穿越单个皮层区域或全脑范围内多个区域的神经活动波可以实现类似的编码原理。通过将最近的输入历史封装成每一时刻的单一空间模式,大脑皮层波可以从感觉输入序列中提取时间背景,这与变压器中使用的计算原理相同。
{"title":"Transformers and cortical waves: encoders for pulling in context across time.","authors":"Lyle Muller, Patricia S Churchland, Terrence J Sejnowski","doi":"10.1016/j.tins.2024.08.006","DOIUrl":"10.1016/j.tins.2024.08.006","url":null,"abstract":"<p><p>The capabilities of transformer networks such as ChatGPT and other large language models (LLMs) have captured the world's attention. The crucial computational mechanism underlying their performance relies on transforming a complete input sequence - for example, all the words in a sentence - into a long 'encoding vector' that allows transformers to learn long-range temporal dependencies in naturalistic sequences. Specifically, 'self-attention' applied to this encoding vector enhances temporal context in transformers by computing associations between pairs of words in the input sequence. We suggest that waves of neural activity traveling across single cortical areas, or multiple regions on the whole-brain scale, could implement a similar encoding principle. By encapsulating recent input history into a single spatial pattern at each moment in time, cortical waves may enable a temporal context to be extracted from sequences of sensory inputs, the same computational principle as that used in transformers.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"788-802"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain bilateral asymmetry - insights from nematodes, zebrafish, and Drosophila. 大脑双侧不对称--线虫、斑马鱼和果蝇的启示。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-09-24 DOI: 10.1016/j.tins.2024.08.003
François Lapraz, Cloé Fixary-Schuster, Stéphane Noselli

Chirality is a fundamental trait of living organisms, encompassing the homochirality of biological molecules and the left-right (LR) asymmetry of visceral organs and the brain. The nervous system in bilaterian organisms displays a lateralized organization characterized by the presence of asymmetrical neuronal circuits and brain functions that are predominantly localized within one hemisphere. Although body asymmetry is relatively well understood, and exhibits robust phenotypic expression and regulation via conserved molecular mechanisms across phyla, current findings indicate that the asymmetry of the nervous system displays greater phenotypic, genetic, and evolutionary variability. In this review we explore the use of nematode, zebrafish, and Drosophila genetic models to investigate neuronal circuit asymmetry. We discuss recent discoveries in the context of body-brain concordance and highlight the distinct characteristics of nervous system asymmetry and its cognitive correlates.

手性是生物的一个基本特征,包括生物分子的同手性以及内脏器官和大脑的左右(LR)不对称。两栖类生物的神经系统显示出侧向组织,其特点是存在不对称的神经元回路,大脑功能主要集中在一个半球。虽然对身体不对称的了解相对较多,而且通过各门的保守分子机制表现出强大的表型表达和调控能力,但目前的研究结果表明,神经系统的不对称表现出更大的表型、遗传和进化变异性。在这篇综述中,我们探讨了如何利用线虫、斑马鱼和果蝇基因模型来研究神经元回路的不对称性。我们将在体脑一致的背景下讨论最近的发现,并强调神经系统不对称的显著特征及其认知相关性。
{"title":"Brain bilateral asymmetry - insights from nematodes, zebrafish, and Drosophila.","authors":"François Lapraz, Cloé Fixary-Schuster, Stéphane Noselli","doi":"10.1016/j.tins.2024.08.003","DOIUrl":"10.1016/j.tins.2024.08.003","url":null,"abstract":"<p><p>Chirality is a fundamental trait of living organisms, encompassing the homochirality of biological molecules and the left-right (LR) asymmetry of visceral organs and the brain. The nervous system in bilaterian organisms displays a lateralized organization characterized by the presence of asymmetrical neuronal circuits and brain functions that are predominantly localized within one hemisphere. Although body asymmetry is relatively well understood, and exhibits robust phenotypic expression and regulation via conserved molecular mechanisms across phyla, current findings indicate that the asymmetry of the nervous system displays greater phenotypic, genetic, and evolutionary variability. In this review we explore the use of nematode, zebrafish, and Drosophila genetic models to investigate neuronal circuit asymmetry. We discuss recent discoveries in the context of body-brain concordance and highlight the distinct characteristics of nervous system asymmetry and its cognitive correlates.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"803-818"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain. 人源单克隆自身抗体作为脑细胞蛋白型的询问因子。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-09-05 DOI: 10.1016/j.tins.2024.08.004
Matthew L Baum, Christopher M Bartley

A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.

神经科学的一个主要目标是确定神经细胞的功能特性并建立模型,因为神经细胞的功能障碍是神经精神疾病的根源。在本文中,我们提出人源单克隆自身抗体(HD-mAbs)能够很好地选择性地靶向和操纵由蛋白质表达(即细胞蛋白型)定义的神经亚群。最近的技术进步使得从神经精神疾病患者身上高效克隆自身抗体成为可能。这些 HD-mAbs 可被引入动物模型,以获得有关神经蛋白型的生物学和病理生物学知识。蛋白质工程学可用于修饰、增强、沉默或赋予原生 HD-mAbs 新的功能特性,从而增强其多功能性。最后,我们讨论了 HD-mAbs 作为神经科学实验研究工具所面临的挑战和局限性。
{"title":"Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain.","authors":"Matthew L Baum, Christopher M Bartley","doi":"10.1016/j.tins.2024.08.004","DOIUrl":"10.1016/j.tins.2024.08.004","url":null,"abstract":"<p><p>A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"753-765"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Object-oriented olfaction: challenges for chemosensation and for chemosensory research. 面向对象的嗅觉:化学感觉和化学感觉研究面临的挑战。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-09-07 DOI: 10.1016/j.tins.2024.08.008
Dan Rokni, Yoram Ben-Shaul

Many animal species use olfaction to extract information about objects in their environment. Yet, the specific molecular signature that any given object emits varies due to various factors. Here, we detail why such variability makes chemosensory-mediated object recognition such a hard problem, and we propose that a major function of the elaborate chemosensory network is to overcome it. We describe previous work addressing different elements of the problem and outline future research directions that we consider essential for a full understanding of object-oriented olfaction. In particular, we call for extensive representation of olfactory object variability in chemical, behavioral, and electrophysiological analyses. While written with an emphasis on macrosmatic mammalian species, our arguments apply to all organisms that employ chemosensation to navigate complex environments.

许多动物物种利用嗅觉来获取环境中物体的信息。然而,由于各种因素的影响,任何特定物体发出的特定分子特征都不尽相同。在这里,我们将详细说明为什么这种可变性会使化学感官介导的物体识别成为一个难题,并提出精心设计的化学感官网络的一个主要功能就是克服这种可变性。我们描述了之前针对该问题不同要素所做的工作,并概述了未来的研究方向,我们认为这些方向对于全面理解以物体为导向的嗅觉至关重要。特别是,我们呼吁在化学、行为和电生理分析中广泛体现嗅觉对象的可变性。我们的论点以大型哺乳动物为重点,但适用于所有利用化学感觉来驾驭复杂环境的生物。
{"title":"Object-oriented olfaction: challenges for chemosensation and for chemosensory research.","authors":"Dan Rokni, Yoram Ben-Shaul","doi":"10.1016/j.tins.2024.08.008","DOIUrl":"10.1016/j.tins.2024.08.008","url":null,"abstract":"<p><p>Many animal species use olfaction to extract information about objects in their environment. Yet, the specific molecular signature that any given object emits varies due to various factors. Here, we detail why such variability makes chemosensory-mediated object recognition such a hard problem, and we propose that a major function of the elaborate chemosensory network is to overcome it. We describe previous work addressing different elements of the problem and outline future research directions that we consider essential for a full understanding of object-oriented olfaction. In particular, we call for extensive representation of olfactory object variability in chemical, behavioral, and electrophysiological analyses. While written with an emphasis on macrosmatic mammalian species, our arguments apply to all organisms that employ chemosensation to navigate complex environments.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"834-848"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142155053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural adaptation to changes in self-voice during puberty. 青春期自我声音变化的神经适应。
IF 14.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-01 Epub Date: 2024-08-29 DOI: 10.1016/j.tins.2024.08.001
Ana P Pinheiro, Jean-Julien Aucouturier, Sonja A Kotz

The human voice is a potent social signal and a distinctive marker of individual identity. As individuals go through puberty, their voices undergo acoustic changes, setting them apart from others. In this article, we propose that hormonal fluctuations in conjunction with morphological vocal tract changes during puberty establish a sensitive developmental phase that affects the monitoring of the adolescent voice and, specifically, self-other distinction. Furthermore, the protracted maturation of brain regions responsible for voice processing, coupled with the dynamically evolving social environment of adolescents, likely disrupts a clear differentiation of the self-voice from others' voices. This socioneuroendocrine framework offers a holistic understanding of voice monitoring during adolescence.

人类的声音是一种强有力的社会信号,也是个人身份的独特标志。随着青春期的到来,人的嗓音会发生声学变化,从而与他人区别开来。在这篇文章中,我们提出青春期荷尔蒙的波动与声带形态的变化共同构成了一个敏感的发育阶段,影响着对青春期嗓音的监测,特别是自我与他人的区分。此外,负责声音处理的大脑区域的长期成熟,再加上青少年不断变化的社会环境,很可能会破坏自我声音与他人声音的明确区分。这一社会神经内分泌框架提供了对青春期嗓音监测的整体理解。
{"title":"Neural adaptation to changes in self-voice during puberty.","authors":"Ana P Pinheiro, Jean-Julien Aucouturier, Sonja A Kotz","doi":"10.1016/j.tins.2024.08.001","DOIUrl":"10.1016/j.tins.2024.08.001","url":null,"abstract":"<p><p>The human voice is a potent social signal and a distinctive marker of individual identity. As individuals go through puberty, their voices undergo acoustic changes, setting them apart from others. In this article, we propose that hormonal fluctuations in conjunction with morphological vocal tract changes during puberty establish a sensitive developmental phase that affects the monitoring of the adolescent voice and, specifically, self-other distinction. Furthermore, the protracted maturation of brain regions responsible for voice processing, coupled with the dynamically evolving social environment of adolescents, likely disrupts a clear differentiation of the self-voice from others' voices. This socioneuroendocrine framework offers a holistic understanding of voice monitoring during adolescence.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"777-787"},"PeriodicalIF":14.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Neurosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1