Pub Date : 2024-12-01Epub Date: 2024-11-15DOI: 10.1016/j.pt.2024.11.001
Shahbaz M Khan, Md Mukthar Mia, William H Witola
Regulation of intracellular cyclic nucleotides to avoid homeostatic imbalances is achieved through catabolic activity of phosphodiesterases (PDEs). Recently, Ajiboye et al. reported validation of Cryptosporidium PDE1 (CpPDE1) as a viable drug target and identified optimized pyrazolopyrimidines with selective activity against CpPDE1 over human PDEs and with potent anticryptosporidial efficacy.
{"title":"Selective targeting of phosphodiesterases to develop potent antiparasitic drugs.","authors":"Shahbaz M Khan, Md Mukthar Mia, William H Witola","doi":"10.1016/j.pt.2024.11.001","DOIUrl":"10.1016/j.pt.2024.11.001","url":null,"abstract":"<p><p>Regulation of intracellular cyclic nucleotides to avoid homeostatic imbalances is achieved through catabolic activity of phosphodiesterases (PDEs). Recently, Ajiboye et al. reported validation of Cryptosporidium PDE1 (CpPDE1) as a viable drug target and identified optimized pyrazolopyrimidines with selective activity against CpPDE1 over human PDEs and with potent anticryptosporidial efficacy.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1075-1076"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-20DOI: 10.1016/j.pt.2024.11.002
Sophie L Collier, Stuart A Ralph
Challenges in adapting natural products as antimalarials include their cryptic mechanism of action (and by extension resistance), as well as their complex and expensive synthesis without an abundant natural source. Recently, Chahine et al. presented plausible means to address these challenges in the case of the kalihinol family of isocyanoterpenes.
{"title":"Multiomic interrogation of an endomembrane disrupting antimalarial.","authors":"Sophie L Collier, Stuart A Ralph","doi":"10.1016/j.pt.2024.11.002","DOIUrl":"10.1016/j.pt.2024.11.002","url":null,"abstract":"<p><p>Challenges in adapting natural products as antimalarials include their cryptic mechanism of action (and by extension resistance), as well as their complex and expensive synthesis without an abundant natural source. Recently, Chahine et al. presented plausible means to address these challenges in the case of the kalihinol family of isocyanoterpenes.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1069-1071"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-22DOI: 10.1016/j.pt.2024.10.003
Robin B Gasser
This brief article examines how neoliberalism and managerialism have transformed higher education in some countries, affecting academics in parasitology and other disciplines. It highlights the impact of reduced academic freedom, increased performance metrics and administrative burdens, calling for awareness and protection of core academic values amidst these systemic changes.
{"title":"Neoliberalism and managerialism in academia - a parasitologist's take.","authors":"Robin B Gasser","doi":"10.1016/j.pt.2024.10.003","DOIUrl":"10.1016/j.pt.2024.10.003","url":null,"abstract":"<p><p>This brief article examines how neoliberalism and managerialism have transformed higher education in some countries, affecting academics in parasitology and other disciplines. It highlights the impact of reduced academic freedom, increased performance metrics and administrative burdens, calling for awareness and protection of core academic values amidst these systemic changes.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1066-1068"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-08DOI: 10.1016/j.pt.2024.10.015
Christen Rune Stensvold
Next-generation sequencing (NGS) methods include whole-genome sequencing, metagenomic analysis, and amplicon-based NGS, all of which are gaining territory in parasitology. A modality of particular interest within the field of gut protozoology is exhaustive metabarcoding of ribosomal genes in a complex matrix such as faeces, by which method, amplicon-based NGS enables the detection and differentiation of both eukaryotic and prokaryotic organisms, circumventing Sanger sequencing-based limitations and representing a one-fits-most approach. Apart from being a tool to break the code of intracellular genetic variation and tell mixed species infections apart, metabarcoding can produce data that can serve to augment our understanding of the interplay between the organisms within the gut.
{"title":"Metabarcoding in gut protozoology.","authors":"Christen Rune Stensvold","doi":"10.1016/j.pt.2024.10.015","DOIUrl":"10.1016/j.pt.2024.10.015","url":null,"abstract":"<p><p>Next-generation sequencing (NGS) methods include whole-genome sequencing, metagenomic analysis, and amplicon-based NGS, all of which are gaining territory in parasitology. A modality of particular interest within the field of gut protozoology is exhaustive metabarcoding of ribosomal genes in a complex matrix such as faeces, by which method, amplicon-based NGS enables the detection and differentiation of both eukaryotic and prokaryotic organisms, circumventing Sanger sequencing-based limitations and representing a one-fits-most approach. Apart from being a tool to break the code of intracellular genetic variation and tell mixed species infections apart, metabarcoding can produce data that can serve to augment our understanding of the interplay between the organisms within the gut.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1173-1182"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-18DOI: 10.1016/j.pt.2024.10.021
Megan L Povelones, Michael L Ginger
Cadena et al. recently discovered a conserved trypanosomatid 'nabelschnur' protein TbNAB70 from a search through the protein localization resource TrypTag, providing new insight into kinetoplast origin and evolution.
{"title":"Bric-à-brac, an 'umbilical cord' and trypanosome kinetoplast segregation.","authors":"Megan L Povelones, Michael L Ginger","doi":"10.1016/j.pt.2024.10.021","DOIUrl":"10.1016/j.pt.2024.10.021","url":null,"abstract":"<p><p>Cadena et al. recently discovered a conserved trypanosomatid 'nabelschnur' protein TbNAB70 from a search through the protein localization resource TrypTag, providing new insight into kinetoplast origin and evolution.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1072-1074"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-08DOI: 10.1016/j.pt.2024.10.018
Florian Lauruol, Dave Richard
Sec14 domain proteins are broadly conserved in eukaryotes and play essential roles in numerous cellular processes. Limited data on Sec14 proteins of apicomplexan parasites suggest that they could be important for their survival. The development of fungi-specific Sec14 inhibitors raises the tantalizing possibility that their apicomplexan counterparts might also be targeted.
{"title":"Sec14 proteins in the apicomplexan parasites Plasmodium and Toxoplasma.","authors":"Florian Lauruol, Dave Richard","doi":"10.1016/j.pt.2024.10.018","DOIUrl":"10.1016/j.pt.2024.10.018","url":null,"abstract":"<p><p>Sec14 domain proteins are broadly conserved in eukaryotes and play essential roles in numerous cellular processes. Limited data on Sec14 proteins of apicomplexan parasites suggest that they could be important for their survival. The development of fungi-specific Sec14 inhibitors raises the tantalizing possibility that their apicomplexan counterparts might also be targeted.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1081-1084"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-19DOI: 10.1016/j.pt.2024.10.019
Xiaowei Chen, Xun Suo, Guan Zhu, Bang Shen
Many apicomplexan parasites have a chloroplast-derived apicoplast containing several metabolic pathways. Recent studies have greatly expanded our understanding of apicoplast biogenesis and metabolism while also raising new questions. Here, we review recent progress on the biological roles of individual metabolic pathways, focusing on two medically important parasites, Plasmodium spp. and Toxoplasma gondii. We highlight the similarities and differences in how similar apicoplast metabolic pathways are utilized to adapt to different parasitic lifestyles. The execution of apicoplast metabolic functions requires extensive interactions with other subcellular compartments, but the underlying mechanisms remain largely unknown. Apicoplast metabolic functions have historically been considered attractive drug targets, and a comprehensive understanding of their metabolic capacities and interactions with other organelles is essential to fully realize their potential.
{"title":"The apicoplast biogenesis and metabolism: current progress and questions.","authors":"Xiaowei Chen, Xun Suo, Guan Zhu, Bang Shen","doi":"10.1016/j.pt.2024.10.019","DOIUrl":"10.1016/j.pt.2024.10.019","url":null,"abstract":"<p><p>Many apicomplexan parasites have a chloroplast-derived apicoplast containing several metabolic pathways. Recent studies have greatly expanded our understanding of apicoplast biogenesis and metabolism while also raising new questions. Here, we review recent progress on the biological roles of individual metabolic pathways, focusing on two medically important parasites, Plasmodium spp. and Toxoplasma gondii. We highlight the similarities and differences in how similar apicoplast metabolic pathways are utilized to adapt to different parasitic lifestyles. The execution of apicoplast metabolic functions requires extensive interactions with other subcellular compartments, but the underlying mechanisms remain largely unknown. Apicoplast metabolic functions have historically been considered attractive drug targets, and a comprehensive understanding of their metabolic capacities and interactions with other organelles is essential to fully realize their potential.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1144-1158"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-20DOI: 10.1016/j.pt.2024.10.016
Rafaela Jose da Silva, Leah F Cabo, Jon P Boyle
Congenital infections are a leading preventable cause of pregnancy complications impacting both mother and fetus. Although advancements have been made in understanding various congenital infections, the mechanisms of parasitic infections during pregnancy remain poorly understood. This review covers the global incidence of three parasites capable of congenital transmission - Trypanosoma cruzi, Plasmodium spp., and Toxoplasma gondii - and the state of research into their transplacental transmission strategies. We highlight technological advancements in placental modeling that offer opportunities to reveal how parasites cause gestational pathology. Additionally, we discuss the likelihood that selective adaptation contributed to the evolution of mechanisms that facilitate placental infection. These insights provide a foundation for understanding the progression and pathology of congenital parasitic diseases and identifying future research directions.
{"title":"Teratogenic parasites: disease mechanisms and emerging study models.","authors":"Rafaela Jose da Silva, Leah F Cabo, Jon P Boyle","doi":"10.1016/j.pt.2024.10.016","DOIUrl":"10.1016/j.pt.2024.10.016","url":null,"abstract":"<p><p>Congenital infections are a leading preventable cause of pregnancy complications impacting both mother and fetus. Although advancements have been made in understanding various congenital infections, the mechanisms of parasitic infections during pregnancy remain poorly understood. This review covers the global incidence of three parasites capable of congenital transmission - Trypanosoma cruzi, Plasmodium spp., and Toxoplasma gondii - and the state of research into their transplacental transmission strategies. We highlight technological advancements in placental modeling that offer opportunities to reveal how parasites cause gestational pathology. Additionally, we discuss the likelihood that selective adaptation contributed to the evolution of mechanisms that facilitate placental infection. These insights provide a foundation for understanding the progression and pathology of congenital parasitic diseases and identifying future research directions.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1159-1172"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-28DOI: 10.1016/j.pt.2024.10.004
Filipa Rijo-Ferreira, Chi-Min Ho, Alex Rosenberg
{"title":"Young investigators in parasitology meeting: building foundations and supporting early-career researchers.","authors":"Filipa Rijo-Ferreira, Chi-Min Ho, Alex Rosenberg","doi":"10.1016/j.pt.2024.10.004","DOIUrl":"10.1016/j.pt.2024.10.004","url":null,"abstract":"","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":"1063-1065"},"PeriodicalIF":7.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}