Pub Date : 2024-07-02Epub Date: 2023-07-13DOI: 10.1080/21688370.2023.2233385
Rachel L Washburn, Jannette M Dufour
Sertoli cells are a crucial component of the blood-testis barrier (BTB), which isolates the adluminal compartment of the seminiferous tubules from the rest of the testis thus forming an environment to immunely protect the developing germ cells. The mechanisms of regulating immune responses within this environment are currently under investigation. Here, we focused on Sertoli cell regulation of the complement system.
{"title":"Regulation of complement by Sertoli cells may contribute to the immune protective environment within the blood-testis barrier.","authors":"Rachel L Washburn, Jannette M Dufour","doi":"10.1080/21688370.2023.2233385","DOIUrl":"10.1080/21688370.2023.2233385","url":null,"abstract":"<p><p>Sertoli cells are a crucial component of the blood-testis barrier (BTB), which isolates the adluminal compartment of the seminiferous tubules from the rest of the testis thus forming an environment to immunely protect the developing germ cells. The mechanisms of regulating immune responses within this environment are currently under investigation. Here, we focused on Sertoli cell regulation of the complement system.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9764329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02Epub Date: 2023-07-17DOI: 10.1080/21688370.2023.2236007
Lina Dagnino
The epidermis of the skin provides a barrier between the organism and the external environment. It is constantly subjected to physical and chemical insults, and thus susceptible to wounding and to neoplastic transformation. Long-lasting epigenetic modifications in epidermal stem cells are now shown to link responses to skin injuries with cell priming for carcinoma development, through regulation of histone H2A ubiquitylation.
{"title":"Ubiquitylated histone H2A: a molecular Jekyll and Hyde in the epidermis.","authors":"Lina Dagnino","doi":"10.1080/21688370.2023.2236007","DOIUrl":"10.1080/21688370.2023.2236007","url":null,"abstract":"<p><p>The epidermis of the skin provides a barrier between the organism and the external environment. It is constantly subjected to physical and chemical insults, and thus susceptible to wounding and to neoplastic transformation. Long-lasting epigenetic modifications in epidermal stem cells are now shown to link responses to skin injuries with cell priming for carcinoma development, through regulation of histone H2A ubiquitylation.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10203480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02Epub Date: 2023-10-04DOI: 10.1080/21688370.2023.2257110
Dorrian G Cohen, Rebecca A Wingert
The rising prevalence of fungal infections is a significant and growing public health threat, and this risk is further underscored by our incomplete understanding of why organs like the kidney are so susceptible to systemic candidiasis. To combat the high mortality of such infections, we urgently need to advance our understanding of fungal pathogenesis and how it articulates with human immune response. Now, a recent landmark study has illuminated a crucial role of the complement system in the response to candidiasis and determined the stepwise local response of phagocytes within the kidney during infection. These fundamental discoveries provide crucial insights that can be leveraged to improve the care and outcome for patients with fungal infections.
{"title":"You shall not pass: how complement C5 mediated antifungal immunity blocks systemic candidiasis and preserves renal tissue barriers.","authors":"Dorrian G Cohen, Rebecca A Wingert","doi":"10.1080/21688370.2023.2257110","DOIUrl":"10.1080/21688370.2023.2257110","url":null,"abstract":"<p><p>The rising prevalence of fungal infections is a significant and growing public health threat, and this risk is further underscored by our incomplete understanding of why organs like the kidney are so susceptible to systemic candidiasis. To combat the high mortality of such infections, we urgently need to advance our understanding of fungal pathogenesis and how it articulates with human immune response. Now, a recent landmark study has illuminated a crucial role of the complement system in the response to candidiasis and determined the stepwise local response of phagocytes within the kidney during infection. These fundamental discoveries provide crucial insights that can be leveraged to improve the care and outcome for patients with fungal infections.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02Epub Date: 2023-07-30DOI: 10.1080/21688370.2023.2242060
Rachel L Washburn, Jannette M Dufour
Sertoli cells are unique cells that contribute to the formation of the blood-testis barrier, which is important in sustaining the environment to promote spermatogenesis and to protect immunogenic germ cells from autoimmune destruction. This is achieved through tight junctions and production of regulatory immune factors. These Sertoli cell attributes make them a relevant model for various studies involving male reproduction, autoimmune protection, and even transplantation. RNA sequencing analyses were performed on baseline neonatal porcine Sertoli cells (NPSC) and NPSC after incubation in normal human serum for 90 minutes. We previously analyzed this data for immune-related factors, such as complement components, and for differentially expressed genes related to immune function. Still, these data sets provide insight into understanding how Sertoli cells create an immunoregulatory environment, which has applications in reproduction, transplantation, and autoimmunity.
{"title":"Gene expression profiles of neonatal porcine Sertoli cells at baseline and after incubation in normal human serum as determined by RNA sequencing.","authors":"Rachel L Washburn, Jannette M Dufour","doi":"10.1080/21688370.2023.2242060","DOIUrl":"10.1080/21688370.2023.2242060","url":null,"abstract":"<p><p>Sertoli cells are unique cells that contribute to the formation of the blood-testis barrier, which is important in sustaining the environment to promote spermatogenesis and to protect immunogenic germ cells from autoimmune destruction. This is achieved through tight junctions and production of regulatory immune factors. These Sertoli cell attributes make them a relevant model for various studies involving male reproduction, autoimmune protection, and even transplantation. RNA sequencing analyses were performed on baseline neonatal porcine Sertoli cells (NPSC) and NPSC after incubation in normal human serum for 90 minutes. We previously analyzed this data for immune-related factors, such as complement components, and for differentially expressed genes related to immune function. Still, these data sets provide insight into understanding how Sertoli cells create an immunoregulatory environment, which has applications in reproduction, transplantation, and autoimmunity.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02Epub Date: 2023-11-18DOI: 10.1080/21688370.2023.2281209
Dorrian G Cohen, Rebecca A Wingert
The microbiome is a keystone of adult gastrointestinal (GI) tract health, where it facilitates digestion, wards off pathogen colonization, and exerts a powerful influence on the physiological health of organs ranging from the brain to the kidneys. From its establishment at birth and through the initial years of childhood, the human microbiome is particularly dynamic, shifting in its composition and alpha (species) diversity to an adult profile as dietary sustenance transitions from milk-based sources to others such as solid food. An innovative study has now demonstrated how microbiome maturation is requisite both for the progression of immune system development and for long-term gut barrier function. These insights have significant ramifications for designing pediatric approaches to cultivate immune cell ontogeny in the formative stages of human infancy.
{"title":"Forever young by Alpha(diversity)ville: restricting intestinal microbiome maturation stunts immune system development and increases susceptibility to infection.","authors":"Dorrian G Cohen, Rebecca A Wingert","doi":"10.1080/21688370.2023.2281209","DOIUrl":"10.1080/21688370.2023.2281209","url":null,"abstract":"<p><p>The microbiome is a keystone of adult gastrointestinal (GI) tract health, where it facilitates digestion, wards off pathogen colonization, and exerts a powerful influence on the physiological health of organs ranging from the brain to the kidneys. From its establishment at birth and through the initial years of childhood, the human microbiome is particularly dynamic, shifting in its composition and alpha (species) diversity to an adult profile as dietary sustenance transitions from milk-based sources to others such as solid food. An innovative study has now demonstrated how microbiome maturation is requisite both for the progression of immune system development and for long-term gut barrier function. These insights have significant ramifications for designing pediatric approaches to cultivate immune cell ontogeny in the formative stages of human infancy.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136399368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-30DOI: 10.1080/21688370.2024.2374628
Mahtab Jahdkaran, Nastaran Asri, Hadi Esmaily, Mohammad Rostami-Nejad
Celiac Disease (CD) is the most common hereditarily-based food intolerance worldwide and a chronic inflammatory condition. The current standard treatment for CD involves strict observance and compliance with a gluten-free diet (GFD). However, maintaining a complete GFD poses challenges, necessitating the exploration of alternative therapeutic approaches. Nutraceuticals, bioactive products bridging nutrition and pharmaceuticals, have emerged as potential candidates to regulate pathways associated with CD and offer therapeutic benefits. Despite extensive research on nutraceuticals in various diseases, their role in CD has been relatively overlooked. This review proposes comprehensively assessing the potential of different nutraceuticals, including phytochemicals, fatty acids, vitamins, minerals, plant-based enzymes, and dietary amino acids, in managing CD. Nutraceuticals exhibit the ability to modulate crucial CD pathways, such as regulating gluten fragment accessibility and digestion, intestinal barrier function, downregulation of tissue transglutaminase (TG2), intestinal epithelial morphology, regulating innate and adaptive immune responses, inflammation, oxidative stress, and gut microbiota composition. However, further investigation is necessary to fully elucidate the underlying cellular and molecular mechanisms behind the therapeutic and prophylactic effects of nutraceuticals for CD. Emphasizing such research would contribute to future developments in CD therapies and interventions.
乳糜泻(CD)是全球最常见的遗传性食物不耐受症,也是一种慢性炎症。目前治疗乳糜泻的标准方法是严格遵守无麸质饮食(GFD)。然而,维持完全无麸质饮食带来了挑战,因此有必要探索其他治疗方法。营养保健品是连接营养和药物的生物活性产品,已成为调节 CD 相关通路并提供治疗益处的潜在候选药物。尽管对营养保健品在各种疾病中的作用进行了广泛研究,但它们在 CD 中的作用却相对被忽视。本综述建议全面评估不同营养保健品(包括植物化学物质、脂肪酸、维生素、矿物质、植物酶和膳食氨基酸)在控制 CD 方面的潜力。营养保健品具有调节 CD 关键通路的能力,如调节麸质片段的可及性和消化、肠屏障功能、下调组织转谷氨酰胺酶 (TG2)、肠上皮形态、调节先天性和适应性免疫反应、炎症、氧化应激和肠道微生物群组成。然而,要充分阐明营养保健品对 CD 的治疗和预防作用背后的细胞和分子机制,还需要进一步的研究。重视此类研究将有助于CD疗法和干预措施的未来发展。
{"title":"Potential of nutraceuticals in celiac disease.","authors":"Mahtab Jahdkaran, Nastaran Asri, Hadi Esmaily, Mohammad Rostami-Nejad","doi":"10.1080/21688370.2024.2374628","DOIUrl":"https://doi.org/10.1080/21688370.2024.2374628","url":null,"abstract":"<p><p>Celiac Disease (CD) is the most common hereditarily-based food intolerance worldwide and a chronic inflammatory condition. The current standard treatment for CD involves strict observance and compliance with a gluten-free diet (GFD). However, maintaining a complete GFD poses challenges, necessitating the exploration of alternative therapeutic approaches. Nutraceuticals, bioactive products bridging nutrition and pharmaceuticals, have emerged as potential candidates to regulate pathways associated with CD and offer therapeutic benefits. Despite extensive research on nutraceuticals in various diseases, their role in CD has been relatively overlooked. This review proposes comprehensively assessing the potential of different nutraceuticals, including phytochemicals, fatty acids, vitamins, minerals, plant-based enzymes, and dietary amino acids, in managing CD. Nutraceuticals exhibit the ability to modulate crucial CD pathways, such as regulating gluten fragment accessibility and digestion, intestinal barrier function, downregulation of tissue transglutaminase (TG2), intestinal epithelial morphology, regulating innate and adaptive immune responses, inflammation, oxidative stress, and gut microbiota composition. However, further investigation is necessary to fully elucidate the underlying cellular and molecular mechanisms behind the therapeutic and prophylactic effects of nutraceuticals for CD. Emphasizing such research would contribute to future developments in CD therapies and interventions.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and β-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with β-estradiol with or without EGF or TGF-β decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.
{"title":"The roles of tight junction protein cingulin in human endometrioid endometrial cancer.","authors":"Arisa Kura, Kimihito Saito, Takumi Konno, Takayuki Kohno, Hiroshi Shimada, Tadahi Okada, Soshi Nishida, Daichi Ishii, Motoki Matsuura, Tsuyoshi Saito, Takashi Kojima","doi":"10.1080/21688370.2024.2361976","DOIUrl":"https://doi.org/10.1080/21688370.2024.2361976","url":null,"abstract":"<p><p>The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and β-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with β-estradiol with or without EGF or TGF-β decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1080/21688370.2024.2361197
Jie Chen, Changjie Liu, Yuan Yang, Xue Gong, Huan Qian
The skin is the largest organ of the human body and is widely considered to be the first-line defense of the body, providing essential protection against mechanical, physical, and chemical damage. Keratinocytes are the primary cells of the outer layer of the epidermis, which acts as a mechanical and permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. Here we report that some components of keratinocytes affect the formation and differentiation of the stratum corneum, which is the most specialized layer of the epidermis.
{"title":"The stratum corneum barrier: impaired function in relation to associated lipids and proteins.","authors":"Jie Chen, Changjie Liu, Yuan Yang, Xue Gong, Huan Qian","doi":"10.1080/21688370.2024.2361197","DOIUrl":"https://doi.org/10.1080/21688370.2024.2361197","url":null,"abstract":"<p><p>The skin is the largest organ of the human body and is widely considered to be the first-line defense of the body, providing essential protection against mechanical, physical, and chemical damage. Keratinocytes are the primary cells of the outer layer of the epidermis, which acts as a mechanical and permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. Here we report that some components of keratinocytes affect the formation and differentiation of the stratum corneum, which is the most specialized layer of the epidermis.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1080/21688370.2024.2361202
Margarita Shuvalova, Anastasiia Dmitrieva, Vsevolod Belousov, Georgii Nosov
The blood-brain barrier (BBB) regulates the exchange of metabolites and cells between the blood and brain, and maintains central nervous system homeostasis. Various factors affect BBB barrier functions, including reactive oxygen species (ROS). ROS can act as stressors, damaging biological molecules, but they also serve as secondary messengers in intracellular signaling cascades during redox signaling. The impact of ROS on the BBB has been observed in multiple sclerosis, stroke, trauma, and other neurological disorders, making blocking ROS generation a promising therapeutic strategy for BBB dysfunction. However, it is important to consider ROS generation during normal BBB functioning for signaling purposes. This review summarizes data on proteins expressed by BBB cells that can be targets of redox signaling or oxidative stress. It also provides examples of signaling molecules whose impact may cause ROS generation in the BBB, as well as discusses the most common diseases associated with BBB dysfunction and excessive ROS generation, open questions that arise in the study of this problem, and possible ways to overcome them.
{"title":"The role of reactive oxygen species in the regulation of the blood-brain barrier.","authors":"Margarita Shuvalova, Anastasiia Dmitrieva, Vsevolod Belousov, Georgii Nosov","doi":"10.1080/21688370.2024.2361202","DOIUrl":"https://doi.org/10.1080/21688370.2024.2361202","url":null,"abstract":"<p><p>The blood-brain barrier (BBB) regulates the exchange of metabolites and cells between the blood and brain, and maintains central nervous system homeostasis. Various factors affect BBB barrier functions, including reactive oxygen species (ROS). ROS can act as stressors, damaging biological molecules, but they also serve as secondary messengers in intracellular signaling cascades during redox signaling. The impact of ROS on the BBB has been observed in multiple sclerosis, stroke, trauma, and other neurological disorders, making blocking ROS generation a promising therapeutic strategy for BBB dysfunction. However, it is important to consider ROS generation during normal BBB functioning for signaling purposes. This review summarizes data on proteins expressed by BBB cells that can be targets of redox signaling or oxidative stress. It also provides examples of signaling molecules whose impact may cause ROS generation in the BBB, as well as discusses the most common diseases associated with BBB dysfunction and excessive ROS generation, open questions that arise in the study of this problem, and possible ways to overcome them.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1080/21688370.2024.2357406
Deependra Singh, Saurabh Kumar, Rajnikant Mishra, Anjali, R K Tripathi, Monika Sachdev
The blood-testis barrier is a specialized feature within the mammalian testis, located in close proximity to the basement membrane of seminiferous tubules. This barrier serves to divide the seminiferous epithelium into distinct basal and adluminal (apical) compartments. The selectivity of the BTB to foreign particles makes it a safe haven for the virus, and the high affinity of HIV for testis might lead to the vertical transmission of the virus. In the present study, recombinant HIV1-Nef (rNef) protein was injected intravenously to examine the effect of rNef on BTB. SD male rats received 250 µg and 500 µg of rNef along with 2% Evans blue dye within 1 ml through the tail vein. After 1 hour of perfusion, the animals were sacrificed for analysis. The dye migration assay and ELISA confirmed a significant impairment in the blood-testis barrier (BTB) and the manifestation of rNef in testes tissues, respectively. Moreover, a decline in the expression of tight junction proteins, including ZO1 and Occludin, was observed during rNef-induced BTB disruption. Overall, our findings demonstrated that rNef induces BTB disruption through various signaling events. At the site of ectoplasmic specialization of the seminiferous epithelium, the localization of cadherins was found to be disrupted, making the testis a vulnerable site. In conclusion, rNef perturbs the integrity of the blood-testis barrier in rat models; hence, it can also serve as a suitable model for studying the dynamics of the blood-testis barrier.
{"title":"HIV1-Nef perturbs the integrity of blood testis barrier in rat model.","authors":"Deependra Singh, Saurabh Kumar, Rajnikant Mishra, Anjali, R K Tripathi, Monika Sachdev","doi":"10.1080/21688370.2024.2357406","DOIUrl":"https://doi.org/10.1080/21688370.2024.2357406","url":null,"abstract":"<p><p>The blood-testis barrier is a specialized feature within the mammalian testis, located in close proximity to the basement membrane of seminiferous tubules. This barrier serves to divide the seminiferous epithelium into distinct basal and adluminal (apical) compartments. The selectivity of the BTB to foreign particles makes it a safe haven for the virus, and the high affinity of HIV for testis might lead to the vertical transmission of the virus. In the present study, recombinant HIV1-Nef (rNef) protein was injected intravenously to examine the effect of rNef on BTB. SD male rats received 250 µg and 500 µg of rNef along with 2% Evans blue dye within 1 ml through the tail vein. After 1 hour of perfusion, the animals were sacrificed for analysis. The dye migration assay and ELISA confirmed a significant impairment in the blood-testis barrier (BTB) and the manifestation of rNef in testes tissues, respectively. Moreover, a decline in the expression of tight junction proteins, including ZO1 and Occludin, was observed during rNef-induced BTB disruption. Overall, our findings demonstrated that rNef induces BTB disruption through various signaling events. At the site of ectoplasmic specialization of the seminiferous epithelium, the localization of cadherins was found to be disrupted, making the testis a vulnerable site. In conclusion, rNef perturbs the integrity of the blood-testis barrier in rat models; hence, it can also serve as a suitable model for studying the dynamics of the blood-testis barrier.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}