Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Vision loss, among the most feared complications of diabetes, is primarily caused by diabetic retinopathy, a disease that manifests in well-recognized, characteristic microvascular lesions. The reasons for retinal susceptibility to damage in diabetes are unclear, especially considering that microvascular networks are found in all tissues. However, the unique metabolic demands of retinal neurons could account for their vulnerability in diabetes. Photoreceptors are the first neurons in the visual circuit and are also the most energy-demanding cells of the retina. Here, we review experimental and clinical evidence linking photoreceptors to the development of diabetic retinopathy. We then describe the influence of retinal illumination on photoreceptor metabolism, effects of light modulation on the severity of diabetic retinopathy, and recent clinical trials testing the treatment of diabetic retinopathy with interventions that impact photoreceptor metabolism. Finally, we introduce several possible mechanisms that could link photoreceptor responses to light and the development of retinal vascular disease in diabetes. Collectively, these concepts form the basis for a growing body of investigative efforts aimed at developing novel pharmacologic and nonpharmacologic tools that target photoreceptor physiology to treat a very common cause of blindness across the world.
Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood-retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina. Indeed, it has been increasingly realized that DR is in fact a disease of the retina's neurovascular unit (NVU), the multi-cellular framework underlying functional hyperemia, coupling neuronal computations to blood flow. The accumulating evidence reveals that both neurochemical (synapses) and electrical (gap junctions) means of communications between retinal cells are affected at the onset of hyperglycemia, warranting a global assessment of cellular interactions and their role in DR. This is further supported by the recent data showing down-regulation of connexin 43 gap junctions along the vascular relay from capillary to feeding arteriole as one of the earliest indicators of experimental DR, with rippling consequences to the anatomical and physiological integrity of the retina. Here, recent advancements in our knowledge of mechanisms controlling the retinal neurovascular unit will be assessed, along with their implications for future treatment and diagnosis of DR.
Blood flow in the retina increases in response to light-evoked neuronal activity, ensuring that retinal neurons receive an adequate supply of oxygen and nutrients as metabolic demands vary. This response, termed "functional hyperemia," is disrupted in diabetic retinopathy. The reduction in functional hyperemia may result in retinal hypoxia and contribute to the development of retinopathy. This review will discuss the neurovascular coupling signaling mechanisms that generate the functional hyperemia response in the retina, the changes to neurovascular coupling that occur in diabetic retinopathy, possible treatments for restoring functional hyperemia and retinal oxygen levels, and changes to functional hyperemia that occur in the diabetic brain.
The nucleus glomerulosus (NG) in paracanthopterygian and acanthopterygian teleost fishes receives afferents from neurons of the nucleus corticalis (NC), whose dendrites extend to the layers, stratum fibrosum et griseum superficiale (SFGS) and stratum griseum centrale (SGC), of the tectum opticum. A re-examination in this study revealed, by means of tracer experiments using biotinylated dextran amine, a separation among both tectal layers, portions of the NC, and target areas in a laminated type of the NG in the South American pufferfish, Colomesus asellus. Neurons of the lateral part of the NC send their dendrites to the SFGS and project to an area located dorsolaterally and centrally in the NG. In contrast, dendrites from neurons of the medial part of the NC run to the SGC, and projections from these neurons terminate in the NG in an area extending from dorsomedial to ventrolateral in the outer portion. Therefore, these two areas in the NG receive input from different sources. The NG in the visual system of tetraodontids may be involved in higher cognitive functions requiring much energy, becoming apparent by its very high level of cytochrome c oxidase activity.
Patients with diabetes continue to suffer from impaired visual performance before the appearance of overt damage to the retinal microvasculature and later sight-threatening complications. This diabetic retinopathy (DR) has long been thought to start with endothelial cell oxidative stress. Yet newer data surprisingly finds that the avascular outer retina is the primary site of oxidative stress before microvascular histopathology in experimental DR. Importantly, correcting this early oxidative stress is sufficient to restore vision and mitigate the histopathology in diabetic models. However, translating these promising results into the clinic has been stymied by an absence of methods that can measure and optimize anti-oxidant treatment efficacy in vivo. Here, we review imaging approaches that address this problem. In particular, diabetes-induced oxidative stress impairs dark-light regulation of subretinal space hydration, which regulates the distribution of interphotoreceptor binding protein (IRBP). IRBP is a vision-critical, anti-oxidant, lipid transporter, and pro-survival factor. We show how optical coherence tomography can measure subretinal space oxidative stress thus setting the stage for personalizing anti-oxidant treatment and prevention of impactful declines and loss of vision in patients with diabetes.