首页 > 最新文献

Vadose Zone Journal最新文献

英文 中文
Determination of a pedotransfer function for specific air–water interfacial area in sandy soils: A pore network‐informed multigene genetic programming approach 确定砂土中特定空气-水界面面积的传粉函数:基于孔隙网络的多基因遗传编程方法
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-30 DOI: 10.1002/vzj2.20352
Rasoul Mirghafari, Ehsan Nikooee, Amir Raoof, Ghassem Habibagahi
Understanding specific air–water interfacial area (SAWIA) is essential for characterizing and modeling various phenomena in vadose zone hydrology, such as virus and colloid transport, contaminant dissolution, evaporation, and the hydro‐mechanical behavior of unsaturated soils. Traditional measurement methods, including X‐ray imaging and tracer techniques, often encounter challenges, leading to a scarcity of studies that provide a reliable relationship for SAWIA. Currently, no pedotransfer function in the literature links SAWIA with saturation and suction using readily measurable soil properties such as median grain size and porosity. In this study, we initially developed a pore network model capable of predicting SAWIA by calibrating it with corresponding soil‐water retention curves (SWRCs). We then used these models to compile a comprehensive database of SAWIA for six sandy soils, for which experimental SWRCs were available, covering a range of median grain sizes and porosities. Utilizing this database, we established a pedotransfer function through multigene genetic programming. The accuracy of this function was validated against experimental data not previously used in its training and testing. Our parametric study indicated that increases in either porosity or median particle size led to a decrease in the regions exhibiting higher SAWIA in terms of saturation and suction.
了解比空气-水界面面积(SAWIA)对于描述和模拟含水层水文学中的各种现象(如病毒和胶体迁移、污染物溶解、蒸发以及非饱和土壤的水力学行为)至关重要。传统的测量方法(包括 X 射线成像和示踪技术)经常会遇到困难,导致为 SAWIA 提供可靠关系的研究很少。目前,还没有文献利用中值粒度和孔隙度等易于测量的土壤特性将 SAWIA 与饱和度和吸力联系起来。在这项研究中,我们首先开发了一种能够预测 SAWIA 的孔隙网络模型,将其与相应的土壤水滞留曲线(SWRCs)进行校准。然后,我们利用这些模型为六种砂质土壤编制了一个全面的 SAWIA 数据库,这些土壤的试验性 SWRCs 涵盖了一系列中值粒度和孔隙率。利用该数据库,我们通过多基因遗传编程建立了一个土壤转移函数。该函数的准确性是根据之前未用于其训练和测试的实验数据进行验证的。我们的参数研究表明,孔隙率或中值粒度的增加会导致饱和度和吸力方面表现出较高 SAWIA 的区域减少。
{"title":"Determination of a pedotransfer function for specific air–water interfacial area in sandy soils: A pore network‐informed multigene genetic programming approach","authors":"Rasoul Mirghafari, Ehsan Nikooee, Amir Raoof, Ghassem Habibagahi","doi":"10.1002/vzj2.20352","DOIUrl":"https://doi.org/10.1002/vzj2.20352","url":null,"abstract":"Understanding specific air–water interfacial area (SAWIA) is essential for characterizing and modeling various phenomena in vadose zone hydrology, such as virus and colloid transport, contaminant dissolution, evaporation, and the hydro‐mechanical behavior of unsaturated soils. Traditional measurement methods, including X‐ray imaging and tracer techniques, often encounter challenges, leading to a scarcity of studies that provide a reliable relationship for SAWIA. Currently, no pedotransfer function in the literature links SAWIA with saturation and suction using readily measurable soil properties such as median grain size and porosity. In this study, we initially developed a pore network model capable of predicting SAWIA by calibrating it with corresponding soil‐water retention curves (SWRCs). We then used these models to compile a comprehensive database of SAWIA for six sandy soils, for which experimental SWRCs were available, covering a range of median grain sizes and porosities. Utilizing this database, we established a pedotransfer function through multigene genetic programming. The accuracy of this function was validated against experimental data not previously used in its training and testing. Our parametric study indicated that increases in either porosity or median particle size led to a decrease in the regions exhibiting higher SAWIA in terms of saturation and suction.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling sub‐resolution porosity of a heterogeneous carbonate rock sample 异质碳酸盐岩样本的亚分辨率孔隙度建模
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-30 DOI: 10.1002/vzj2.20348
William Godoy, Elizabeth M. Pontedeiro, Rafael A. B. R. Barros, Enno T. de Vries, Amir Raoof, Martinus Th. van Genuchten, Paulo Couto
Accurately estimating the petrophysical properties of heterogeneous carbonate rocks across various scales poses significant challenges, particularly within the context of water and hydrocarbon reservoir studies. Digital rock analysis techniques, such as X‐ray computed microtomography and synchrotron‐light‐based imaging, are increasingly employed to study the complex pore structure of carbonate rocks. However, several technical limitations remain, notably the need to balance the volume of interest with the maximum achievable resolution, which is influenced by geometric properties of the source–detector distance in each apparatus. Typically, higher resolutions necessitate smaller sample volumes, leading to a portion of the pore structure (the sub‐resolution or unresolved porosity), that remain undetected. In this study, X‐ray microtomography is used to infer the fluid flow properties of a carbonate rock sample having a substantial fraction of porosity below the imaging resolution. The existence of unresolved porosity is verified by comparisons with nuclear magnetic resonance (NMR) data. We introduce a methodology for modeling the sub‐resolution pore structure within images by accounting for unresolved pore bodies and pore throats derived from a predetermined distribution of pore throat radii. The process identifies preferential pathways between visible pores using the shortest distance and establishes connections between these pores by allocating pore bodies and throats along these paths, while ensuring compatibility with the NMR measurements. Single‐phase flow simulations are conducted on the full volume of a selected heterogeneous rock sample by using the developed pore network model. Results are then compared with petrophysical data obtained from laboratory measurements.
准确估算不同尺度异质碳酸盐岩的岩石物理特性是一项重大挑战,尤其是在水和碳氢化合物储层研究方面。在研究碳酸盐岩复杂的孔隙结构时,人们越来越多地采用数字岩石分析技术,如 X 射线计算机显微层析技术和同步辐射成像技术。然而,仍然存在一些技术限制,特别是需要在感兴趣的体积与可实现的最大分辨率之间取得平衡,而这受到每台仪器的源-探测器距离的几何特性的影响。通常情况下,分辨率越高,样品体积就越小,从而导致部分孔隙结构(次分辨率或未解决的孔隙度)仍未被探测到。在本研究中,X 射线显微层析成像技术被用于推断碳酸盐岩样本的流体流动特性,该样本中的大部分孔隙度低于成像分辨率。通过与核磁共振(NMR)数据进行比较,验证了未解决孔隙度的存在。我们介绍了一种方法,通过考虑未解决的孔体和孔喉半径预定分布得出的孔喉,对图像中的亚分辨率孔隙结构进行建模。该过程使用最短距离识别可见孔隙之间的优先路径,并通过沿这些路径分配孔体和孔喉建立这些孔隙之间的连接,同时确保与核磁共振测量的兼容性。利用所开发的孔隙网络模型,对所选异质岩石样本的整个体积进行单相流模拟。然后将结果与实验室测量获得的岩石物理数据进行比较。
{"title":"Modeling sub‐resolution porosity of a heterogeneous carbonate rock sample","authors":"William Godoy, Elizabeth M. Pontedeiro, Rafael A. B. R. Barros, Enno T. de Vries, Amir Raoof, Martinus Th. van Genuchten, Paulo Couto","doi":"10.1002/vzj2.20348","DOIUrl":"https://doi.org/10.1002/vzj2.20348","url":null,"abstract":"Accurately estimating the petrophysical properties of heterogeneous carbonate rocks across various scales poses significant challenges, particularly within the context of water and hydrocarbon reservoir studies. Digital rock analysis techniques, such as X‐ray computed microtomography and synchrotron‐light‐based imaging, are increasingly employed to study the complex pore structure of carbonate rocks. However, several technical limitations remain, notably the need to balance the volume of interest with the maximum achievable resolution, which is influenced by geometric properties of the source–detector distance in each apparatus. Typically, higher resolutions necessitate smaller sample volumes, leading to a portion of the pore structure (the sub‐resolution or unresolved porosity), that remain undetected. In this study, X‐ray microtomography is used to infer the fluid flow properties of a carbonate rock sample having a substantial fraction of porosity below the imaging resolution. The existence of unresolved porosity is verified by comparisons with nuclear magnetic resonance (NMR) data. We introduce a methodology for modeling the sub‐resolution pore structure within images by accounting for unresolved pore bodies and pore throats derived from a predetermined distribution of pore throat radii. The process identifies preferential pathways between visible pores using the shortest distance and establishes connections between these pores by allocating pore bodies and throats along these paths, while ensuring compatibility with the NMR measurements. Single‐phase flow simulations are conducted on the full volume of a selected heterogeneous rock sample by using the developed pore network model. Results are then compared with petrophysical data obtained from laboratory measurements.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irrigation scheduling needs to consider both plant‐available water and soil aeration requirements 灌溉安排需要同时考虑植物可利用水量和土壤通气要求
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-29 DOI: 10.1002/vzj2.20344
Beaulah Pragg, T. K. K. Chamindu Deepagoda, Keith Cameron, Hong Di, Timothy J. Clough, Sam Carrick
Global food production relying on irrigated agriculture accounts for >70% of the global freshwater withdrawal. A thorough understanding of soil–water characteristics (SWCs) and critical soil–water values in the soil and subsoil is important for effective management of irrigated water. A critical soil–water “window” for plants is generally taken as the plant‐available water window without considering diffusion‐dominated soil aeration as a co‐requisite. This study examined SWC curves in vadose soil profiles (up to 1.5‐m depth) in eight pasture soils. The soil moisture measurements were made over matric potentials ranging from −1 to −1500 kPa using tension table and pressure plate apparatus. The van Genuchten model was used to parameterize the measured SWC curve, while the Millington‐Quirk model was used to derive soil–gas diffusivity from measured soil physical properties. We defined critical soil–water windows considering the threshold values for both plant‐available water and soil–gas diffusivity to ensure water and aeration corequisites for plant growth. The results clearly distinguished depth‐dependent regimes of gravitational, plant‐available, and unavailable water in selected profiles and their responses to soil structural changes across the depth. In some of the observed soil profiles, only 30%–60% of the plant‐available water window was able to be utilized by plants because the remainder existed under soil conditions where soil aeration was inadequate for plant growth, emphasizing the importance of considering both the plant's water and aeration requirements during irrigation scheduling. Further, the infiltration profiles in two selected soils under simulated irrigation highlighted the importance of a priori knowledge of the soil structure in deeper soil layers for scheduling irrigation.
依靠农业灌溉进行的全球粮食生产占全球淡水消耗量的 70%。全面了解土壤水特性(SWCs)以及土壤和底土中的土壤水临界值对于有效管理灌溉用水非常重要。对植物而言,临界土壤水 "窗口 "通常是指植物可利用的水量窗口,而不考虑以扩散为主的土壤通气性这一共同前提条件。本研究考察了八种牧场土壤中伏流土壤剖面(最深 1.5 米)的 SWC 曲线。使用拉力台和压力板仪器在-1 到 -1500 kPa 的母质电位范围内进行了土壤水分测量。我们使用 van Genuchten 模型对测得的 SWC 曲线进行参数化,同时使用 Millington-Quirk 模型从测得的土壤物理特性推导出土壤-气体扩散率。我们根据植物可利用水分和土壤气体扩散率的临界值定义了临界土壤水窗口,以确保植物生长所需的水分和通气核心条件。结果明确区分了所选剖面中重力水、植物可利用水和不可利用水的深度依赖机制,以及它们对整个深度土壤结构变化的响应。在一些观测到的土壤剖面中,植物仅能利用 30%-60% 的植物可用水窗口,因为其余部分的土壤通气条件不足以满足植物生长的需要。此外,模拟灌溉条件下两种选定土壤的渗透剖面突出表明,事先了解较深土层的土壤结构对安排灌溉非常重要。
{"title":"Irrigation scheduling needs to consider both plant‐available water and soil aeration requirements","authors":"Beaulah Pragg, T. K. K. Chamindu Deepagoda, Keith Cameron, Hong Di, Timothy J. Clough, Sam Carrick","doi":"10.1002/vzj2.20344","DOIUrl":"https://doi.org/10.1002/vzj2.20344","url":null,"abstract":"Global food production relying on irrigated agriculture accounts for >70% of the global freshwater withdrawal. A thorough understanding of soil–water characteristics (SWCs) and critical soil–water values in the soil and subsoil is important for effective management of irrigated water. A critical soil–water “window” for plants is generally taken as the plant‐available water window without considering diffusion‐dominated soil aeration as a co‐requisite. This study examined SWC curves in vadose soil profiles (up to 1.5‐m depth) in eight pasture soils. The soil moisture measurements were made over matric potentials ranging from −1 to −1500 kPa using tension table and pressure plate apparatus. The van Genuchten model was used to parameterize the measured SWC curve, while the Millington‐Quirk model was used to derive soil–gas diffusivity from measured soil physical properties. We defined critical soil–water windows considering the threshold values for both plant‐available water and soil–gas diffusivity to ensure water and aeration corequisites for plant growth. The results clearly distinguished depth‐dependent regimes of gravitational, plant‐available, and unavailable water in selected profiles and their responses to soil structural changes across the depth. In some of the observed soil profiles, only 30%–60% of the plant‐available water window was able to be utilized by plants because the remainder existed under soil conditions where soil aeration was inadequate for plant growth, emphasizing the importance of considering both the plant's water and aeration requirements during irrigation scheduling. Further, the infiltration profiles in two selected soils under simulated irrigation highlighted the importance of a priori knowledge of the soil structure in deeper soil layers for scheduling irrigation.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculating a minimum overlap period for successful intercalibration of soil moisture sensors 计算成功校准土壤水分传感器的最小重叠期
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-29 DOI: 10.1002/vzj2.20346
Victoria A. Walker, Michael H. Cosh, Tyson E. Ochsner
Long‐term in situ soil moisture monitoring inevitably requires sensors to be replaced. Ensuing discontinuities in the data record can be mitigated by intercalibration, however it is unclear how long the existing sensor needs to remain alongside the newly installed before there is enough overlapping data to generate a robust intercalibration. We used 154 pairs of established and newly installed sensors within the Marena, Oklahoma, In Situ Sensor Testbed to determine if there is a minimum overlap time that should be considered when planning upcoming replacements. Hourly observations of the existing sensor were linearly calibrated to those of the newly installed sensor with coefficients determined from overlap periods incremented by 30 days until a reference period of 2 years was reached. The resulting bias, root‐mean‐square error, and correlation coefficient for sensor pairs indicate that a minimum of 6 to 9 months of overlapping data are required to generate a successful intercalibration. Extending that to a full year before decommissioning the old sensor results in a stable intercalibration with higher confidence.
长期原位土壤水分监测不可避免地需要更换传感器。数据记录中随之出现的不连续性可以通过相互校准来缓解,但现有传感器需要与新安装的传感器并存多长时间才会有足够的重叠数据来产生稳健的相互校准,这一点尚不清楚。我们使用俄克拉荷马州马雷纳原位传感器试验台中 154 对已安装和新安装的传感器,以确定在规划即将进行的更换时是否需要考虑最短重叠时间。将现有传感器的每小时观测数据与新安装传感器的每小时观测数据进行线性校准,校准系数由重叠期确定,重叠期每 30 天递增一次,直至达到 2 年的参考期。由此得出的传感器对的偏差、均方根误差和相关系数表明,至少需要 6 到 9 个月的重叠数据才能成功进行相互校准。在旧传感器退役前,将重叠时间延长至一整年,可获得更稳定、可信度更高的相互校准结果。
{"title":"Calculating a minimum overlap period for successful intercalibration of soil moisture sensors","authors":"Victoria A. Walker, Michael H. Cosh, Tyson E. Ochsner","doi":"10.1002/vzj2.20346","DOIUrl":"https://doi.org/10.1002/vzj2.20346","url":null,"abstract":"Long‐term in situ soil moisture monitoring inevitably requires sensors to be replaced. Ensuing discontinuities in the data record can be mitigated by intercalibration, however it is unclear how long the existing sensor needs to remain alongside the newly installed before there is enough overlapping data to generate a robust intercalibration. We used 154 pairs of established and newly installed sensors within the Marena, Oklahoma, In Situ Sensor Testbed to determine if there is a minimum overlap time that should be considered when planning upcoming replacements. Hourly observations of the existing sensor were linearly calibrated to those of the newly installed sensor with coefficients determined from overlap periods incremented by 30 days until a reference period of 2 years was reached. The resulting bias, root‐mean‐square error, and correlation coefficient for sensor pairs indicate that a minimum of 6 to 9 months of overlapping data are required to generate a successful intercalibration. Extending that to a full year before decommissioning the old sensor results in a stable intercalibration with higher confidence.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of dynamic capillarity on the shear strength of sandy soils during transient two‐phase flow: Insights from non‐equilibrium triaxial simulations 瞬态两相流过程中动态毛细管对砂土剪切强度的影响:非平衡三轴模拟的启示
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-29 DOI: 10.1002/vzj2.20351
Alireza Daman Shokouh, Ehsan Nikooee, Ghassem Habibagahi, S. Majid Hassanizadeh
Modeling two‐phase flow in unsaturated porous media is not only important to vadose zone hydrology but also of great value in diverse disciplines. Common approaches use a simplified relationship between fluid pressure difference and saturation, neglecting the influence of saturation change rates. However, many studies have suggested that the applicability of this approach is limited to situations where the rate of change in saturation is insignificant. Despite several studies highlighting the importance of non‐equilibrium capillarity effects in unsaturated flow modeling, its significance in the mechanical response of the porous medium remains unclear. This study thus aims to address this gap by comparing the simulation results of the traditional static approach and an advanced approach that incorporates dynamic capillarity effects. The comparison is conducted under various flow boundary conditions to assess the magnitude of the differences between the two approaches. The results indicate that as the hydraulic boundary conditions’ absolute values increase, the contrast between the mechanical response of the two simulation scenarios (dynamic and static) becomes more significant. For instance, the dynamic model can predict shear strengths up to 50% higher than the static model. This highlights the importance of considering non‐equilibrium effects while modeling the mechanical behavior of an unsaturated porous medium. Finally, the parametric study of the effect of dynamic coefficient, air entry value, and saturated conductivity reveals the more pronounced effect of the dynamic coefficient on the mechanical response.
非饱和多孔介质中的两相流动建模不仅对暗影带水文学非常重要,而且在不同学科中也具有重要价值。常见的方法是使用流体压差与饱和度之间的简化关系,忽略饱和度变化率的影响。然而,许多研究表明,这种方法的适用性仅限于饱和度变化率不明显的情况。尽管多项研究强调了非平衡毛细管效应在非饱和流动建模中的重要性,但其在多孔介质力学响应中的意义仍不明确。因此,本研究旨在通过比较传统静态方法和包含动态毛细管效应的先进方法的模拟结果来弥补这一不足。比较在不同的流动边界条件下进行,以评估两种方法之间的差异程度。结果表明,随着水力边界条件绝对值的增加,两种模拟方案(动态和静态)的机械响应之间的对比变得更加明显。例如,动态模型预测的剪切强度比静态模型高出 50%。这突出了在模拟非饱和多孔介质力学行为时考虑非平衡效应的重要性。最后,对动态系数、空气进入值和饱和传导率的影响进行的参数研究表明,动态系数对力学响应的影响更为明显。
{"title":"Effects of dynamic capillarity on the shear strength of sandy soils during transient two‐phase flow: Insights from non‐equilibrium triaxial simulations","authors":"Alireza Daman Shokouh, Ehsan Nikooee, Ghassem Habibagahi, S. Majid Hassanizadeh","doi":"10.1002/vzj2.20351","DOIUrl":"https://doi.org/10.1002/vzj2.20351","url":null,"abstract":"Modeling two‐phase flow in unsaturated porous media is not only important to vadose zone hydrology but also of great value in diverse disciplines. Common approaches use a simplified relationship between fluid pressure difference and saturation, neglecting the influence of saturation change rates. However, many studies have suggested that the applicability of this approach is limited to situations where the rate of change in saturation is insignificant. Despite several studies highlighting the importance of non‐equilibrium capillarity effects in unsaturated flow modeling, its significance in the mechanical response of the porous medium remains unclear. This study thus aims to address this gap by comparing the simulation results of the traditional static approach and an advanced approach that incorporates dynamic capillarity effects. The comparison is conducted under various flow boundary conditions to assess the magnitude of the differences between the two approaches. The results indicate that as the hydraulic boundary conditions’ absolute values increase, the contrast between the mechanical response of the two simulation scenarios (dynamic and static) becomes more significant. For instance, the dynamic model can predict shear strengths up to 50% higher than the static model. This highlights the importance of considering non‐equilibrium effects while modeling the mechanical behavior of an unsaturated porous medium. Finally, the parametric study of the effect of dynamic coefficient, air entry value, and saturated conductivity reveals the more pronounced effect of the dynamic coefficient on the mechanical response.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PDI model system for parameterizing soil hydraulic properties 参数化土壤水力特性的 PDI 模型系统
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-12 DOI: 10.1002/vzj2.20338
Andre Peters, Wolfgang Durner, Sascha Iden
The Peters–Durner–Iden (PDI) model system for describing soil hydraulic properties (SHP) has been developed over a decade. Inspired by Rien van Genuchten's seminal work, the PDI system focuses on an efficient and simple parameterization of water retention curves and hydraulic conductivity curves (HCC) across the entire soil moisture spectrum. By combining capillary and non‐capillary components for water retention and conductivity, it aims to reconcile mathematical simplicity and insights on water adsorption and film flow in soils. Recent developments have reduced the number of free parameters of the conductivity model to zero, enhancing the model's applicability in cases of limited data availability. The first reduction was achieved by a prediction of absolute non‐capillary conductivity based on the consideration of film and corner flow on the pore scale, and the second by a prediction of absolute capillary conductivity by a capillary bundle model. This allows a complete characterization of SHP over the entire moisture range with only four retention curve parameters. The inclusion of a maximum pore size in the capillary conductivity model prevents an unrealistic drop of the HCC near saturation. This paper provides a comprehensive overview of the PDI model system, emphasizing its conceptual features and mathematical details. An Excel sheet and a Python code stored in a repository are provided for accessibility.
用于描述土壤水力特性(SHP)的彼得斯-杜纳-伊登(PDI)模型系统已经开发了十多年。受 Rien van Genuchten 的开创性工作启发,PDI 系统侧重于对整个土壤湿度范围内的保水曲线和导水曲线 (HCC) 进行高效、简单的参数化。通过结合毛细管和非毛细管的保水和导水成分,该系统旨在调和数学的简洁性和对土壤中水的吸附和膜流的洞察力。最近的发展已将电导率模型的自由参数数量减少到零,从而提高了该模型在数据有限的情况下的适用性。第一个参数的减少是通过预测绝对非毛细管电导率实现的,其基础是考虑孔隙尺度上的膜流和角流;第二个参数的减少是通过毛细管束模型预测绝对毛细管电导率实现的。这样,只需四个保留曲线参数,就能完整描述整个湿度范围内的 SHP 特性。在毛细管电导率模型中加入最大孔径可防止 HCC 在接近饱和时出现不切实际的下降。本文全面概述了 PDI 模型系统,强调了其概念特征和数学细节。为了便于查阅,本文提供了 Excel 表格和存储在资源库中的 Python 代码。
{"title":"The PDI model system for parameterizing soil hydraulic properties","authors":"Andre Peters, Wolfgang Durner, Sascha Iden","doi":"10.1002/vzj2.20338","DOIUrl":"https://doi.org/10.1002/vzj2.20338","url":null,"abstract":"The Peters–Durner–Iden (PDI) model system for describing soil hydraulic properties (SHP) has been developed over a decade. Inspired by Rien van Genuchten's seminal work, the PDI system focuses on an efficient and simple parameterization of water retention curves and hydraulic conductivity curves (HCC) across the entire soil moisture spectrum. By combining capillary and non‐capillary components for water retention and conductivity, it aims to reconcile mathematical simplicity and insights on water adsorption and film flow in soils. Recent developments have reduced the number of free parameters of the conductivity model to zero, enhancing the model's applicability in cases of limited data availability. The first reduction was achieved by a prediction of absolute non‐capillary conductivity based on the consideration of film and corner flow on the pore scale, and the second by a prediction of absolute capillary conductivity by a capillary bundle model. This allows a complete characterization of SHP over the entire moisture range with only four retention curve parameters. The inclusion of a maximum pore size in the capillary conductivity model prevents an unrealistic drop of the HCC near saturation. This paper provides a comprehensive overview of the PDI model system, emphasizing its conceptual features and mathematical details. An Excel sheet and a Python code stored in a repository are provided for accessibility.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating bare soil evaporation for undisturbed soil cores—Using HYDRUS 3D simulation on X‐ray µCT determined soil macrostructures 模拟未扰动土芯的裸土蒸发--在 X 射线 µCT 测定的土壤宏观结构上使用 HYDRUS 3D 仿真
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-12 DOI: 10.1002/vzj2.20339
Frederic Leuther, Efstathios Diamantopoulos
Evaporation of soil water depends not only on climatic conditions, soil surface roughness, soil texture, and soil hydraulic properties but also on the soils’ macrostructure. Evaporation is characterized by water losses over time for a defined soil volume, where soils are assumed to be homogeneous in texture and structure. In this technical note, we investigated the potential and limitations of 3D modeling of evaporation processes on 250 cm3 soil cores with structural features ≥480 µm determined by X‐ray computed tomography. For this, we used isothermal Richards equation as the main governing equation, accounting also for isothermal vapor flow. We simulated two evaporation experiments with same soil texture but contrasting macrostructures, that is, the spatial arrangement of voxels classified as soil matrix and air‐filled voids, of a ploughed and non‐ploughed grassland soil with HYDRUS 3D. In both simulations, we fixed the potential evaporation rates to the experimental rates and evaluated simulation results with measured matric potential data at two depths (1.25 cm and 3.75 cm) continuously recorded at 10 min intervals. We could show that the simulations of bare soil evaporation were able to predict the tensiometer dynamics and water losses for the full experimental time of 7 days. The simulation provided unique spatial information of water content and flow velocities as a function of time, which are important when studying the effect of air‐filled macropores, macro‐connectivity of soil matrix, and water dynamics on soil evaporation.
土壤水的蒸发不仅取决于气候条件、土壤表面粗糙度、土壤质地和土壤水力特性,还取决于土壤的宏观结构。蒸发的特点是,在假定土壤质地和结构均质的情况下,确定的土壤体积中的水分随时间的变化而损失。在本技术说明中,我们研究了通过 X 射线计算机断层扫描确定结构特征 ≥480 µm 的 250 cm3 土芯蒸发过程三维建模的潜力和局限性。为此,我们使用等温理查兹方程作为主要控制方程,同时考虑等温蒸汽流。我们使用 HYDRUS 3D 模拟了两个蒸发实验,它们的土壤质地相同,但宏观结构(即分为土壤基质和充满空气的空隙的体素的空间排列)却截然不同,分别是耕地和非耕地草原土壤。在这两种模拟中,我们都将潜在蒸发率固定为实验蒸发率,并以 10 分钟间隔连续记录的两个深度(1.25 厘米和 3.75 厘米)的测量母势数据来评估模拟结果。结果表明,裸露土壤蒸发模拟能够预测张力计的动态和整个 7 天实验时间内的水分损失。模拟提供了含水量和流速随时间变化的独特空间信息,这对于研究充满空气的大孔隙、土壤基质的宏观连通性和水动力学对土壤蒸发的影响非常重要。
{"title":"Simulating bare soil evaporation for undisturbed soil cores—Using HYDRUS 3D simulation on X‐ray µCT determined soil macrostructures","authors":"Frederic Leuther, Efstathios Diamantopoulos","doi":"10.1002/vzj2.20339","DOIUrl":"https://doi.org/10.1002/vzj2.20339","url":null,"abstract":"Evaporation of soil water depends not only on climatic conditions, soil surface roughness, soil texture, and soil hydraulic properties but also on the soils’ macrostructure. Evaporation is characterized by water losses over time for a defined soil volume, where soils are assumed to be homogeneous in texture and structure. In this technical note, we investigated the potential and limitations of 3D modeling of evaporation processes on 250 cm<jats:sup>3</jats:sup> soil cores with structural features ≥480 µm determined by X‐ray computed tomography. For this, we used isothermal Richards equation as the main governing equation, accounting also for isothermal vapor flow. We simulated two evaporation experiments with same soil texture but contrasting macrostructures, that is, the spatial arrangement of voxels classified as soil matrix and air‐filled voids, of a ploughed and non‐ploughed grassland soil with HYDRUS 3D. In both simulations, we fixed the potential evaporation rates to the experimental rates and evaluated simulation results with measured matric potential data at two depths (1.25 cm and 3.75 cm) continuously recorded at 10 min intervals. We could show that the simulations of bare soil evaporation were able to predict the tensiometer dynamics and water losses for the full experimental time of 7 days. The simulation provided unique spatial information of water content and flow velocities as a function of time, which are important when studying the effect of air‐filled macropores, macro‐connectivity of soil matrix, and water dynamics on soil evaporation.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple, accurate, and explicit form of the Green–Ampt model to estimate infiltration, sorptivity, and hydraulic conductivity 格林-安普特模型的简单、准确和显式形式,用于估算渗透率、吸水率和导水率
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1002/vzj2.20341
S. H. Sadeghi, H. W. Loescher, P. W. Jacoby, P. L. Sullivan
Finding an explicit solution to the widely used Green–Ampt (G–A) one‐dimensional infiltration model has been subject of efforts for more than half a century. We derived an explicit semiempirical approach that combines accuracy with simplicity, a concept that has been generally neglected in previous studies. The equation is , with F (L), Ks (L/T), S (L/T0.5) and t (T) being cumulative infiltration, saturated hydraulic conductivity, sorptivity, and time, respectively. Relative errors (ɛ) by the application of this equation generally do not exceed ±0.3% in most applied infiltration problems faced by water resources engineering today. We show both numerically and mathematically that │ɛ│> 0.3% could only occur if Kst/F > 0.904, a criterion that could apply to sand and loamy sand soils (i.e., coarse texture) and if they experience infiltration rates for over 6 h and 19 h, respectively. Hence, we also derived a simple linear adjustment in the model as Fadj ≅ 0.9796 F + 0.335 S2/Ks to address these longer infiltration rates, and to assure that ɛ remains within the expected ±0.3% range of uncertainty. A linearized regression technique was also developed to accurately estimate S and Ks when the G–A model is used. We numerically demonstrated that our fitting method could be used even when the G–A approach is less valid (diffusive soils), provided that the actual value of the capillary length (λ) is initially known. An added benefit of our approach is that by setting λ equal to 1/3 and 2/3, it can significantly limit the range of initializing, unknown, a priori values of S and Ks, as these two parameters are estimated through the inverse solution of implicit infiltration models. Due to the model's simplicity and accuracy, our solution should find application among hydrologists, natural resource scientists, and engineers who wish to easily derive accurate estimations from the G–A infiltration approach and/or estimate sorptivity and hydraulic conductivity without encountering divergence problems.
半个多世纪以来,人们一直在努力寻找广泛使用的格林-安普特(G-A)一维渗透模型的显式解。我们推导出了一种显式半经验方法,该方法兼具准确性和简便性,而这一概念在以往的研究中普遍被忽视。方程为 ,其中 F (L)、Ks (L/T)、S (L/T0.5) 和 t (T) 分别表示累积渗透率、饱和导水性、吸水率和时间。在当今水利工程面临的大多数应用渗透问题中,应用该方程得出的相对误差 (ɛ) 一般不超过 ±0.3%。我们用数值和数学方法证明,只有当 Kst/F > 0.904 时,│ɛ│> 才可能达到 0.3%,这一标准适用于砂土和壤土(即粗质地),而且它们的渗透率分别超过 6 小时和 19 小时。因此,我们还对模型进行了简单的线性调整,即 Fadj ≅ 0.9796 F + 0.335 S2/Ks,以解决这些较长的渗透率问题,并确保ɛ 保持在预期的 ±0.3% 不确定范围内。我们还开发了一种线性化回归技术,以便在使用 G-A 模型时准确估算 S 和 Ks。我们通过数值证明,只要最初已知毛细管长度 (λ)的实际值,即使 G-A 方法不太有效(扩散性土壤),也可以使用我们的拟合方法。我们这种方法的另一个好处是,通过将 λ 设为 1/3 和 2/3,可以大大限制 S 和 Ks 的初始化、未知、先验值的范围,因为这两个参数是通过隐式渗透模型的逆解估算出来的。由于模型的简洁性和准确性,我们的解决方案可应用于水文学家、自然资源科学家和工程师,他们希望能轻松地从 G-A 渗透方法中得出准确的估算值,和/或估算吸水率和导水率,而不会遇到发散问题。
{"title":"A simple, accurate, and explicit form of the Green–Ampt model to estimate infiltration, sorptivity, and hydraulic conductivity","authors":"S. H. Sadeghi, H. W. Loescher, P. W. Jacoby, P. L. Sullivan","doi":"10.1002/vzj2.20341","DOIUrl":"https://doi.org/10.1002/vzj2.20341","url":null,"abstract":"Finding an explicit solution to the widely used Green–Ampt (G–A) one‐dimensional infiltration model has been subject of efforts for more than half a century. We derived an explicit semiempirical approach that combines accuracy with simplicity, a concept that has been generally neglected in previous studies. The equation is , with <jats:italic>F</jats:italic> (L), <jats:italic>K<jats:sub>s</jats:sub></jats:italic> (L/T), <jats:italic>S</jats:italic> (L<jats:italic>/</jats:italic>T<jats:sup>0.5</jats:sup>) and <jats:italic>t</jats:italic> (T) being cumulative infiltration, saturated hydraulic conductivity, sorptivity, and time, respectively. Relative errors (<jats:italic>ɛ</jats:italic>) by the application of this equation generally do not exceed ±0.3% in most applied infiltration problems faced by water resources engineering today. We show both numerically and mathematically that │<jats:italic>ɛ</jats:italic>│&gt; 0.3% could only occur if <jats:italic>K<jats:sub>s</jats:sub>t</jats:italic>/<jats:italic>F</jats:italic> &gt; 0.904, a criterion that could apply to sand and loamy sand soils (i.e., coarse texture) and if they experience infiltration rates for over 6 h and 19 h, respectively. Hence, we also derived a simple linear adjustment in the model as <jats:italic>F</jats:italic><jats:sub>adj</jats:sub> ≅ 0.9796 <jats:italic>F</jats:italic> + 0.335 <jats:italic>S</jats:italic><jats:sup>2</jats:sup>/<jats:italic>K<jats:sub>s</jats:sub></jats:italic> to address these longer infiltration rates, and to assure that <jats:italic>ɛ</jats:italic> remains within the expected ±0.3% range of uncertainty. A linearized regression technique was also developed to accurately estimate <jats:italic>S</jats:italic> and <jats:italic>K<jats:sub>s</jats:sub></jats:italic> when the G–A model is used. We numerically demonstrated that our fitting method could be used even when the G–A approach is less valid (diffusive soils), provided that the actual value of the capillary length (<jats:italic>λ</jats:italic>) is initially known. An added benefit of our approach is that by setting <jats:italic>λ</jats:italic> equal to 1/3 and 2/3, it can significantly limit the range of initializing, unknown, a priori values of <jats:italic>S</jats:italic> and <jats:italic>K<jats:sub>s</jats:sub></jats:italic>, as these two parameters are estimated through the inverse solution of implicit infiltration models. Due to the model's simplicity and accuracy, our solution should find application among hydrologists, natural resource scientists, and engineers who wish to easily derive accurate estimations from the G–A infiltration approach and/or estimate sorptivity and hydraulic conductivity without encountering divergence problems.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vadose Zone Journal Special Section: Soil physics in agricultural production, water resources, and waste management 地下带期刊》特刊:农业生产、水资源和废物管理中的土壤物理学
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-01 DOI: 10.1002/vzj2.20343
Quirijn de Jong van Lier, Joshua L. Heitman, Simon Lorentz, Stanley Liphadzi, Johan van Tol
{"title":"Vadose Zone Journal Special Section: Soil physics in agricultural production, water resources, and waste management","authors":"Quirijn de Jong van Lier, Joshua L. Heitman, Simon Lorentz, Stanley Liphadzi, Johan van Tol","doi":"10.1002/vzj2.20343","DOIUrl":"https://doi.org/10.1002/vzj2.20343","url":null,"abstract":"","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the accuracy of saturation estimation from electrical measurements of soils with high swelling clay content 通过电学测量估算高膨胀粘土含量土壤饱和度的准确性
IF 2.8 3区 地球科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-29 DOI: 10.1002/vzj2.20340
Sina Saneiyan, Daniel Gimenez, Ethan Siegenthaler, Lee Slater
Electrical conductivity models have been widely used to estimate water content and petrophysical properties of soils in hydrogeophysical studies. However, these models are typically only valid for soils with non‐expandable matrices because they were originally developed for clean sandstone reservoir rocks. Soils containing swelling clays are characterized by matrices that expand/contract upon gaining/losing water. In this laboratory study, we demonstrate that soil matrix changes affect saturation estimation using Archie's laws. A sample of a soil containing a swelling clay was fully saturated with a potassium chloride solution, then left to dry evaporatively at room temperature for 8 days. The complex resistivity of the soil, along with its weight and volume shrinkage, were measured daily during the drying period, and the surface conductivity was calculated based on previous empirical findings. Over the course of the study, the simultaneous evaporation yielded a 33% decrease in volume and caused a nonlinear reduction in saturation with decreasing water content. Accounting for surface conductivity and correcting for saturation using the calculated volume reduction resulted in a power‐law relationship with high R2 values between resistivity and saturation along with reasonable saturation exponents. On the contrary, neglecting either surface conductivity or shrinkage caused similar underestimations of saturation exponents. These results indicate that the application of Archie's second law to soils with swelling clays leads to erroneous predictions of resistivity if saturation values are not corrected for changes in the volume of the soil and surface conductivity is neglected.
在水文地质物理研究中,电导率模型被广泛用于估算土壤的含水量和岩石物理特性。然而,这些模型通常只适用于基质不可膨胀的土壤,因为它们最初是针对干净的砂岩储层岩石开发的。含有膨胀性粘土的土壤,其基质在增水/失水时会膨胀/收缩。在这项实验室研究中,我们利用阿奇定律证明了土壤基质的变化会影响饱和度的估算。将含有膨胀粘土的土壤样本用氯化钾溶液完全饱和,然后在室温下蒸发干燥 8 天。在干燥期间,每天测量土壤的复合电阻率及其重量和体积收缩率,并根据以前的经验结果计算表面电导率。在研究过程中,同时进行的蒸发导致体积减少了 33%,并导致饱和度随着含水量的减少而非线性降低。考虑到表面电导率,并利用计算得出的体积减少量对饱和度进行校正后,电阻率与饱和度之间形成了高 R2 值的幂律关系,同时饱和度指数也很合理。相反,忽略表面电导率或收缩率会导致饱和指数被低估。这些结果表明,如果不根据土壤体积的变化对饱和值进行校正,并且忽略表面传导性,那么将阿基第二定律应用于膨胀粘土土壤会导致对电阻率的错误预测。
{"title":"On the accuracy of saturation estimation from electrical measurements of soils with high swelling clay content","authors":"Sina Saneiyan, Daniel Gimenez, Ethan Siegenthaler, Lee Slater","doi":"10.1002/vzj2.20340","DOIUrl":"https://doi.org/10.1002/vzj2.20340","url":null,"abstract":"Electrical conductivity models have been widely used to estimate water content and petrophysical properties of soils in hydrogeophysical studies. However, these models are typically only valid for soils with non‐expandable matrices because they were originally developed for clean sandstone reservoir rocks. Soils containing swelling clays are characterized by matrices that expand/contract upon gaining/losing water. In this laboratory study, we demonstrate that soil matrix changes affect saturation estimation using Archie's laws. A sample of a soil containing a swelling clay was fully saturated with a potassium chloride solution, then left to dry evaporatively at room temperature for 8 days. The complex resistivity of the soil, along with its weight and volume shrinkage, were measured daily during the drying period, and the surface conductivity was calculated based on previous empirical findings. Over the course of the study, the simultaneous evaporation yielded a 33% decrease in volume and caused a nonlinear reduction in saturation with decreasing water content. Accounting for surface conductivity and correcting for saturation using the calculated volume reduction resulted in a power‐law relationship with high <jats:italic>R</jats:italic><jats:sup>2</jats:sup> values between resistivity and saturation along with reasonable saturation exponents. On the contrary, neglecting either surface conductivity or shrinkage caused similar underestimations of saturation exponents. These results indicate that the application of Archie's second law to soils with swelling clays leads to erroneous predictions of resistivity if saturation values are not corrected for changes in the volume of the soil and surface conductivity is neglected.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Vadose Zone Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1