Abstract Soil moisture is a key factor that influences various aspects of ecosystem functioning. Measuring soil moisture without installing any objects in the soil is desirable because it allows for accurate characterizations of soil moisture while minimizing impacts on soil structure and ecology. In this study, we explored the potential of leaky Rayleigh waves as a proxy to contactlessly estimate soil moisture. We developed an ultrasonic system containing a transducer, receivers, and acoustic barrier. The specimens of sand, silt, and clay were utilized. Experiments were conducted over 4 months. We used a widely used soil‐embedded moisture sensor to compare and develop relationships between leaky Rayleigh waves and soil moisture. Our results showed that as soil moisture increased, the velocity and amplitude of leaky Rayleigh waves decreased because water molecules attracted to the soils led to their attenuation. However, their magnitudes were not considerable except for very dry soils. To overcome these limited relations to estimate soil moisture from leaky Rayleigh waves, we constructed authentic images based on the observed leaky Rayleigh waves and used them as inputs for a fully convolutional network. We found that the combination of the ultrasonic system and deep learning approach developed in this study were suitable for estimating soil moisture without soil disturbances (RMSE = 0.01 m 3 m −3 ). This study suggests that leaky Rayleigh waves have the potential to serve as a reliable proxy for determining soil moisture without the need for physical contact.
土壤水分是影响生态系统各方面功能的关键因素。无需在土壤中安装任何物体即可测量土壤湿度是可取的,因为它可以准确表征土壤湿度,同时最大限度地减少对土壤结构和生态的影响。在这项研究中,我们探索了泄漏瑞利波作为非接触估计土壤湿度的代理的潜力。我们开发了一种包含换能器、接收器和声障的超声波系统。利用了砂、粉和粘土的试样。实验进行了4个多月。我们使用一种广泛使用的土壤嵌入式湿度传感器来比较和发展泄漏瑞利波与土壤湿度之间的关系。结果表明,随着土壤湿度的增加,漏失瑞利波的速度和振幅减小,这是由于土壤吸收的水分子导致其衰减。然而,除了非常干燥的土壤外,它们的大小并不大。为了克服这些有限的关系,从泄漏瑞利波中估计土壤湿度,我们基于观测到的泄漏瑞利波构建了真实图像,并将其用作全卷积网络的输入。我们发现,超声波系统和本研究开发的深度学习方法相结合适用于在没有土壤扰动的情况下估计土壤水分(RMSE = 0.01 m 3 m−3)。这项研究表明,漏瑞利波有潜力作为确定土壤湿度的可靠代理,而不需要物理接触。
{"title":"Contactless estimation of soil moisture using leaky Rayleigh waves and a fully convolutional network","authors":"Seoungmin Lee, Dong Kook Woo, Hajin Choi","doi":"10.1002/vzj2.20285","DOIUrl":"https://doi.org/10.1002/vzj2.20285","url":null,"abstract":"Abstract Soil moisture is a key factor that influences various aspects of ecosystem functioning. Measuring soil moisture without installing any objects in the soil is desirable because it allows for accurate characterizations of soil moisture while minimizing impacts on soil structure and ecology. In this study, we explored the potential of leaky Rayleigh waves as a proxy to contactlessly estimate soil moisture. We developed an ultrasonic system containing a transducer, receivers, and acoustic barrier. The specimens of sand, silt, and clay were utilized. Experiments were conducted over 4 months. We used a widely used soil‐embedded moisture sensor to compare and develop relationships between leaky Rayleigh waves and soil moisture. Our results showed that as soil moisture increased, the velocity and amplitude of leaky Rayleigh waves decreased because water molecules attracted to the soils led to their attenuation. However, their magnitudes were not considerable except for very dry soils. To overcome these limited relations to estimate soil moisture from leaky Rayleigh waves, we constructed authentic images based on the observed leaky Rayleigh waves and used them as inputs for a fully convolutional network. We found that the combination of the ultrasonic system and deep learning approach developed in this study were suitable for estimating soil moisture without soil disturbances (RMSE = 0.01 m 3 m −3 ). This study suggests that leaky Rayleigh waves have the potential to serve as a reliable proxy for determining soil moisture without the need for physical contact.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henrique D. R. Carvalho, Adam M. Howard, Aziz Amoozegar, Carl R. Crozier, Amy M. Johnson, Joshua L. Heitman
Abstract Miscanthus is a productive perennial grass that is suitable as a bioenergy crop in “marginal” lands (e.g., eroded soils) with low water holding capacity. However, little is known about the impact of miscanthus residues on vapor transport and soil water budgets. Laboratory experiments were conducted to measure the vapor conductance through miscanthus residues and its effect on soil water evaporation. The ranges for the length, width, and thickness of residue elements were 0.5–9.0, 0.1–0.5, and 0.1–0.5 cm, respectively. Average residue areal, bulk, and skeletal densities were 0.88 kg m −2 , 24 kg m −3 , and 1006 kg m −3 , respectively, giving a porosity of 0.98 m 3 m −3 . A power function described the decrease in conductance with increasing residue load. The corresponding conductance for a residue load of 0.88 kg m −2 was 1.6 mm s −1 . During the first days of a 60‐day drying experiment, cumulative evaporation showed logarithmic decay with increasing residue load. Conversely, cumulative evaporation during the last days of the study showed little difference between treatments. Measurements indicated that there is a “critical” residue load (∼1.0 kg m −2 ) beyond which evaporation no longer decreases appreciably when the soil is under the stage 1 evaporation regime. Results suggest that soil water conservation in marginal lands may be accomplished by maintaining moderate amounts of bioenergy grass residue covering the soil. Determining “critical” loads for different residue types is a knowledge gap that merits further research.
芒草是一种多产的多年生草本植物,适合作为生物能源作物在“边缘”土地(如水土流失土壤)低持水能力。然而,对芒草残茬对土壤水汽输送和水分收支的影响知之甚少。通过室内试验,测定了芒草残渣的蒸汽导率及其对土壤水分蒸发的影响。残基的长度为0.5 ~ 9.0 cm,宽度为0.1 ~ 0.5 cm,厚度为0.1 ~ 0.5 cm。平均残留面积、体积和骨架密度分别为0.88 kg m - 2、24 kg m - 3和1006 kg m - 3,孔隙率为0.98 m - 3。幂函数描述了电导随剩余负载的增加而减小。当残余负载为0.88 kg m−2时,相应的电导为1.6 mm s−1。在60天干燥试验的头几天,累积蒸发量随残留物负荷的增加呈对数衰减。相反,研究最后几天的累积蒸发量在处理之间几乎没有差异。测量表明,当土壤处于第1阶段蒸发状态时,存在一个“临界”残留负荷(~ 1.0 kg m - 2),超过这个负荷,蒸发不再明显减少。结果表明,在边缘土地上保持适量的生物质秸秆覆盖土壤可以实现水土保持。确定不同残留物类型的“临界”负荷是一个值得进一步研究的知识缺口。
{"title":"Water vapor transport through bioenergy grass residues and its effects on soil water evaporation","authors":"Henrique D. R. Carvalho, Adam M. Howard, Aziz Amoozegar, Carl R. Crozier, Amy M. Johnson, Joshua L. Heitman","doi":"10.1002/vzj2.20282","DOIUrl":"https://doi.org/10.1002/vzj2.20282","url":null,"abstract":"Abstract Miscanthus is a productive perennial grass that is suitable as a bioenergy crop in “marginal” lands (e.g., eroded soils) with low water holding capacity. However, little is known about the impact of miscanthus residues on vapor transport and soil water budgets. Laboratory experiments were conducted to measure the vapor conductance through miscanthus residues and its effect on soil water evaporation. The ranges for the length, width, and thickness of residue elements were 0.5–9.0, 0.1–0.5, and 0.1–0.5 cm, respectively. Average residue areal, bulk, and skeletal densities were 0.88 kg m −2 , 24 kg m −3 , and 1006 kg m −3 , respectively, giving a porosity of 0.98 m 3 m −3 . A power function described the decrease in conductance with increasing residue load. The corresponding conductance for a residue load of 0.88 kg m −2 was 1.6 mm s −1 . During the first days of a 60‐day drying experiment, cumulative evaporation showed logarithmic decay with increasing residue load. Conversely, cumulative evaporation during the last days of the study showed little difference between treatments. Measurements indicated that there is a “critical” residue load (∼1.0 kg m −2 ) beyond which evaporation no longer decreases appreciably when the soil is under the stage 1 evaporation regime. Results suggest that soil water conservation in marginal lands may be accomplished by maintaining moderate amounts of bioenergy grass residue covering the soil. Determining “critical” loads for different residue types is a knowledge gap that merits further research.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna R. Blöcher, Efstathios Diamantopoulos, Wolfgang Durner, Sascha C. Iden
Abstract Evaporation from bare soil is an important hydrological process and part of the water and energy balance of terrestrial systems. Modeling bare‐soil evaporation is challenging, mainly due to nonlinear couplings among liquid water, water vapor, and heat fluxes. Model concepts of varying complexity have been proposed for predicting evaporative water and energy fluxes. Our aim was to test a standard model of coupled water, vapor, and heat flow in the soil using data from laboratory evaporation experiments under different boundary conditions. We conducted evaporation experiments with a sand and a silt loam soil and with three different atmospheric boundary conditions: (i) wind, (ii) wind and short‐wave radiation, and (iii) wind and intermittent short‐wave radiation. The packed soil columns were closed at the bottom (no water flux) and instrumented with temperature sensors, tensiometers, and relative humidity probes. We simulated the evaporation experiments with a coupled water, vapor, and heat flow model, which solves the surface energy balance and predicts the evaporation rate. The evaporation dynamics were predicted very well, in particular the onset of stage‐two evaporation and the evaporation rates during the stage. A continuous slow decrease of the measured evaporation rate during stage‐one could not be described with a constant aerodynamic resistance. Adding established soil resistance parametrizations to the model significantly degraded model performance. The use of a boundary‐layer resistance, which takes into account the effect of point sources of moisture, improved the prediction of evaporation rates for the sandy soil, but not for the silt loam.
{"title":"Validating coupled flow theory for bare‐soil evaporation under different boundary conditions","authors":"Johanna R. Blöcher, Efstathios Diamantopoulos, Wolfgang Durner, Sascha C. Iden","doi":"10.1002/vzj2.20277","DOIUrl":"https://doi.org/10.1002/vzj2.20277","url":null,"abstract":"Abstract Evaporation from bare soil is an important hydrological process and part of the water and energy balance of terrestrial systems. Modeling bare‐soil evaporation is challenging, mainly due to nonlinear couplings among liquid water, water vapor, and heat fluxes. Model concepts of varying complexity have been proposed for predicting evaporative water and energy fluxes. Our aim was to test a standard model of coupled water, vapor, and heat flow in the soil using data from laboratory evaporation experiments under different boundary conditions. We conducted evaporation experiments with a sand and a silt loam soil and with three different atmospheric boundary conditions: (i) wind, (ii) wind and short‐wave radiation, and (iii) wind and intermittent short‐wave radiation. The packed soil columns were closed at the bottom (no water flux) and instrumented with temperature sensors, tensiometers, and relative humidity probes. We simulated the evaporation experiments with a coupled water, vapor, and heat flow model, which solves the surface energy balance and predicts the evaporation rate. The evaporation dynamics were predicted very well, in particular the onset of stage‐two evaporation and the evaporation rates during the stage. A continuous slow decrease of the measured evaporation rate during stage‐one could not be described with a constant aerodynamic resistance. Adding established soil resistance parametrizations to the model significantly degraded model performance. The use of a boundary‐layer resistance, which takes into account the effect of point sources of moisture, improved the prediction of evaporation rates for the sandy soil, but not for the silt loam.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edward Smit, George van Zijl, Eddie Riddell, Johan van Tol
Abstract Detailed soil information is increasingly sought after for watershed‐scale hydrological modeling to better understand the soil–water interactions at a landscape level. In South Africa, 8% of the surface area is responsible for 50% of the mean annual runoff. Thus, understanding the soil–water dynamics in these catchments remains imperative to future water resource management. In this study, the value of hydropedological information is tested by comparing a detailed hydropedological map based on infield soil information to the best readily available soil information at five different catchment sizes (48, 56, 174, 674, and 2421 km 2 ) using the soil and water assessment tool (SWAT)+ model in the Sabie catchment, South Africa. The aim was to determine the value of hydropedological information at different scales as well as illustrate the value of hydropedology as soft data to improve hydrological process representation. Improved hydropedological information significantly improved long‐term streamflow simulations at all catchment sizes, except for the largest catchment (2421 km 2 ). It is assumed that the resulting improved streamflow simulations are a direct result of the improved hydrological process representation achieved by the hydropedological information. Here, we argue that hydropedological information should form an important soft data tool to better understand and simulate different hydrological processes.
{"title":"Examining the value of hydropedological information on hydrological modeling at different scales in the Sabie catchment, South Africa","authors":"Edward Smit, George van Zijl, Eddie Riddell, Johan van Tol","doi":"10.1002/vzj2.20280","DOIUrl":"https://doi.org/10.1002/vzj2.20280","url":null,"abstract":"Abstract Detailed soil information is increasingly sought after for watershed‐scale hydrological modeling to better understand the soil–water interactions at a landscape level. In South Africa, 8% of the surface area is responsible for 50% of the mean annual runoff. Thus, understanding the soil–water dynamics in these catchments remains imperative to future water resource management. In this study, the value of hydropedological information is tested by comparing a detailed hydropedological map based on infield soil information to the best readily available soil information at five different catchment sizes (48, 56, 174, 674, and 2421 km 2 ) using the soil and water assessment tool (SWAT)+ model in the Sabie catchment, South Africa. The aim was to determine the value of hydropedological information at different scales as well as illustrate the value of hydropedology as soft data to improve hydrological process representation. Improved hydropedological information significantly improved long‐term streamflow simulations at all catchment sizes, except for the largest catchment (2421 km 2 ). It is assumed that the resulting improved streamflow simulations are a direct result of the improved hydrological process representation achieved by the hydropedological information. Here, we argue that hydropedological information should form an important soft data tool to better understand and simulate different hydrological processes.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water retention and hydraulic conductivity characteristics are key input data in studies on soil water dynamics in the vadose zone. The most well‐known analytical functions to describe these characteristics are those given by Mualem and van Genuchten, where van Genuchten showed that both can be described by a limited set of shared parameters. Analytically, there are no restrictions on the range of pressure heads for which these characteristics can be used. Experience, however, has shown that for certain sets of parameters, the hydraulic conductivity cannot be computed accurately at low‐pressure heads. This is due to the accuracy of (double precision) floating point operations in computer code. It is shown that for low‐pressure heads, the Mualem function approaches a power function. An adapted version of the Mualem–van Genuchten (MvG) expression for the hydraulic conductivity is proposed: between saturation and a soil‐dependent critical pressure head, the classical Mualem expression is valid and below this critical pressure head a power function is used. The power function is defined such that it matches the Mualem value at the critical pressure head. No accuracy problems will occur when using the power function until the result approaches the smallest possible (double precision) floating point value that significantly differs from zero.
{"title":"Modified expression for hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low‐pressure heads","authors":"Marius Heinen","doi":"10.1002/vzj2.20279","DOIUrl":"https://doi.org/10.1002/vzj2.20279","url":null,"abstract":"Water retention and hydraulic conductivity characteristics are key input data in studies on soil water dynamics in the vadose zone. The most well‐known analytical functions to describe these characteristics are those given by Mualem and van Genuchten, where van Genuchten showed that both can be described by a limited set of shared parameters. Analytically, there are no restrictions on the range of pressure heads for which these characteristics can be used. Experience, however, has shown that for certain sets of parameters, the hydraulic conductivity cannot be computed accurately at low‐pressure heads. This is due to the accuracy of (double precision) floating point operations in computer code. It is shown that for low‐pressure heads, the Mualem function approaches a power function. An adapted version of the Mualem–van Genuchten (MvG) expression for the hydraulic conductivity is proposed: between saturation and a soil‐dependent critical pressure head, the classical Mualem expression is valid and below this critical pressure head a power function is used. The power function is defined such that it matches the Mualem value at the critical pressure head. No accuracy problems will occur when using the power function until the result approaches the smallest possible (double precision) floating point value that significantly differs from zero.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48366105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Schlegel, Jennifer Souza, S. Warix, R. MacNeille, E. Murray, A. Radke, S. Godsey, M. Seyfried, B. Finney, G. Flerchinger, K. Lohse
The Reynolds Creek Experimental Watershed (RCEW) and Critical Zone Observatory (CZO), located south of the western Snake River Plain in the Intermountain West of the United States, is the site of over 60 years of research aimed at understanding integrated earth processes in a semi‐arid climate to aid sustainable use of environmental resources. Meteoric water lines (MWLs) are used to interpret hydrologic processes, though equilibrium and nonequilibrium processes affect the linear function and can reveal seasonal and climatological effects, necessitating the development of local meteoric water lines (LMWLs). At RCEW‐CZO, an RCEW LMWL was developed using non‐volume‐weighted, orthogonal regression with assumed error in both predictor and response variables from several years of precipitation (2015, 2017, 2019, 2020, and 2021) primarily at three different elevations (1203, 1585, and 2043 m). As most precipitation is evaporated or intercepted by vegetation in the driest months, an RCEW LMWL for groundwater recharge (RCEW LMWL‐GWR) was also developed using precipitation from the wettest months (November through April). The RCEW LMWL (δ2H = 7.41 × δ18O – 3.09) is different from the RCEW LMWL‐GWR (δ2H = 8.21 × δ18O + 9.95) and compares favorably to other LMWLs developed for the region and climate. Comparative surface, spring, and subsurface water datasets within the RCEW‐CZO are more similar to precipitation during the wettest months than dry months, illustrating that some semi‐arid hydrologic systems may most appropriately be compared to MWLs developed from precipitation only from the wettest season.
{"title":"Seasonality and evaporation of water resources in Reynolds Creek Experimental Watershed and Critical Zone Observatory, Southwestern Idaho, USA","authors":"M. Schlegel, Jennifer Souza, S. Warix, R. MacNeille, E. Murray, A. Radke, S. Godsey, M. Seyfried, B. Finney, G. Flerchinger, K. Lohse","doi":"10.1002/vzj2.20278","DOIUrl":"https://doi.org/10.1002/vzj2.20278","url":null,"abstract":"The Reynolds Creek Experimental Watershed (RCEW) and Critical Zone Observatory (CZO), located south of the western Snake River Plain in the Intermountain West of the United States, is the site of over 60 years of research aimed at understanding integrated earth processes in a semi‐arid climate to aid sustainable use of environmental resources. Meteoric water lines (MWLs) are used to interpret hydrologic processes, though equilibrium and nonequilibrium processes affect the linear function and can reveal seasonal and climatological effects, necessitating the development of local meteoric water lines (LMWLs). At RCEW‐CZO, an RCEW LMWL was developed using non‐volume‐weighted, orthogonal regression with assumed error in both predictor and response variables from several years of precipitation (2015, 2017, 2019, 2020, and 2021) primarily at three different elevations (1203, 1585, and 2043 m). As most precipitation is evaporated or intercepted by vegetation in the driest months, an RCEW LMWL for groundwater recharge (RCEW LMWL‐GWR) was also developed using precipitation from the wettest months (November through April). The RCEW LMWL (δ2H = 7.41 × δ18O – 3.09) is different from the RCEW LMWL‐GWR (δ2H = 8.21 × δ18O + 9.95) and compares favorably to other LMWLs developed for the region and climate. Comparative surface, spring, and subsurface water datasets within the RCEW‐CZO are more similar to precipitation during the wettest months than dry months, illustrating that some semi‐arid hydrologic systems may most appropriately be compared to MWLs developed from precipitation only from the wettest season.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"1 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41582368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Bereswill, Hannah Gatz‐Miller, D. Su, C. Tötzke, N. Kardjilov, S. Oswald, K. Mayer
Oxygen (O2) availability in soils is vital for plant growth and productivity. The transport and consumption of O2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three‐dimensional root system architecture and the spatiotemporal dynamics of soil moisture (θ) and O2 concentrations in the root zone of maize (Zea mays) via non‐invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non‐invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured θ and O2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten α and n), better reproduced the measured θ and O2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.
{"title":"Coupling non‐invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone","authors":"S. Bereswill, Hannah Gatz‐Miller, D. Su, C. Tötzke, N. Kardjilov, S. Oswald, K. Mayer","doi":"10.1002/vzj2.20268","DOIUrl":"https://doi.org/10.1002/vzj2.20268","url":null,"abstract":"Oxygen (O2) availability in soils is vital for plant growth and productivity. The transport and consumption of O2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three‐dimensional root system architecture and the spatiotemporal dynamics of soil moisture (θ) and O2 concentrations in the root zone of maize (Zea mays) via non‐invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non‐invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured θ and O2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten α and n), better reproduced the measured θ and O2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49112372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Imig, Lea Augustin, J. Groh, T. Pütz, Martin Elsner, F. Einsiedl, A. Rein
This study investigates the contamination potential of herbicides to groundwater with the help of numerical modeling (HYDRUS‐1D) and stable carbon isotopes for characterizing biodegradation. Four herbicides, metolachlor, terbuthylazine, prosulfuron, and nicosulfuron, were applied over a period of 4.5 years on two lysimeters located in Wielenbach, Germany, and monitored by lysimeter drainage. These lysimeters contained soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2) and were both cropped with maize (Zea mays). In the preceding study, we characterized flow within the lysimeters by using stable water isotopes and unsaturated flow models. Building up on these findings, models were extended for describing reactive transport of the herbicides and investigating process contributions. At the end of the experiment, 0.9%–15.9% of the applied herbicides (up to 20.9% if including metabolites) were recovered by lysimeter drainage. Metabolite formation and accumulation was observed, and biodegradation was also indicated by small changes in carbon isotope signals (δ13C) between applied and leached herbicides. Model setups could describe the dynamics of herbicide concentrations in lysimeter drainage well. Concentration peaks in drainage were partly also linked with strong precipitation events, indicating preferential flow influence. The soil core with the coarser texture (Ly1) showed less herbicide leaching than the finer texture (Ly2), which can be explained by a larger mobile phase in Ly1. Overall, our approaches and findings contribute to the understanding of multi‐process herbicide transport in the vadose zone and leaching potentials to groundwater, where δ13C can provide valuable hints for microbial degradation.
{"title":"Fate of herbicides in cropped lysimeters: 2. Leaching of four maize herbicides considering different processes","authors":"Anne Imig, Lea Augustin, J. Groh, T. Pütz, Martin Elsner, F. Einsiedl, A. Rein","doi":"10.1002/vzj2.20275","DOIUrl":"https://doi.org/10.1002/vzj2.20275","url":null,"abstract":"This study investigates the contamination potential of herbicides to groundwater with the help of numerical modeling (HYDRUS‐1D) and stable carbon isotopes for characterizing biodegradation. Four herbicides, metolachlor, terbuthylazine, prosulfuron, and nicosulfuron, were applied over a period of 4.5 years on two lysimeters located in Wielenbach, Germany, and monitored by lysimeter drainage. These lysimeters contained soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2) and were both cropped with maize (Zea mays). In the preceding study, we characterized flow within the lysimeters by using stable water isotopes and unsaturated flow models. Building up on these findings, models were extended for describing reactive transport of the herbicides and investigating process contributions. At the end of the experiment, 0.9%–15.9% of the applied herbicides (up to 20.9% if including metabolites) were recovered by lysimeter drainage. Metabolite formation and accumulation was observed, and biodegradation was also indicated by small changes in carbon isotope signals (δ13C) between applied and leached herbicides. Model setups could describe the dynamics of herbicide concentrations in lysimeter drainage well. Concentration peaks in drainage were partly also linked with strong precipitation events, indicating preferential flow influence. The soil core with the coarser texture (Ly1) showed less herbicide leaching than the finer texture (Ly2), which can be explained by a larger mobile phase in Ly1. Overall, our approaches and findings contribute to the understanding of multi‐process herbicide transport in the vadose zone and leaching potentials to groundwater, where δ13C can provide valuable hints for microbial degradation.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46923202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Vanderborght, D. Leitner, A. Schnepf, V. Couvreur, H. Vereecken, M. Javaux
{"title":"Combining root and soil hydraulics in macroscopic representations of root water uptake","authors":"J. Vanderborght, D. Leitner, A. Schnepf, V. Couvreur, H. Vereecken, M. Javaux","doi":"10.1002/vzj2.20273","DOIUrl":"https://doi.org/10.1002/vzj2.20273","url":null,"abstract":"","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49239488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Trochon, V. Bustillo, L. Caner, S. Pasquet, V. Suc, F. Granouillac, A. Probst, J. Probst, T. Tallec, M. Guiresse
Local waterlogging often occurs on the steep slopes of clayey–calcareous soils in southwestern France, causing nutrients and pollutants transfer to the river bodies and reduced ecosystems services. These soils developed in the Miocene molassic hill formation and are generally impermeable with abundant traces of hydromorphy and heterogenous spatial distribution. This article aims to describe the hydrological functioning of these soils, based on a cross analysis of pedological, hydrological, and geophysical characterizations. Our experimental site is the catchment area located in Auradé (southwestern France). Here, we analyze the flows at the outlet of the studied watershed together with piezometric and climatic monitoring from September 2020 to September 2021. We show that the hydrological year is divided into three phases: first, a soil recharge phase with an effective rainfall of about 100 mm; second, a saturation phase, when 80% of the effective precipitation is drained mostly by runoff and hypodermic flows; third, a drying phase. Soil waterlogging events usually occur during the saturation phase. They are due to several forms of flow: surface runoff associated with return flow, hypodermic flow caused by the presence of soil layers with lower hydraulic conductivity in the subsurface (swelling clays and plowing sole) and groundwater flow with intermittent connection of the soil water table in the hillside to the alluvial groundwater table. We also conducted independent seismic refraction tomography analyses that validate localized waterlogging patterns along the catchment and open the way to spatializing areas with high waterlogging potential at the scale of the study plot.
{"title":"Main water pathways in cultivated clayey calcisols in molassic hills in southwestern France: Toward spatialization of soil waterlogging","authors":"B. Trochon, V. Bustillo, L. Caner, S. Pasquet, V. Suc, F. Granouillac, A. Probst, J. Probst, T. Tallec, M. Guiresse","doi":"10.1002/vzj2.20272","DOIUrl":"https://doi.org/10.1002/vzj2.20272","url":null,"abstract":"Local waterlogging often occurs on the steep slopes of clayey–calcareous soils in southwestern France, causing nutrients and pollutants transfer to the river bodies and reduced ecosystems services. These soils developed in the Miocene molassic hill formation and are generally impermeable with abundant traces of hydromorphy and heterogenous spatial distribution. This article aims to describe the hydrological functioning of these soils, based on a cross analysis of pedological, hydrological, and geophysical characterizations. Our experimental site is the catchment area located in Auradé (southwestern France). Here, we analyze the flows at the outlet of the studied watershed together with piezometric and climatic monitoring from September 2020 to September 2021. We show that the hydrological year is divided into three phases: first, a soil recharge phase with an effective rainfall of about 100 mm; second, a saturation phase, when 80% of the effective precipitation is drained mostly by runoff and hypodermic flows; third, a drying phase. Soil waterlogging events usually occur during the saturation phase. They are due to several forms of flow: surface runoff associated with return flow, hypodermic flow caused by the presence of soil layers with lower hydraulic conductivity in the subsurface (swelling clays and plowing sole) and groundwater flow with intermittent connection of the soil water table in the hillside to the alluvial groundwater table. We also conducted independent seismic refraction tomography analyses that validate localized waterlogging patterns along the catchment and open the way to spatializing areas with high waterlogging potential at the scale of the study plot.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"22 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42781597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}