首页 > 最新文献

Water Environment Research最新文献

英文 中文
Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions. 北欧条件下室外微藻多元养殖的季节性脱氮。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11142
Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff

Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO2 effluent. Total N (TN) removal was higher in spring (1.5 g-2d-1), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g-2d-1). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g-2d-1), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.

在瑞典东南部的冬季、春季和秋季,在北欧条件下对微藻清洁废物流和生产生物质的解决方案进行了评估。该研究调查了工业渗滤液的脱氮、生物质质量和安全性,方法是在开放式赛道池塘中利用当地微藻和细菌的多重培养来处理工业渗滤液水,并向其供应工业二氧化碳废水。与冬季和秋季(0.1 g-2d-1 和 0.09 g-2d-1)相比,由于光照条件良好,春季的总氮(TN)去除率更高(1.5 g-2d-1)。光照、TN 和氮的种类影响了微藻群落(以叶绿藻为主),而细菌群落在各个季节保持稳定,蓝藻占很大比例。冬季条件促进了生物量蛋白质(19.6-26.7%)的增加,而春季则以脂类和碳水化合物含量最高(分别为 11.4-18.4% 和 15.4-19.8%)。生物质毒素和金属含量低于饲料的安全水平,但由于可能存在有毒菌株,生物燃料或肥料可能是藻类生物质的合适用途。实践点:在北欧的冬季、春季和秋季,对微藻类去除渗滤液中的氮进行了评估。春季的总脱氮量最高(1.5 g-2d-1),这得益于有利于自养生长的光照条件。采用本地多培养方式使培养在季节(光照)和短期(氮种变化)范围内更加稳定。所产藻类生物量中的有毒元素低于可循环利用的法定阈值。
{"title":"Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions.","authors":"Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff","doi":"10.1002/wer.11142","DOIUrl":"https://doi.org/10.1002/wer.11142","url":null,"abstract":"<p><p>Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO<sub>2</sub> effluent. Total N (TN) removal was higher in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g<sup>-2</sup>d<sup>-1</sup>). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11142"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Co-Ce@RM catalysts for catalytic ozonation of tetracycline. 制备用于催化臭氧氧化四环素的 Co-Ce@RM 催化剂。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11146
Wenquan Sun, Yiming Xie, Ming Zhang, Jun Zhou, Yongjun Sun

In this work, a Co-Ce@RM ozone catalyst was developed using red mud (RM), a by-product of alumina production, as a support material, and its preparation process, catalytic efficiency, and tetracycline (TCN) degradation mechanism were investigated. A comprehensive assessment was carried out using the 3E (environmental, economic, and energy) model. The optimal production conditions for Co-Ce@RM were as follows: The doping ratio of Co and Ce was 1:3, the calcination temperature was 400°C, and the calcination time was 5 h, achieving a maximum removal rate of 87.91% of TCN. The catalyst was characterized using different analytical techniques. Under the conditions of 0.4 L/min ozone aeration rate, with 9% catalyst loading and solution pH 9, the optimal removal rates and chemical oxygen demand by the Co-Ce catalytic ozonation at RM were 94.17% and 75.27%, respectively. Moreover, free radical quenching experiments showed that superoxide radicals (O2 -) and singlet oxygen (1O2) were the main active groups responsible for the degradation of TCN. When characterizing the water quality, it was assumed that TCN undergoes degradation pathways such as demethylation, dehydroxylation, double bond cleavage, and ring-opening reactions under the influence of various active substances. Finally, the 3E evaluation model was deployed to evaluate the Co-Ce@RM catalytic ozonation experiment of TCN wastewater. PRACTITIONER POINTS: The preparation of Co-Ce@RM provides new ideas for resource utilization of red mud. Catalytic ozonation by Co-Ce@RM can produce 1O2 active oxygen groups. The Co-Ce@RM catalyst can maintain a high catalytic activity after 20 cycles. The degradation pathway of the catalytic ozonation of tetracycline was fully analyzed. Catalytic ozone oxidation processes were evaluated by the "3E" (environmental, economic, and energy) model.

本研究以氧化铝生产过程中产生的副产品赤泥(RM)为支撑材料,开发了一种 Co-Ce@RM 臭氧催化剂,并对其制备工艺、催化效率和四环素(TCN)降解机理进行了研究。采用 3E(环境、经济和能源)模型进行了综合评估。Co-Ce@RM 的最佳生产条件如下:Co 和 Ce 的掺杂比例为 1:3,煅烧温度为 400°C,煅烧时间为 5 小时,TCN 的最大去除率为 87.91%。催化剂采用不同的分析技术进行了表征。在臭氧曝气速度为 0.4 L/min、催化剂负载量为 9%、溶液 pH 为 9 的条件下,Co-Ce 催化臭氧在 RM 条件下的最佳去除率和化学需氧量分别为 94.17% 和 75.27%。此外,自由基淬灭实验表明,超氧自由基(O2-)和单线态氧(1O2)是降解 TCN 的主要活性基团。在确定水质特征时,假定 TCN 在各种活性物质的影响下会经历脱甲基、脱羟基、双键裂解和开环反应等降解途径。最后,利用 3E 评估模型对 TCN 废水的 Co-Ce@RM 催化臭氧实验进行评估。实践要点:Co-Ce@RM 的制备为赤泥的资源化利用提供了新思路。Co-Ce@RM 催化臭氧可以产生 1O2 活性氧基团。Co-Ce@RM 催化剂在 20 次循环后仍能保持较高的催化活性。全面分析了催化臭氧氧化四环素的降解途径。通过 "3E"(环境、经济和能源)模型对催化臭氧氧化过程进行了评估。
{"title":"Preparation of Co-Ce@RM catalysts for catalytic ozonation of tetracycline.","authors":"Wenquan Sun, Yiming Xie, Ming Zhang, Jun Zhou, Yongjun Sun","doi":"10.1002/wer.11146","DOIUrl":"https://doi.org/10.1002/wer.11146","url":null,"abstract":"<p><p>In this work, a Co-Ce@RM ozone catalyst was developed using red mud (RM), a by-product of alumina production, as a support material, and its preparation process, catalytic efficiency, and tetracycline (TCN) degradation mechanism were investigated. A comprehensive assessment was carried out using the 3E (environmental, economic, and energy) model. The optimal production conditions for Co-Ce@RM were as follows: The doping ratio of Co and Ce was 1:3, the calcination temperature was 400°C, and the calcination time was 5 h, achieving a maximum removal rate of 87.91% of TCN. The catalyst was characterized using different analytical techniques. Under the conditions of 0.4 L/min ozone aeration rate, with 9% catalyst loading and solution pH 9, the optimal removal rates and chemical oxygen demand by the Co-Ce catalytic ozonation at RM were 94.17% and 75.27%, respectively. Moreover, free radical quenching experiments showed that superoxide radicals (O<sub>2</sub> <sup>-</sup>) and singlet oxygen (1O<sub>2</sub>) were the main active groups responsible for the degradation of TCN. When characterizing the water quality, it was assumed that TCN undergoes degradation pathways such as demethylation, dehydroxylation, double bond cleavage, and ring-opening reactions under the influence of various active substances. Finally, the 3E evaluation model was deployed to evaluate the Co-Ce@RM catalytic ozonation experiment of TCN wastewater. PRACTITIONER POINTS: The preparation of Co-Ce@RM provides new ideas for resource utilization of red mud. Catalytic ozonation by Co-Ce@RM can produce <sub>1</sub>O<sup>2</sup> active oxygen groups. The Co-Ce@RM catalyst can maintain a high catalytic activity after 20 cycles. The degradation pathway of the catalytic ozonation of tetracycline was fully analyzed. Catalytic ozone oxidation processes were evaluated by the \"3E\" (environmental, economic, and energy) model.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11146"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable artificial intelligence for the interpretation of ensemble learning performance in algal bloom estimation. 可解释人工智能用于解释藻华估计中的集合学习性能。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11140
Jungsu Park, Byeongchan Seong, Yeonjeong Park, Woo Hyoung Lee, Tae-Young Heo

Chlorophyll-a (Chl-a) concentrations, a key indicator of algal blooms, were estimated using the XGBoost machine learning model with 23 variables, including water quality and meteorological factors. The model performance was evaluated using three indices: root mean square error (RMSE), RMSE-observation standard deviation ratio (RSR), and Nash-Sutcliffe efficiency. Nine datasets were created by averaging 1 hour data to cover time frequencies ranging from 1 hour to 1 month. The dataset with relatively high observation frequencies (1-24 h) maintained stability, with an RSR ranging between 0.61 and 0.65. However, the model's performance declined significantly for datasets with weekly and monthly intervals. The Shapley value (SHAP) analysis, an explainable artificial intelligence method, was further applied to provide a quantitative understanding of how environmental factors in the watershed impact the model's performance and is also utilized to enhance the practical applicability of the model in the field. The number of input variables for model construction increased sequentially from 1 to 23, starting from the variable with the highest SHAP value to that with the lowest. The model's performance plateaued after considering five or more variables, demonstrating that stable performance could be achieved using only a small number of variables, including relatively easily measured data collected by real-time sensors, such as pH, dissolved oxygen, and turbidity. This result highlights the practicality of employing machine learning models and real-time sensor-based measurements for effective on-site water quality management. PRACTITIONER POINTS: XAI quantifies the effects of environmental factors on algal bloom prediction models The effects of input variable frequency and seasonality were analyzed using XAI XAI analysis on key variables ensures cost-effective model development.

叶绿素-a(Chl-a)浓度是藻类大量繁殖的一个关键指标,该浓度是利用 XGBoost 机器学习模型估算的,该模型包含 23 个变量,其中包括水质和气象因素。模型性能采用三个指标进行评估:均方根误差(RMSE)、均方根误差-观测标准偏差比(RSR)和纳什-苏特克利夫效率。通过平均 1 小时的数据创建了 9 个数据集,时间频率从 1 小时到 1 个月不等。观测频率相对较高的数据集(1-24 小时)保持了稳定性,RSR 在 0.61 和 0.65 之间。然而,对于每周和每月间隔的数据集,模型的性能明显下降。沙普利值(SHAP)分析是一种可解释的人工智能方法,它的进一步应用提供了对流域环境因素如何影响模型性能的定量理解,同时也用于提高模型在现场的实际应用性。从 SHAP 值最高的变量到 SHAP 值最低的变量,构建模型的输入变量数量从 1 个依次增加到 23 个。在考虑了 5 个或更多变量后,模型的性能趋于稳定,这表明只需使用少量变量,包括 pH 值、溶解氧和浊度等实时传感器收集的相对容易测量的数据,就能实现稳定的性能。这一结果凸显了采用机器学习模型和基于传感器的实时测量来进行有效现场水质管理的实用性。实践点:XAI 量化了环境因素对藻华预测模型的影响 利用 XAI 分析了输入变量频率和季节性的影响,对关键变量的分析确保了模型开发的成本效益。
{"title":"Explainable artificial intelligence for the interpretation of ensemble learning performance in algal bloom estimation.","authors":"Jungsu Park, Byeongchan Seong, Yeonjeong Park, Woo Hyoung Lee, Tae-Young Heo","doi":"10.1002/wer.11140","DOIUrl":"https://doi.org/10.1002/wer.11140","url":null,"abstract":"<p><p>Chlorophyll-a (Chl-a) concentrations, a key indicator of algal blooms, were estimated using the XGBoost machine learning model with 23 variables, including water quality and meteorological factors. The model performance was evaluated using three indices: root mean square error (RMSE), RMSE-observation standard deviation ratio (RSR), and Nash-Sutcliffe efficiency. Nine datasets were created by averaging 1 hour data to cover time frequencies ranging from 1 hour to 1 month. The dataset with relatively high observation frequencies (1-24 h) maintained stability, with an RSR ranging between 0.61 and 0.65. However, the model's performance declined significantly for datasets with weekly and monthly intervals. The Shapley value (SHAP) analysis, an explainable artificial intelligence method, was further applied to provide a quantitative understanding of how environmental factors in the watershed impact the model's performance and is also utilized to enhance the practical applicability of the model in the field. The number of input variables for model construction increased sequentially from 1 to 23, starting from the variable with the highest SHAP value to that with the lowest. The model's performance plateaued after considering five or more variables, demonstrating that stable performance could be achieved using only a small number of variables, including relatively easily measured data collected by real-time sensors, such as pH, dissolved oxygen, and turbidity. This result highlights the practicality of employing machine learning models and real-time sensor-based measurements for effective on-site water quality management. PRACTITIONER POINTS: XAI quantifies the effects of environmental factors on algal bloom prediction models The effects of input variable frequency and seasonality were analyzed using XAI XAI analysis on key variables ensures cost-effective model development.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11140"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing efficiency and quality control: The impact of Digital Twins in drinking water networks. 提高效率和质量控制:数字双胞胎在饮用水网络中的影响。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11139
Sergi Baena-Miret, Marta Alet Puig, Rafael Bardisa Rodes, Laura Bonastre Farran, Santiago Durán, Marta Ganzer Martí, Eduardo Martínez-Gomariz, Antonio Carrasco Valverde

This paper showcases the successful development and implementation of two Digital Twin prototypes within the Lab Digital Twins project, designed to enhance the efficiency and quality control of Aigües de Barcelona's drinking water network. The first prototype focuses on asset management, using (near) real-time data and statistical models, and achieving a 70% success rate in predicting pump station failures 137 days in advance. The second prototype addresses water quality monitoring, leveraging machine learning to accurately forecast trihalomethane levels at key points in the distribution system, and enabling proactive water quality management strategies, ensuring compliance with stringent safety standards and safeguarding public health. The paper details the methodology of both prototypes, highlighting their potential to revolutionize water network management. PRACTITIONER POINTS: Digital representation of assets and processes in the drinking water treatment network Early fault detection in assets, and predictions of trihalomethane formation in the drinking water distribution network Reduction on monitoring time and incident response for target assets by means of Digital Twins Improvement in visualization, prediction, and proactive measures for asset management and water quality control Contribution to the growing knowledge on Digital Twins and their potential to revolutionize water network operations.

本文展示了在实验室数字孪生项目中成功开发和实施的两个数字孪生原型,旨在提高 Aigües de Barcelona 饮用水网络的效率和质量控制。第一个原型侧重于资产管理,使用(接近)实时数据和统计模型,提前 137 天预测泵站故障的成功率达到 70%。第二个原型针对水质监测,利用机器学习准确预测配水系统关键点的三卤甲烷水平,并制定积极主动的水质管理策略,确保符合严格的安全标准,保障公众健康。本文详细介绍了这两个原型的方法论,强调了它们在彻底改变水网管理方面的潜力。实践点:对饮用水处理网络中的资产和流程进行数字表示 对资产中的故障进行早期检测,并预测饮用水输水管网中三卤甲烷的形成 通过数字孪生系统减少对目标资产的监控时间和事故响应 改善资产管理和水质控制的可视化、预测和主动措施 促进对数字孪生系统及其彻底改变水网运行的潜力的了解。
{"title":"Enhancing efficiency and quality control: The impact of Digital Twins in drinking water networks.","authors":"Sergi Baena-Miret, Marta Alet Puig, Rafael Bardisa Rodes, Laura Bonastre Farran, Santiago Durán, Marta Ganzer Martí, Eduardo Martínez-Gomariz, Antonio Carrasco Valverde","doi":"10.1002/wer.11139","DOIUrl":"https://doi.org/10.1002/wer.11139","url":null,"abstract":"<p><p>This paper showcases the successful development and implementation of two Digital Twin prototypes within the Lab Digital Twins project, designed to enhance the efficiency and quality control of Aigües de Barcelona's drinking water network. The first prototype focuses on asset management, using (near) real-time data and statistical models, and achieving a 70% success rate in predicting pump station failures 137 days in advance. The second prototype addresses water quality monitoring, leveraging machine learning to accurately forecast trihalomethane levels at key points in the distribution system, and enabling proactive water quality management strategies, ensuring compliance with stringent safety standards and safeguarding public health. The paper details the methodology of both prototypes, highlighting their potential to revolutionize water network management. PRACTITIONER POINTS: Digital representation of assets and processes in the drinking water treatment network Early fault detection in assets, and predictions of trihalomethane formation in the drinking water distribution network Reduction on monitoring time and incident response for target assets by means of Digital Twins Improvement in visualization, prediction, and proactive measures for asset management and water quality control Contribution to the growing knowledge on Digital Twins and their potential to revolutionize water network operations.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11139"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient water quality index forecasting and categorization using optimized Deep Capsule Crystal Edge Graph neural network. 利用优化的深度胶囊晶体边缘图神经网络进行高效的水质指数预测和分类。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11138
Anusha Nanjappachetty, Suvitha Sundar, Nagaraju Vankadari, Tapas Bapu Bathey Ramesh Bapu, Pradeep Shanmugam

The world's freshwater supply, predominantly sourced from rivers, faces significant contamination from various economic activities, confirming that the quality of river water is critical for public health, environmental sustainability, and effective pollution control. This research addresses the urgent need for accurate and reliable water quality monitoring by introducing a novel method for estimating the water quality index (WQI). The proposed approach combines cutting-edge optimization techniques with Deep Capsule Crystal Edge Graph neural networks, marking a significant advancement in the field. The innovation lies in the integration of a Hybrid Crested Porcupine Genghis Khan Shark Optimization Algorithm for precise feature selection, ensuring that the most relevant indicators of water quality (WQ) are utilized. Furthermore, the use of the Greylag Goose Optimization Algorithm to fine-tune the neural network's weight parameters enhances the model's predictive accuracy. This dual optimization framework significantly improves WQI prediction, achieving a remarkable mean squared error (MSE) of 6.7 and an accuracy of 99%. By providing a robust and highly accurate method for WQ assessment, this research offers a powerful tool for environmental authorities to proactively manage river WQ, prevent pollution, and evaluate the success of restoration efforts. PRACTITIONER POINTS: Novel method combines optimization and Deep Capsule Crystal Edge Graph for WQI estimation. Preprocessing includes data cleanup and feature selection using advanced algorithms. Deep Capsule Crystal Edge Graph neural network predicts WQI with high accuracy. Greylag Goose Optimization fine-tunes network parameters for precise forecasts. Proposed method achieves low MSE of 6.7 and high accuracy of 99%.

世界淡水供应主要来自河流,面临着各种经济活动造成的严重污染,这表明河流水质对公众健康、环境可持续性和有效的污染控制至关重要。本研究通过引入一种估算水质指数(WQI)的新方法,满足了对准确可靠的水质监测的迫切需求。所提出的方法将最先进的优化技术与深度胶囊晶体边缘图神经网络相结合,标志着该领域的重大进展。其创新之处在于整合了混合凤头猪成吉思汗鲨优化算法,用于精确选择特征,确保利用最相关的水质(WQ)指标。此外,使用灰雁优化算法对神经网络的权重参数进行微调,也提高了模型的预测准确性。这种双重优化框架极大地改进了水质指数预测,实现了 6.7 的显著均方误差 (MSE) 和 99% 的准确率。这项研究为水质评估提供了一种稳健、高精度的方法,为环境部门主动管理河流水质、预防污染和评估修复工作的成功与否提供了有力的工具。实践点:新方法结合了优化和深度胶囊晶体边缘图来估算水质指数。预处理包括使用先进算法进行数据清理和特征选择。深度胶囊晶体边缘图神经网络可高精度预测 WQI。灰雁优化微调网络参数,实现精确预测。所提出的方法实现了 6.7 的低 MSE 和 99% 的高准确率。
{"title":"An efficient water quality index forecasting and categorization using optimized Deep Capsule Crystal Edge Graph neural network.","authors":"Anusha Nanjappachetty, Suvitha Sundar, Nagaraju Vankadari, Tapas Bapu Bathey Ramesh Bapu, Pradeep Shanmugam","doi":"10.1002/wer.11138","DOIUrl":"https://doi.org/10.1002/wer.11138","url":null,"abstract":"<p><p>The world's freshwater supply, predominantly sourced from rivers, faces significant contamination from various economic activities, confirming that the quality of river water is critical for public health, environmental sustainability, and effective pollution control. This research addresses the urgent need for accurate and reliable water quality monitoring by introducing a novel method for estimating the water quality index (WQI). The proposed approach combines cutting-edge optimization techniques with Deep Capsule Crystal Edge Graph neural networks, marking a significant advancement in the field. The innovation lies in the integration of a Hybrid Crested Porcupine Genghis Khan Shark Optimization Algorithm for precise feature selection, ensuring that the most relevant indicators of water quality (WQ) are utilized. Furthermore, the use of the Greylag Goose Optimization Algorithm to fine-tune the neural network's weight parameters enhances the model's predictive accuracy. This dual optimization framework significantly improves WQI prediction, achieving a remarkable mean squared error (MSE) of 6.7 and an accuracy of 99%. By providing a robust and highly accurate method for WQ assessment, this research offers a powerful tool for environmental authorities to proactively manage river WQ, prevent pollution, and evaluate the success of restoration efforts. PRACTITIONER POINTS: Novel method combines optimization and Deep Capsule Crystal Edge Graph for WQI estimation. Preprocessing includes data cleanup and feature selection using advanced algorithms. Deep Capsule Crystal Edge Graph neural network predicts WQI with high accuracy. Greylag Goose Optimization fine-tunes network parameters for precise forecasts. Proposed method achieves low MSE of 6.7 and high accuracy of 99%.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11138"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the response mechanisms and evolution prediction of groundwater microbial-toxicological indicators. 地下水微生物毒理学指标的响应机制和演化预测研究。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11131
Weichao Sun, Shuaiwei Wang, Junbo Bi, Zhuo Ning, Jingjing Wang, Haibo Hou

This study aims to investigate the response mechanisms of groundwater microbial-toxicological indicators, specifically total bacteria count (TBC) and total coliform count (TCC), to water quality indicators and environmental conditions. Using data from a water source in the western plateau of China, a predictive model focusing on TBC and TCC was developed. An orthogonal experimental design was employed to manipulate environmental conditions such as temperature, pH, and porosity, facilitating laboratory experiments. These experiments measured pH, chemical oxygen demand (COD), oxidation-reduction potential (ORP), TBC, and TCC at varying depths and environmental conditions. Principal component analysis elucidated the mechanisms by which water quality indicators and environmental conditions affect groundwater microbial-toxicological indicators. A prediction model for these indicators in plateau regions was established based on a backpropagation neural network (BP-NN), using TBC and TCC as target variables and the newly extracted principal components as influencing factors. The results demonstrate that environmental conditions and water quality indicators primarily influence the evolution of groundwater microbial-toxicological indicators by altering the ionic charge quantities, redox conditions, and temperature of the groundwater. The predictive model for groundwater microbial-toxicological indicators shows trends consistent with experimental outcomes, with an average relative error of less than 15%, meeting engineering requirements. PRACTITIONER POINTS: The values of total bacteria count (TBC) and total coliform count (TCC) under different conditions were obtained by column experiments. The influence mechanism of environmental conditions and groundwater indicators on TBC and TCC was elaborated by principal component analysis. TBC and TCC prediction models were established through the investigation of water sources in a plateau area and laboratory experiments.

本研究旨在探讨地下水微生物毒理学指标(特别是细菌总数(TBC)和总大肠菌群数(TCC))对水质指标和环境条件的响应机制。利用中国西部高原水源地的数据,建立了以总细菌数和总大肠菌群为重点的预测模型。采用正交实验设计来控制温度、pH 值和孔隙度等环境条件,从而促进实验室实验。这些实验测量了不同深度和环境条件下的 pH 值、化学需氧量 (COD)、氧化还原电位 (ORP)、TBC 和 TCC。主成分分析阐明了水质指标和环境条件对地下水微生物毒理学指标的影响机制。以 TBC 和 TCC 为目标变量,以新提取的主成分为影响因素,基于反向传播神经网络(BP-NN)建立了高原地区这些指标的预测模型。结果表明,环境条件和水质指标主要通过改变地下水的离子电荷量、氧化还原条件和温度来影响地下水微生物毒理学指标的演变。地下水微生物毒理学指标预测模型显示的趋势与实验结果一致,平均相对误差小于 15%,符合工程要求。实践点:通过柱状实验得到了不同条件下细菌总数(TBC)和大肠菌群总数(TCC)的数值。通过主成分分析,阐述了环境条件和地下水指标对 TBC 和 TCC 的影响机理。通过对高原地区水源的调查和实验室实验,建立了 TBC 和 TCC 预测模型。
{"title":"Study on the response mechanisms and evolution prediction of groundwater microbial-toxicological indicators.","authors":"Weichao Sun, Shuaiwei Wang, Junbo Bi, Zhuo Ning, Jingjing Wang, Haibo Hou","doi":"10.1002/wer.11131","DOIUrl":"https://doi.org/10.1002/wer.11131","url":null,"abstract":"<p><p>This study aims to investigate the response mechanisms of groundwater microbial-toxicological indicators, specifically total bacteria count (TBC) and total coliform count (TCC), to water quality indicators and environmental conditions. Using data from a water source in the western plateau of China, a predictive model focusing on TBC and TCC was developed. An orthogonal experimental design was employed to manipulate environmental conditions such as temperature, pH, and porosity, facilitating laboratory experiments. These experiments measured pH, chemical oxygen demand (COD), oxidation-reduction potential (ORP), TBC, and TCC at varying depths and environmental conditions. Principal component analysis elucidated the mechanisms by which water quality indicators and environmental conditions affect groundwater microbial-toxicological indicators. A prediction model for these indicators in plateau regions was established based on a backpropagation neural network (BP-NN), using TBC and TCC as target variables and the newly extracted principal components as influencing factors. The results demonstrate that environmental conditions and water quality indicators primarily influence the evolution of groundwater microbial-toxicological indicators by altering the ionic charge quantities, redox conditions, and temperature of the groundwater. The predictive model for groundwater microbial-toxicological indicators shows trends consistent with experimental outcomes, with an average relative error of less than 15%, meeting engineering requirements. PRACTITIONER POINTS: The values of total bacteria count (TBC) and total coliform count (TCC) under different conditions were obtained by column experiments. The influence mechanism of environmental conditions and groundwater indicators on TBC and TCC was elaborated by principal component analysis. TBC and TCC prediction models were established through the investigation of water sources in a plateau area and laboratory experiments.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11131"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation into the performance and perikinetics of Brassica nigra meal in the treatment of real vegetable oil refinery condensate effluent. 关于黑甘蓝粕处理实际植物油精炼厂冷凝废水的性能和周动力学的研究。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1002/wer.11144
Kavithakani Annamalaisamy, Chithra Kumaran

In this study, the treatment of vegetable oil refinery plant condensate effluent (VORCE) having high total suspended solids (TSS) and chemical oxygen demand (COD) generated from acid oil unit was focused. The utilization of waste Brassica nigra meal (BNM) as protein flocculant in treating VORCE was explored. The B. nigra meal flocculant (BNMF) exhibited a crystalline nature, with the presence of amino and carboxyl functional groups, rendering it highly efficient (89.69% efficiency) in floc formation. Zeta potential and particle size (-5.6 mV and 240.68 nm, respectively) indicate BNMF's effectiveness in initiating floc formation. The interactive effects of pH, dosage, settling time on COD, and TSS removal were investigated using the Box-Behnken design. At an optimal pH of 6.9 and BNMF dosage of 0.77 g/L, a maximum removal of 85.38% COD and 72.56% TSS was obtained. The perikinetic theory for the coagulation-flocculation followed a second-order rate reaction with high Kc (0.0001 L/mg min), low settling time (37.04 min), and high collision efficiency (2.703 × 1017), indicating the model's significance in achieving maximum COD and TSS removal. These findings highlight the potential use of BNMF in the treatment of VORCE, leading to circular economy by valorizing waste from mustard oil extraction and zero discharge. PRACTITIONER POINTS: Valorization of waste Brassica nigra meal (BNM) as a potent protein flocculant Optimization for vegetable oil refinery condensate effluent (VORCE) treatment was done. Interactive effects of the process parameters were analyzed using Design expert. Perikinetic theory for VORCE treatment follows second-order reaction rate with high Kc.

本研究的重点是处理酸性油装置产生的总悬浮固体(TSS)和化学需氧量(COD)较高的植物油精炼厂冷凝废水(VORCE)。在处理 VORCE 的过程中,探索了利用废弃黑甘蓝粉(BNM)作为蛋白质絮凝剂的方法。黑芸薹粕絮凝剂(BNMF)呈结晶状,含有氨基和羧基官能团,使其在絮凝体形成过程中具有很高的效率(89.69%)。Zeta 电位和粒度(分别为 -5.6 mV 和 240.68 nm)表明 BNMF 在启动絮凝体形成方面非常有效。采用 Box-Behnken 设计研究了 pH 值、投加量、沉淀时间对 COD 和 TSS 去除率的交互影响。当最佳 pH 值为 6.9、BNMF 投加量为 0.77 克/升时,COD 和 TSS 的最大去除率分别为 85.38% 和 72.56%。混凝-絮凝的周动力学理论遵循二阶速率反应,具有高 Kc(0.0001 L/mg min)、低沉降时间(37.04 min)和高碰撞效率(2.703 × 1017)的特点,表明该模型在实现 COD 和 TSS 最大去除率方面具有重要意义。这些研究结果凸显了 BNMF 在处理 VORCE 中的潜在用途,通过对芥子油榨取过程中产生的废物进行估值和零排放,实现循环经济。实践点:将废弃的黑芥菜粕 (BNM) 作为一种有效的蛋白质絮凝剂进行价值评估 对植物油精炼厂冷凝废水(VORCE)处理进行了优化。使用设计专家分析了工艺参数的交互影响。VORCE 处理的周动力学理论遵循高 Kc 的二阶反应速率。
{"title":"An investigation into the performance and perikinetics of Brassica nigra meal in the treatment of real vegetable oil refinery condensate effluent.","authors":"Kavithakani Annamalaisamy, Chithra Kumaran","doi":"10.1002/wer.11144","DOIUrl":"https://doi.org/10.1002/wer.11144","url":null,"abstract":"<p><p>In this study, the treatment of vegetable oil refinery plant condensate effluent (VORCE) having high total suspended solids (TSS) and chemical oxygen demand (COD) generated from acid oil unit was focused. The utilization of waste Brassica nigra meal (BNM) as protein flocculant in treating VORCE was explored. The B. nigra meal flocculant (BNMF) exhibited a crystalline nature, with the presence of amino and carboxyl functional groups, rendering it highly efficient (89.69% efficiency) in floc formation. Zeta potential and particle size (-5.6 mV and 240.68 nm, respectively) indicate BNMF's effectiveness in initiating floc formation. The interactive effects of pH, dosage, settling time on COD, and TSS removal were investigated using the Box-Behnken design. At an optimal pH of 6.9 and BNMF dosage of 0.77 g/L, a maximum removal of 85.38% COD and 72.56% TSS was obtained. The perikinetic theory for the coagulation-flocculation followed a second-order rate reaction with high K<sub>c</sub> (0.0001 L/mg min), low settling time (37.04 min), and high collision efficiency (2.703 × 10<sup>17</sup>), indicating the model's significance in achieving maximum COD and TSS removal. These findings highlight the potential use of BNMF in the treatment of VORCE, leading to circular economy by valorizing waste from mustard oil extraction and zero discharge. PRACTITIONER POINTS: Valorization of waste Brassica nigra meal (BNM) as a potent protein flocculant Optimization for vegetable oil refinery condensate effluent (VORCE) treatment was done. Interactive effects of the process parameters were analyzed using Design expert. Perikinetic theory for VORCE treatment follows second-order reaction rate with high K<sub>c</sub>.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11144"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term performance and activity study of a two-stage anaerobic EGSB reactors system treating complex and toxic industrial wastewater. 处理复杂有毒工业废水的两级厌氧 EGSB 反应器系统的长期性能和活性研究。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-01 DOI: 10.1002/wer.11109
Ruben Garcia-Tirado, Emma Fernandez-Crespo, Xavier Font, Teresa Vicent, Juan Peralta, Delia Trifi, Raul Martinez-Cuenca, Sergio Chiva

Anaerobic treatment of industrial wastewater using upflow anaerobic reactors is an extended trend due to its high efficiency and biogas production potential, but its implementation in some sectors is limited due to the complexity and toxicity of the wastewaters. In this study, a two-stage expanded granular sludge bed (EGSB) reactors system has been investigated at both bench and pilot scale for the treatment of complex and toxic real wastewater from a petrochemical industry. The effect of different operational parameters including organic loading rate (OLR), hydraulic retention time (HRT) and influent characteristics over COD removal and biogas production and composition have been studied. Additionally, biomass specific methanogenic activity (SMA) and wastewater toxicity have been evaluated after long-term operation. Optimum total HRT of 24 h has been determined resulting in total COD and SO4 2- removal of 56.30 ± 5.25% and 31.68 ± 14.71%, respectively, at pilot scale, and average biogas production of 93.47 ± 34.92 NL/day with 67.01 ± 10.23 %CH4 content and 5210.11 ± 6802.27 ppmv of H2S. SMA and toxicity tests have confirmed inhibitory and toxic effects of wastewater over anaerobic biomass with average maximum inhibition of 65.34% in the unacclimated anaerobic inoculum while chronic toxicity produced a decrease of an order of magnitude in SMA after 600 days of operation. This study demonstrates the feasibility of applying an anaerobic treatment to this wastewater using EGSB reactors between a 0.97-1.74 gCOD/L/day OLR range. Nonetheless, periodic reinoculation would be necessary for long-term operation due to chronic toxicity of the wastewater exerted on the anaerobic biomass. PRACTITIONER POINTS: A two-stage EGSB reactors system has been operated at bench and pilot scale to treat complex and toxic petrochemical wastewater. Optimal total HRT of 24 h resulted in average COD removal ranging from 40% to 60%. SMA and toxicity tests have been performed to study long-term acclimation, detecting an activity depletion of an order of magnitude.

利用上流式厌氧反应器对工业废水进行厌氧处理因其高效率和产生沼气的潜力而成为一种发展趋势,但由于废水的复杂性和毒性,其在某些行业的应用受到了限制。在本研究中,研究人员对两级膨胀颗粒污泥床(EGSB)反应器系统进行了台架和中试规模的研究,以处理石化工业中复杂且有毒的实际废水。研究了不同运行参数(包括有机负荷率 (OLR)、水力停留时间 (HRT) 和进水特性)对 COD 去除率、沼气产量和成分的影响。此外,还对长期运行后的生物质特定产甲烷活性(SMA)和废水毒性进行了评估。确定了 24 小时的最佳总 HRT,在中试规模下,COD 和 SO4 2- 的总去除率分别为 56.30 ± 5.25% 和 31.68 ± 14.71%,平均沼气产量为 93.47 ± 34.92 NL/天,CH4 含量为 67.01 ± 10.23 %,H2S 为 5210.11 ± 6802.27 ppmv。SMA 和毒性测试证实了废水对厌氧生物质的抑制和毒性作用,在未适应的厌氧接种物中,平均最大抑制率为 65.34%,而在运行 600 天后,慢性毒性导致 SMA 下降了一个数量级。这项研究证明了在 0.97-1.74 克 COD/L/ 天的 OLR 范围内使用 EGSB 反应器对该废水进行厌氧处理的可行性。不过,由于废水对厌氧生物质具有慢性毒性,因此长期运行时需要定期重新接种。实践点:两级 EGSB 反应器系统已在工作台和中试规模上运行,用于处理复杂的有毒石化废水。最佳总 HRT 为 24 小时,平均 COD 去除率为 40% 至 60%。为研究长期适应性,进行了 SMA 和毒性测试,发现活性降低了一个数量级。
{"title":"Long-term performance and activity study of a two-stage anaerobic EGSB reactors system treating complex and toxic industrial wastewater.","authors":"Ruben Garcia-Tirado, Emma Fernandez-Crespo, Xavier Font, Teresa Vicent, Juan Peralta, Delia Trifi, Raul Martinez-Cuenca, Sergio Chiva","doi":"10.1002/wer.11109","DOIUrl":"https://doi.org/10.1002/wer.11109","url":null,"abstract":"<p><p>Anaerobic treatment of industrial wastewater using upflow anaerobic reactors is an extended trend due to its high efficiency and biogas production potential, but its implementation in some sectors is limited due to the complexity and toxicity of the wastewaters. In this study, a two-stage expanded granular sludge bed (EGSB) reactors system has been investigated at both bench and pilot scale for the treatment of complex and toxic real wastewater from a petrochemical industry. The effect of different operational parameters including organic loading rate (OLR), hydraulic retention time (HRT) and influent characteristics over COD removal and biogas production and composition have been studied. Additionally, biomass specific methanogenic activity (SMA) and wastewater toxicity have been evaluated after long-term operation. Optimum total HRT of 24 h has been determined resulting in total COD and SO<sub>4</sub> <sup>2-</sup> removal of 56.30 ± 5.25% and 31.68 ± 14.71%, respectively, at pilot scale, and average biogas production of 93.47 ± 34.92 NL/day with 67.01 ± 10.23 %CH<sub>4</sub> content and 5210.11 ± 6802.27 ppmv of H<sub>2</sub>S. SMA and toxicity tests have confirmed inhibitory and toxic effects of wastewater over anaerobic biomass with average maximum inhibition of 65.34% in the unacclimated anaerobic inoculum while chronic toxicity produced a decrease of an order of magnitude in SMA after 600 days of operation. This study demonstrates the feasibility of applying an anaerobic treatment to this wastewater using EGSB reactors between a 0.97-1.74 gCOD/L/day OLR range. Nonetheless, periodic reinoculation would be necessary for long-term operation due to chronic toxicity of the wastewater exerted on the anaerobic biomass. PRACTITIONER POINTS: A two-stage EGSB reactors system has been operated at bench and pilot scale to treat complex and toxic petrochemical wastewater. Optimal total HRT of 24 h resulted in average COD removal ranging from 40% to 60%. SMA and toxicity tests have been performed to study long-term acclimation, detecting an activity depletion of an order of magnitude.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11109"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Social dimensions of climate-induced flooding in Jakarta (Indonesia): The role of non-point source pollution. 雅加达(印度尼西亚)气候引发洪水的社会层面:非点源污染的作用。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-01 DOI: 10.1002/wer.11129
Tonni Agustiono Kurniawan, Christia Meidiana, Hui Hwang Goh, Dongdong Zhang, Meihui Jiang, Mohd Hafiz Dzarfan Othman, Abdelkader Anouzla, Faissal Aziz, Mohamed Mahmoud, Muhammad Imran Khan, Imran Ali, Md Munir Hayet Khan, Kai Chen Goh

Because of its low-lying location, urbanization, and inadequate infrastructure, Jakarta (Indonesia) has experienced an increase in annual flooding events, rising from an average of five significant floods per year in the 1990s to over 20 annually (2010-2020). With climate change exacerbating extreme weather events, Jakarta encounters escalating risks of flooding. Although the recurrent flooding is exacerbated by non-point source (NPS) of pollution such as urban runoff and agricultural discharge that contribute to 40% of total pollutants leading to flood-related issues in Jakarta, none has investigated this research gap. To reflect its novelty, this work explores the implications of climate change on the annual flooding in Jakarta by focusing on NPS and analyzes their impacts from social perspectives. This work also underscores the implications of flooding on livelihoods, health, and social cohesion in Jakarta. Focus group discussion with affected residents was used to shed light on the coping strategies employed in response to recurrent floods, ranging from community-based initiatives to reliance on informal networks. The empirical findings show that the implications of flooding extend beyond physical damages. Displacement of communities, loss of livelihoods, disruption of essential services, and increased health risks are among the social impacts experienced by local residents. Vulnerable populations, including low-income communities residing in informal settlements, bear their consequences. Economic losses from flooding amount to USD 500 million annually, impacting over 1 million residents. However, recent interventions have led to a 15% reduction in peak flood levels and a 20% reduction in flood duration in affected areas. Community resilience has also improved, with a 25% increase in flood insurance coverage and a 20% rise in community response initiatives. Overall, this study highlights that climate change exacerbates annual flooding in Jakarta, significantly impacting vulnerable communities through NPS pollution. Addressing the challenges requires integrated approaches combining effective pollution control, resilient infrastructure, and community engagement to mitigate social and long-term environmental impacts. PRACTITIONER POINTS: Climate-induced flooding disproportionately affects vulnerable communities in Jakarta. Non-point source pollution from urban runoff contributes to the severity of flooding in Jakarta. Waterborne diseases, disruption of livelihoods, and reduced access to clean water are major concerns identified in the study. The study highlights the importance of community-based adaptation strategies to mitigate the impact of flooding and pollution.

由于地势低洼、城市化和基础设施不足,雅加达(印度尼西亚)每年发生的洪水事件越来越多,从 20 世纪 90 年代的平均每年五次大洪水上升到每年 20 多次(2010-2020 年)。随着气候变化加剧极端天气事件,雅加达面临的洪水风险也在不断上升。城市径流和农业排放等非点污染源(NPS)占导致雅加达洪水相关问题的污染物总量的 40%,虽然非点污染源加剧了洪水的反复发生,但目前还没有人对这一研究空白进行调查。为体现其新颖性,本研究通过关注 NPS 探索气候变化对雅加达每年洪水的影响,并从社会角度分析其影响。这项工作还强调了洪水对雅加达的生计、健康和社会凝聚力的影响。通过与受灾居民进行焦点小组讨论,了解了他们为应对经常性洪灾而采取的应对策略,包括以社区为基础的举措和对非正式网络的依赖。实证研究结果表明,洪灾的影响超出了物质损失的范围。社区流离失所、生计丧失、基本服务中断、健康风险增加,这些都是当地居民遭受的社会影响。包括居住在非正规居住区的低收入社区在内的弱势群体承受着这些后果。洪灾造成的经济损失每年高达 5 亿美元,影响 100 多万居民。不过,最近的干预措施已使受灾地区的洪峰水位降低了 15%,洪水持续时间缩短了 20%。社区的抗灾能力也有所提高,洪水保险覆盖率增加了 25%,社区应对措施增加了 20%。总之,本研究强调,气候变化加剧了雅加达的年度洪涝灾害,通过核动力源污染对脆弱社区造成了严重影响。应对这些挑战需要采取综合方法,将有效的污染控制、弹性基础设施和社区参与结合起来,以减轻对社会和长期环境的影响。实践者观点:气候引起的洪水对雅加达的弱势社区造成了极大的影响。城市径流造成的非点源污染加剧了雅加达洪灾的严重程度。研究发现,水传播疾病、生计受到破坏以及获得清洁水的机会减少是主要问题。该研究强调了以社区为基础的适应战略对于减轻洪水和污染影响的重要性。
{"title":"Social dimensions of climate-induced flooding in Jakarta (Indonesia): The role of non-point source pollution.","authors":"Tonni Agustiono Kurniawan, Christia Meidiana, Hui Hwang Goh, Dongdong Zhang, Meihui Jiang, Mohd Hafiz Dzarfan Othman, Abdelkader Anouzla, Faissal Aziz, Mohamed Mahmoud, Muhammad Imran Khan, Imran Ali, Md Munir Hayet Khan, Kai Chen Goh","doi":"10.1002/wer.11129","DOIUrl":"https://doi.org/10.1002/wer.11129","url":null,"abstract":"<p><p>Because of its low-lying location, urbanization, and inadequate infrastructure, Jakarta (Indonesia) has experienced an increase in annual flooding events, rising from an average of five significant floods per year in the 1990s to over 20 annually (2010-2020). With climate change exacerbating extreme weather events, Jakarta encounters escalating risks of flooding. Although the recurrent flooding is exacerbated by non-point source (NPS) of pollution such as urban runoff and agricultural discharge that contribute to 40% of total pollutants leading to flood-related issues in Jakarta, none has investigated this research gap. To reflect its novelty, this work explores the implications of climate change on the annual flooding in Jakarta by focusing on NPS and analyzes their impacts from social perspectives. This work also underscores the implications of flooding on livelihoods, health, and social cohesion in Jakarta. Focus group discussion with affected residents was used to shed light on the coping strategies employed in response to recurrent floods, ranging from community-based initiatives to reliance on informal networks. The empirical findings show that the implications of flooding extend beyond physical damages. Displacement of communities, loss of livelihoods, disruption of essential services, and increased health risks are among the social impacts experienced by local residents. Vulnerable populations, including low-income communities residing in informal settlements, bear their consequences. Economic losses from flooding amount to USD 500 million annually, impacting over 1 million residents. However, recent interventions have led to a 15% reduction in peak flood levels and a 20% reduction in flood duration in affected areas. Community resilience has also improved, with a 25% increase in flood insurance coverage and a 20% rise in community response initiatives. Overall, this study highlights that climate change exacerbates annual flooding in Jakarta, significantly impacting vulnerable communities through NPS pollution. Addressing the challenges requires integrated approaches combining effective pollution control, resilient infrastructure, and community engagement to mitigate social and long-term environmental impacts. PRACTITIONER POINTS: Climate-induced flooding disproportionately affects vulnerable communities in Jakarta. Non-point source pollution from urban runoff contributes to the severity of flooding in Jakarta. Waterborne diseases, disruption of livelihoods, and reduced access to clean water are major concerns identified in the study. The study highlights the importance of community-based adaptation strategies to mitigate the impact of flooding and pollution.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11129"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of contaminated groundwater for excessive heavy metal presence and its further assessment of the potential risk to public health. 评估受污染地下水中是否存在过量重金属,并进一步评估其对公众健康的潜在风险。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-01 DOI: 10.1002/wer.11115
Nishita Narwal, Deeksha Katyal, Aastha Malik
<p><p>Water plays a significant role in human life. However, the contamination of groundwater by heavy metals (HMs) has profound implications for public health. Industrialization, urbanization, and agricultural activities are turning out to be major causes for the increasing concentration of HMs in rapidly industrializing areas like Rohtak district, Haryana, India. The current study aimed at evaluating and predicting the health hazards associated with the radical rise of HMs in the groundwater of Rohtak district. For this purpose, 45 seasonal-based groundwater samples were collected from five blocks in Rohtak district, namely Kalanaur, Meham, Lakhan Majra, Rohtak City, and Sampla, both during pre- and post-monsoon seasons. Besides physicochemical analysis, these groundwater samples were analyzed for the contamination of HMs. The findings revealed that groundwater samples were relatively more contaminated during the post-monsoon period rather than pre-monsoon. The water quality index (WQI), devised to classify water quality into specific classes, depicted the Kalanaur region as "very poor." Another index named the HM pollution index (HPI) denoted the levels of HMs and categorized Kalanaur as most deteriorated, followed by Meham, Lakhan Majra, Sampla, and Rohtak City. Additionally, principal component analysis (PCA) was employed that showed a significant variation in the distribution pattern of HMs, with the major load being attributed to PC1 and PC2 for both seasons. Pearson's correlation analysis indicated a significant association of pH (R<sup>2</sup> = 0.917) with HMs (specifically for Cd and Cr). In terms of health risk assessment, carcinogenic human health risk due to Pb and Cr was found to be higher in children than adults. Non-carcinogenic risk, indicative of harmful human health effects, apart from cancer, was calculated in terms of hazard quotient (HQ) and hazard index (HI). Results of the same, designated "children" as a vulnerable category compared with "adults," especially in the Kalanaur, Sampla, and Rohtak City blocks of the study area. The results thus reiterated that Kalanaur is the most contaminated block among the five blocks chosen and should be given urgent attention. The study holds importance as it provides a framework regarding the methodology that should be adapted for the evaluation, management, and protection of groundwater at a regional level, which could further be replicated by environmentalists and hydrogeologists across the world. PRACTITIONER POINTS: Water logging is one of the most common problems in Kalanaur block of Rohtak district, responsible for causing groundwater pollution. Cadmium and lead pollution was prevalent in Rohtak due to electroplating industries, paint industry, automobile sector, and industrial discharge. Bioremediation is one of the suitable techniques that can be used for the treatment of groundwater that involves the use of microorganisms. Efficient use of groundwater resources is necessary fo
水在人类生活中发挥着重要作用。然而,重金属(HMs)对地下水的污染对公众健康有着深远的影响。在印度哈里亚纳邦罗塔克地区等快速工业化地区,工业化、城市化和农业活动已成为重金属日益集中的主要原因。本研究旨在评估和预测罗塔克地区地下水中 HMs 剧增对健康造成的危害。为此,研究人员从罗塔克地区的五个区块,即 Kalanaur、Meham、Lakhan Majra、罗塔克市和 Sampla,收集了 45 份季节性地下水样本,时间分别为季风前和季风后。除理化分析外,还对这些地下水样本进行了 HMs 污染分析。研究结果表明,季风前后的地下水样本比季风前的地下水样本受到的污染相对更严重。水质指数 (WQI) 用于将水质划分为特定等级,Kalanaur 地区的水质指数为 "极差"。另一个名为 HM 污染指数 (HPI) 的指数表示 HM 的水平,并将卡拉纳尔列为最差,其次是 Meham、Lakhan Majra、Sampla 和罗塔克市。此外,采用的主成分分析 (PCA) 显示,HMs 的分布模式存在显著差异,两个季节的主要负荷都来自 PC1 和 PC2。Pearson 相关性分析表明,pH 值(R2 = 0.917)与 HMs(特别是镉和铬)有明显的相关性。在健康风险评估方面,发现铅和铬对儿童造成的致癌风险高于成人。非致癌风险是指除癌症以外对人类健康有害的影响,以危害商数(HQ)和危害指数(HI)来计算。结果显示,与 "成人 "相比,"儿童 "属于弱势群体,尤其是在研究地区的卡拉纳尔、桑普拉和罗塔克市街区。因此,研究结果再次表明,在所选的五个街区中,Kalanaur 是受污染最严重的街区,应立即予以关注。这项研究具有重要意义,因为它提供了一个评估、管理和保护地区地下水的方法框架,可供世界各地的环境学家和水文地质学家借鉴。实践点:水涝是罗塔克区 Kalanaur 地区最常见的问题之一,是造成地下水污染的罪魁祸首。由于电镀工业、涂料工业、汽车行业和工业排放,罗塔克地区普遍存在镉和铅污染。生物修复是处理地下水的合适技术之一,它涉及微生物的使用。有效利用地下水资源是可持续发展的必要条件。
{"title":"Evaluation of contaminated groundwater for excessive heavy metal presence and its further assessment of the potential risk to public health.","authors":"Nishita Narwal, Deeksha Katyal, Aastha Malik","doi":"10.1002/wer.11115","DOIUrl":"https://doi.org/10.1002/wer.11115","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Water plays a significant role in human life. However, the contamination of groundwater by heavy metals (HMs) has profound implications for public health. Industrialization, urbanization, and agricultural activities are turning out to be major causes for the increasing concentration of HMs in rapidly industrializing areas like Rohtak district, Haryana, India. The current study aimed at evaluating and predicting the health hazards associated with the radical rise of HMs in the groundwater of Rohtak district. For this purpose, 45 seasonal-based groundwater samples were collected from five blocks in Rohtak district, namely Kalanaur, Meham, Lakhan Majra, Rohtak City, and Sampla, both during pre- and post-monsoon seasons. Besides physicochemical analysis, these groundwater samples were analyzed for the contamination of HMs. The findings revealed that groundwater samples were relatively more contaminated during the post-monsoon period rather than pre-monsoon. The water quality index (WQI), devised to classify water quality into specific classes, depicted the Kalanaur region as \"very poor.\" Another index named the HM pollution index (HPI) denoted the levels of HMs and categorized Kalanaur as most deteriorated, followed by Meham, Lakhan Majra, Sampla, and Rohtak City. Additionally, principal component analysis (PCA) was employed that showed a significant variation in the distribution pattern of HMs, with the major load being attributed to PC1 and PC2 for both seasons. Pearson's correlation analysis indicated a significant association of pH (R&lt;sup&gt;2&lt;/sup&gt; = 0.917) with HMs (specifically for Cd and Cr). In terms of health risk assessment, carcinogenic human health risk due to Pb and Cr was found to be higher in children than adults. Non-carcinogenic risk, indicative of harmful human health effects, apart from cancer, was calculated in terms of hazard quotient (HQ) and hazard index (HI). Results of the same, designated \"children\" as a vulnerable category compared with \"adults,\" especially in the Kalanaur, Sampla, and Rohtak City blocks of the study area. The results thus reiterated that Kalanaur is the most contaminated block among the five blocks chosen and should be given urgent attention. The study holds importance as it provides a framework regarding the methodology that should be adapted for the evaluation, management, and protection of groundwater at a regional level, which could further be replicated by environmentalists and hydrogeologists across the world. PRACTITIONER POINTS: Water logging is one of the most common problems in Kalanaur block of Rohtak district, responsible for causing groundwater pollution. Cadmium and lead pollution was prevalent in Rohtak due to electroplating industries, paint industry, automobile sector, and industrial discharge. Bioremediation is one of the suitable techniques that can be used for the treatment of groundwater that involves the use of microorganisms. Efficient use of groundwater resources is necessary fo","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11115"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water Environment Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1