Pub Date : 2024-02-06DOI: 10.1007/s13157-024-01776-w
Stefanie L. Lane, Nancy Shackelford, Gary E. Bradfield, Madlen Denoth, Tara G. Martin
Long-term data sets documenting temporal changes in vegetation communities are uncommon, yet imperative for understanding trends and triggering potential conservation management interventions. For example, decreasing species diversity and increasing non-native species abundance may be indicative of decreasing community stability. We explored long-term plant community change over a 40-year period through the contribution of data collected in 2019 to two historical datasets collected in 1979 and 1999 to evaluate decadal changes in plant community biodiversity in a tidal freshwater marsh in the Fraser River Estuary in British Columbia, Canada. We found that plant assemblages were characterized by similar indicator species, but most other indicator species changed, and that overall α-diversity decreased while β-diversity increased. Further, we found evidence for plant assemblage homogenization through the increased abundance of invasive species such as yellow flag iris (Iris pseudacorus), and reed canary grass (Phalaris arundinacea). These observations may inform concepts of habitat stability in the absence of direct anthropogenic disturbance, and corroborate globally observed trends of native species loss and non-native species encroachment. Our results indicate that within the Fraser River Estuary, active threat management may be necessary in areas of conservation concern in order to prevent further native species biodiversity loss.
{"title":"Plant Community Stability over 40 Years in a Fraser River Estuary Tidal Freshwater Marsh","authors":"Stefanie L. Lane, Nancy Shackelford, Gary E. Bradfield, Madlen Denoth, Tara G. Martin","doi":"10.1007/s13157-024-01776-w","DOIUrl":"https://doi.org/10.1007/s13157-024-01776-w","url":null,"abstract":"<p>Long-term data sets documenting temporal changes in vegetation communities are uncommon, yet imperative for understanding trends and triggering potential conservation management interventions. For example, decreasing species diversity and increasing non-native species abundance may be indicative of decreasing community stability. We explored long-term plant community change over a 40-year period through the contribution of data collected in 2019 to two historical datasets collected in 1979 and 1999 to evaluate decadal changes in plant community biodiversity in a tidal freshwater marsh in the Fraser River Estuary in British Columbia, Canada. We found that plant assemblages were characterized by similar indicator species, but most other indicator species changed, and that overall α-diversity decreased while β-diversity increased. Further, we found evidence for plant assemblage homogenization through the increased abundance of invasive species such as yellow flag iris (<i>Iris pseudacorus</i>), and reed canary grass (<i>Phalaris arundinacea</i>). These observations may inform concepts of habitat stability in the absence of direct anthropogenic disturbance, and corroborate globally observed trends of native species loss and non-native species encroachment. Our results indicate that within the Fraser River Estuary, active threat management may be necessary in areas of conservation concern in order to prevent further native species biodiversity loss.</p>","PeriodicalId":23640,"journal":{"name":"Wetlands","volume":"48 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal wetlands are crucial ecosystems at the interface between land and sea. In the context of economic development and urbanization, these wetlands face challenges such as reduction in area and fragmentation. Ecological networks can connect fragmented habitats, creating corridors for material, information, and energy transmission. This is vital for maintaining biological and landscape diversity and ensuring the healthy development of ecosystems. However, there is currently no research on the ecological networks in the Hebei-Tianjin coastal wetlands. In this study, the morphological spatial pattern analysis method is employed to identify wetlands sources, while the minimum cumulative resistance model is used to extract potential ecological corridors. By combining these with existing river corridors, the ecological network of coastal wetlands in Hebei and Tianjin is constructed, and regional network characteristics are analyzed. Critical areas of ecological protection and restoration are determined, including important ecological corridors, ecological pinch points, and ecological breakpoints. The results showed that: (1) The ecological network of Hebei-Tianjin coastal wetlands consisted of 38 ecological sources, 171 potential ecological corridors, and 399 river corridors, with a total area of 851.31 km2. (2) Key ecological protection and restoration areas were proposed, including 35 crucial potential wetlands ecological corridors, 343 ecological pinch points, and 99 ecological breakpoints. Targeted restoration of these critical areas could significantly improve the connectivity of wetlands ecological networks. (3) At present, priority should be given to protecting critical ecological corridors and existing river corridors with high similarity to potential ecological corridors. The findings of this study can provide a scientific basis for the network construction and protection of Hebei-Tianjin coastal wetlands.
{"title":"Study on the Characteristics of Ecological Network and Critical Areas of Ecological Restoration in Hebei-Tianjin Coastal Wetlands","authors":"Feng Wang, Hui Gao, Jintong Liu, Tonggang Fu, Fei Qi, Yue Gao, Liang Zhao","doi":"10.1007/s13157-024-01771-1","DOIUrl":"https://doi.org/10.1007/s13157-024-01771-1","url":null,"abstract":"<p>Coastal wetlands are crucial ecosystems at the interface between land and sea. In the context of economic development and urbanization, these wetlands face challenges such as reduction in area and fragmentation. Ecological networks can connect fragmented habitats, creating corridors for material, information, and energy transmission. This is vital for maintaining biological and landscape diversity and ensuring the healthy development of ecosystems. However, there is currently no research on the ecological networks in the Hebei-Tianjin coastal wetlands. In this study, the morphological spatial pattern analysis method is employed to identify wetlands sources, while the minimum cumulative resistance model is used to extract potential ecological corridors. By combining these with existing river corridors, the ecological network of coastal wetlands in Hebei and Tianjin is constructed, and regional network characteristics are analyzed. Critical areas of ecological protection and restoration are determined, including important ecological corridors, ecological pinch points, and ecological breakpoints. The results showed that: (1) The ecological network of Hebei-Tianjin coastal wetlands consisted of 38 ecological sources, 171 potential ecological corridors, and 399 river corridors, with a total area of 851.31 km<sup>2</sup>. (2) Key ecological protection and restoration areas were proposed, including 35 crucial potential wetlands ecological corridors, 343 ecological pinch points, and 99 ecological breakpoints. Targeted restoration of these critical areas could significantly improve the connectivity of wetlands ecological networks. (3) At present, priority should be given to protecting critical ecological corridors and existing river corridors with high similarity to potential ecological corridors. The findings of this study can provide a scientific basis for the network construction and protection of Hebei-Tianjin coastal wetlands.</p>","PeriodicalId":23640,"journal":{"name":"Wetlands","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-27DOI: 10.1007/s13157-024-01778-8
Jonathan O. Hernandez, Byung Bae Park
The present systematic literature review (SLR) synthesized the literature on mangrove litterfall production and decomposition from studies published between 1985 and 2023 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Key questions about biophysical, chemical, and anthropogenic/societal factors influencing nutrient cycling via litterfall production and decomposition in mangrove forests were addressed. The SLR included 332 peer-reviewed original and review articles from the ScienceDirect, PubMed, and Google Scholar databases. The United States of America had the highest relative count (RC, 31.32%), followed by Japan (8.79%) and Indonesia (8.24%), and the lowest RCs were found in Bangladesh, Kenya, Philippines, and Thailand. We showed the increasing trend on these topics and discussed the milestones to enhance our understanding of litterfall production and decomposition processes and inform future research endeavors in the context of climate change. A positive trajectory for understanding litterfall production and decomposition for effective decision-making and management strategies towards mangrove conservation and sustainable use is also discussed. Ten-year research prospects were also identified, including studies on impacts of pollution, habitat degradation, climate change, and other destructive human activities. The trend in studies about mangrove litterfall production and decomposition suggests the growing recognition of mangroves’ ecological and societal importance. Future advancements can be made to better understand the biophysical, chemical, and anthropogenic factors influencing litterfall production and decomposition through the identified future research directions. Finally, the findings of the present review are relevant to supporting effective conservation and management strategies for mangroves in a changing climate.
{"title":"Litterfall Production and Decomposition in Tropical and Subtropical Mangroves: Research Trends and Interacting Effects of Biophysical, Chemical, and Anthropogenic Factors","authors":"Jonathan O. Hernandez, Byung Bae Park","doi":"10.1007/s13157-024-01778-8","DOIUrl":"https://doi.org/10.1007/s13157-024-01778-8","url":null,"abstract":"<p>The present systematic literature review (SLR) synthesized the literature on mangrove litterfall production and decomposition from studies published between 1985 and 2023 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Key questions about biophysical, chemical, and anthropogenic/societal factors influencing nutrient cycling via litterfall production and decomposition in mangrove forests were addressed. The SLR included 332 peer-reviewed original and review articles from the ScienceDirect, PubMed, and Google Scholar databases. The United States of America had the highest relative count (RC, 31.32%), followed by Japan (8.79%) and Indonesia (8.24%), and the lowest RCs were found in Bangladesh, Kenya, Philippines, and Thailand. We showed the increasing trend on these topics and discussed the milestones to enhance our understanding of litterfall production and decomposition processes and inform future research endeavors in the context of climate change. A positive trajectory for understanding litterfall production and decomposition for effective decision-making and management strategies towards mangrove conservation and sustainable use is also discussed. Ten-year research prospects were also identified, including studies on impacts of pollution, habitat degradation, climate change, and other destructive human activities. The trend in studies about mangrove litterfall production and decomposition suggests the growing recognition of mangroves’ ecological and societal importance. Future advancements can be made to better understand the biophysical, chemical, and anthropogenic factors influencing litterfall production and decomposition through the identified future research directions. Finally, the findings of the present review are relevant to supporting effective conservation and management strategies for mangroves in a changing climate.</p>","PeriodicalId":23640,"journal":{"name":"Wetlands","volume":"120 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emerging contaminants (EC) are the modern age chemicals that are new to the environment. It includes pharmaceuticals & personal care products (PPCPs), pesticides, hormones, artificial sweeteners, industrial chemicals, microplastics, newly discovered microbes and many other manmade chemicals. These chemicals are harmful and having negative impacts on human being and other life forms. Existing treatment systems are ineffective in treating the EC and the treated effluent act as source of pollution to the water bodies. Considering the requirement of new technologies that can remove EC, the Constructed wetlands (CWs) are getting popular and can be a valid option for the treatment of EC. In this context application of macrophytes in CW have increased the removal performance of constructed wetland system. Growing macrophytes in CW have augmented the removal of EC from these systems. In different studies macrophytes supported the removal process of EC in CW and a removal efficiency up to 97% was achieved. This review summarizes the direct and indirect roles of macrophytes in CW in the treatment of EC. Also, it evaluates the success of CW technology, in treating EC, its limitation, and future perspective. The direct role of macrophytes include precipitation on root surface, absorption, and degradation of EC by these plants. Growth of macrophytes in CWs facilitates the uptake EC by the absorption and detoxify them in their cell with the help of enzymatic and hormonal activity which supports the removal of EC in wetland system. Indirect impacts, which appear to be more significant than direct effects, include increased removal of EC through better rhizospheric microbial activity and exudate secretions, which enhances the removal by four times. Thus, this review emphasizes combined application of CW and aquatic macrophytes which augmented the performance of CW for the treatment of EC.