Pub Date : 2024-10-18DOI: 10.1007/s11274-024-04155-z
Alejandra Gutierrez, Catherine Rébufa, Anne-Marie Farnet Da Silva, Sylvain Davidson, Lisa Foli, Yannick Combet-Blanc, Martine Martinez, Pierre Christen
This work focused on the physico-chemical, biochemical and microbiological characterization of a new organic fertilizer based on fermented forest litter (FFL) mixed with agro-industrial by-products, on the culture realized in airtight glass bottle. Under strict anaerobiosis (0% initial oxygen concentration (IOC)), after a 16-day batch culture, the bottle-headspace analysis showed that the specific CO2 production rate was low (0.014 mL/h.g dry matter) compared to those reached under aerobic conditions (e.g. 0.464 mL/h.g dm at 21% IOC). Moreover, the culture displayed a slight fermented fruity odour, mainly due to ethanol and ethyl acetate detected in the headspace (335 µL and 58.6 µL accumulated, respectively). The FFL organic matter degradation followed by infrared spectroscopy and catabolic potential and diversity characterized by BIOLOG® EcoPlates were poor and pH dropped to 4.54. The microbiome's metabolism was oriented toward lactic fermentation with medium acidification, enrichment in lactic acid bacteria (LAB), depletion in fungi and absence of pathogens. By increasing IOC from 0 to 21%, the respirometric activity, and the catabolic potential and diversity increased. However, some enterobacteria were detected above 5% IOC. Ethanol and ethyl acetate decreased strongly with IOC, and aromatics and proteins contained in the solid matrix remained in the culture. This study showed the importance of oxygen on the final product. A 2% IOC was found to ensure an optimal balance between LAB development, preservation of functional catabolic diversity and bio-product free of microbial pathogens.
{"title":"Biochemical and microbial characterization of a forest litter-based bio-fertilizer produced in batch culture by fermentation under different initial oxygen concentrations.","authors":"Alejandra Gutierrez, Catherine Rébufa, Anne-Marie Farnet Da Silva, Sylvain Davidson, Lisa Foli, Yannick Combet-Blanc, Martine Martinez, Pierre Christen","doi":"10.1007/s11274-024-04155-z","DOIUrl":"10.1007/s11274-024-04155-z","url":null,"abstract":"<p><p>This work focused on the physico-chemical, biochemical and microbiological characterization of a new organic fertilizer based on fermented forest litter (FFL) mixed with agro-industrial by-products, on the culture realized in airtight glass bottle. Under strict anaerobiosis (0% initial oxygen concentration (IOC)), after a 16-day batch culture, the bottle-headspace analysis showed that the specific CO<sub>2</sub> production rate was low (0.014 mL/h.g dry matter) compared to those reached under aerobic conditions (e.g. 0.464 mL/h.g dm at 21% IOC). Moreover, the culture displayed a slight fermented fruity odour, mainly due to ethanol and ethyl acetate detected in the headspace (335 µL and 58.6 µL accumulated, respectively). The FFL organic matter degradation followed by infrared spectroscopy and catabolic potential and diversity characterized by BIOLOG<sup>®</sup> EcoPlates were poor and pH dropped to 4.54. The microbiome's metabolism was oriented toward lactic fermentation with medium acidification, enrichment in lactic acid bacteria (LAB), depletion in fungi and absence of pathogens. By increasing IOC from 0 to 21%, the respirometric activity, and the catabolic potential and diversity increased. However, some enterobacteria were detected above 5% IOC. Ethanol and ethyl acetate decreased strongly with IOC, and aromatics and proteins contained in the solid matrix remained in the culture. This study showed the importance of oxygen on the final product. A 2% IOC was found to ensure an optimal balance between LAB development, preservation of functional catabolic diversity and bio-product free of microbial pathogens.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"353"},"PeriodicalIF":4.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chernozem soil is a valuable resource and contains a great diversity of microorganisms that play a global role in the process of soil formation, the species diversity of which has changed over the last five years under the influence of different agrotechnologies. For the first time, under the conditions of the Central Chernozem region, grain and fallow crop rotation, studies using the DNA-metabarcoding method were carried out to study the taxonomic structure of bacteria, fungi, cyanobacteria, and microalgae communities in the arable horizon of typical medium loamy chernozem under winter wheat cultivation. A comparative analysis of the composition of the genotypes showed significant differences in the presented level of mineral nutrition of the soil NPK (60) and NPK (100) compared with the control variant. After processing the 16S and 18S rRNA datasets, a similar trend of decreasing numbers of pro- and eukaryotic species was found from 6296 (control without MF) to 5310 with NPK (60) and to 4643 with NPK (100), respectively. The Chao1 index indicated that the expected diversity within the prokaryotic group was higher in the control without MF at 211, but decreased to 182 and 193 with NPK (60) and NPK (100) fertilizers, respectively. Analysis of the eukaryotic group revealed a 2.6- and 2.9-fold decrease in diversity by class and genus, respectively, depending on the nutritional levels in agrotechnologies, owing to the use of MF. In the prokaryotic community, Alphaproteobacteria microorganisms predominated at an amount of 14.20-14.46%, with Cyanophyceae accounting for 5.2-9.9%. The diversity of eukaryotes was smaller than the number of classes of prokaryotes; the main dominant were Zygnematophyceae 19.5-41%, Chlorophyceae occupied 10.4-15.8%. On the other hand, the doses of fertilizers used contributed to the emergence of dominant species adapted to high doses of mineral nutrients for plants.
{"title":"DNA-metabarcoding of cyanobacteria and microalgae in chernozem soils of temperate continental climate of the forest-steppe zone of Eurasia under different degrees of agrotechnology intensification.","authors":"Vyacheslav Lukyanov, Lira Gaysina, Yurij Bukin, Prabhaharan Renganathan, Alexey Tupikin","doi":"10.1007/s11274-024-04133-5","DOIUrl":"10.1007/s11274-024-04133-5","url":null,"abstract":"<p><p>Chernozem soil is a valuable resource and contains a great diversity of microorganisms that play a global role in the process of soil formation, the species diversity of which has changed over the last five years under the influence of different agrotechnologies. For the first time, under the conditions of the Central Chernozem region, grain and fallow crop rotation, studies using the DNA-metabarcoding method were carried out to study the taxonomic structure of bacteria, fungi, cyanobacteria, and microalgae communities in the arable horizon of typical medium loamy chernozem under winter wheat cultivation. A comparative analysis of the composition of the genotypes showed significant differences in the presented level of mineral nutrition of the soil NPK (60) and NPK (100) compared with the control variant. After processing the 16S and 18S rRNA datasets, a similar trend of decreasing numbers of pro- and eukaryotic species was found from 6296 (control without MF) to 5310 with NPK (60) and to 4643 with NPK (100), respectively. The Chao1 index indicated that the expected diversity within the prokaryotic group was higher in the control without MF at 211, but decreased to 182 and 193 with NPK (60) and NPK (100) fertilizers, respectively. Analysis of the eukaryotic group revealed a 2.6- and 2.9-fold decrease in diversity by class and genus, respectively, depending on the nutritional levels in agrotechnologies, owing to the use of MF. In the prokaryotic community, Alphaproteobacteria microorganisms predominated at an amount of 14.20-14.46%, with Cyanophyceae accounting for 5.2-9.9%. The diversity of eukaryotes was smaller than the number of classes of prokaryotes; the main dominant were Zygnematophyceae 19.5-41%, Chlorophyceae occupied 10.4-15.8%. On the other hand, the doses of fertilizers used contributed to the emergence of dominant species adapted to high doses of mineral nutrients for plants.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"351"},"PeriodicalIF":4.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1007/s11274-024-04161-1
Salvador Ferreira de Holanda, Emilio Berghahn, Luciano Kayser Vargas, Camille Eichelberger Granada
Sandy soils contain around 70% sand in their composition, making them highly fragile and susceptible to land degradation. Practices such as no-tillage cultivation, the use of bioinoculants, and the application of organic amendments can restore the organic matter in these soils, ensuring sustainable production. In this context, this work aimed to study the microbiological aspects of two sandy soil areas (Brazilian Northeast and South) under contrasting climatic conditions (tropical and temperate). With this purpose, prokaryotic communities were evaluated, and the plant growth-promoting potential of isolated bacteria was assessed by rice inoculation in sandy soil. Despite the high sand content in both soils, soil from the NE was related to the highest phosphorous, calcium, potassium, copper, sodium, zinc, magnesium, and manganese contents, organic matter percentage, and pH. The Shannon diversity index indicated that prokaryotic communities in NE were more diverse than in SU, and PCA revealed that microbial composition exhibited distinct patterns. The rice inoculation experiments were executed to verify if the bacterial isolates displayed a similar growth promotion potential when inoculated in sandy soil areas subjected to different climatic conditions. When all PGP characteristics evaluated were pooled in a PCA, a similar pattern was observed for SU and NE. Burkholderia sp. SU94 was related to highest PGP characteristics evaluated. Paraburkholderia sp. NE32 showed similar results to those of the non-inoculated control. This similar effect of rice growth in the Northeast and South of Brazil suggests that isolate SU94 adapts to different environmental conditions.
沙质土壤的成分中约有 70% 是沙子,因此非常脆弱,容易出现土地退化。免耕栽培、使用生物菌肥和施用有机添加剂等做法可以恢复这些土壤中的有机物质,确保可持续生产。在此背景下,这项工作旨在研究两个沙质土壤地区(巴西东北部和南部)在不同气候条件(热带和温带)下的微生物情况。为此,对原核生物群落进行了评估,并通过在沙质土壤中接种水稻评估了分离细菌促进植物生长的潜力。尽管两种土壤的含沙量都很高,但东北部土壤的磷、钙、钾、铜、钠、锌、镁和锰含量、有机质百分比和 pH 值最高。香农多样性指数表明,东北部土壤中的原核生物群落比南部土壤中的原核生物群落更多样化,PCA 显示微生物组成呈现出不同的模式。水稻接种实验旨在验证细菌分离物接种到不同气候条件下的沙质土壤中是否具有相似的生长促进潜力。将评估的所有 PGP 特征汇总到 PCA 中,观察到 SU 和 NE 的模式相似。Burkholderia sp.Paraburkholderia sp. NE32 的结果与未接种对照相似。巴西东北部和南部水稻生长的这种相似影响表明,分离物 SU94 能够适应不同的环境条件。
{"title":"Plant growth promoting bacteria promote rice growth cultivated in two different sandy soils subjected distinct climates conditions.","authors":"Salvador Ferreira de Holanda, Emilio Berghahn, Luciano Kayser Vargas, Camille Eichelberger Granada","doi":"10.1007/s11274-024-04161-1","DOIUrl":"10.1007/s11274-024-04161-1","url":null,"abstract":"<p><p>Sandy soils contain around 70% sand in their composition, making them highly fragile and susceptible to land degradation. Practices such as no-tillage cultivation, the use of bioinoculants, and the application of organic amendments can restore the organic matter in these soils, ensuring sustainable production. In this context, this work aimed to study the microbiological aspects of two sandy soil areas (Brazilian Northeast and South) under contrasting climatic conditions (tropical and temperate). With this purpose, prokaryotic communities were evaluated, and the plant growth-promoting potential of isolated bacteria was assessed by rice inoculation in sandy soil. Despite the high sand content in both soils, soil from the NE was related to the highest phosphorous, calcium, potassium, copper, sodium, zinc, magnesium, and manganese contents, organic matter percentage, and pH. The Shannon diversity index indicated that prokaryotic communities in NE were more diverse than in SU, and PCA revealed that microbial composition exhibited distinct patterns. The rice inoculation experiments were executed to verify if the bacterial isolates displayed a similar growth promotion potential when inoculated in sandy soil areas subjected to different climatic conditions. When all PGP characteristics evaluated were pooled in a PCA, a similar pattern was observed for SU and NE. Burkholderia sp. SU94 was related to highest PGP characteristics evaluated. Paraburkholderia sp. NE32 showed similar results to those of the non-inoculated control. This similar effect of rice growth in the Northeast and South of Brazil suggests that isolate SU94 adapts to different environmental conditions.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"352"},"PeriodicalIF":4.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s11274-024-04162-0
Rajat Kumar Mondal, Debayan Karmakar, Oshin Pal, Sintu Kumar Samanta
The rise of multi-drug resistant (MDR) bacteria, especially strains of Staphylococcus aureus like Vancomycin-resistant S. aureus (VRSA), Vancomycin-intermediate S. aureus (VISA), and Vancomycin-susceptible S. aureus (VSSA), poses a severe threat to global health. This situation underscores the urgent need for novel antimicrobial agents to combat these resistant strains effectively. Here, we are introducing the Anti-Vancomycin-Resistant/Intermediate/Susceptible Staphylococcus aureus Peptide Database (AVR/I/SSAPDB), a manually curated comprehensive and specialised knowledgebase dedicated to antimicrobial peptides (AMPs) that target VRSA, VISA, and VSSA with clinical and non-clinical significance. Our database sources data from PubMed, cataloging 491 experimentally validated AMPs with detailed annotations on peptides, activity, and cross-references to external databases like PubMed, UniProt, PDB, and DrugBank. AVR/I/SSAPDB offers a user-friendly interface with simple to advanced and list-based search capabilities, enabling researchers to explore AMPs against VRSA, VISA, and VSSA. We are hoping that this resource will be helpful to the scientific community in developing targeted peptide-based therapeutics, providing a crucial tool for combating VRSA, VISA, and VSSA, and addressing a major public health concern. AVR/I/SSAPDB is freely accessible via any web-browser at URL: https://bblserver.org.in/avrissa/ .
{"title":"AVR/I/SSAPDB: a comprehensive & specialised knowledgebase of antimicrobial peptides to combat VRSA, VISA, and VSSA.","authors":"Rajat Kumar Mondal, Debayan Karmakar, Oshin Pal, Sintu Kumar Samanta","doi":"10.1007/s11274-024-04162-0","DOIUrl":"10.1007/s11274-024-04162-0","url":null,"abstract":"<p><p>The rise of multi-drug resistant (MDR) bacteria, especially strains of Staphylococcus aureus like Vancomycin-resistant S. aureus (VRSA), Vancomycin-intermediate S. aureus (VISA), and Vancomycin-susceptible S. aureus (VSSA), poses a severe threat to global health. This situation underscores the urgent need for novel antimicrobial agents to combat these resistant strains effectively. Here, we are introducing the Anti-Vancomycin-Resistant/Intermediate/Susceptible Staphylococcus aureus Peptide Database (AVR/I/SSAPDB), a manually curated comprehensive and specialised knowledgebase dedicated to antimicrobial peptides (AMPs) that target VRSA, VISA, and VSSA with clinical and non-clinical significance. Our database sources data from PubMed, cataloging 491 experimentally validated AMPs with detailed annotations on peptides, activity, and cross-references to external databases like PubMed, UniProt, PDB, and DrugBank. AVR/I/SSAPDB offers a user-friendly interface with simple to advanced and list-based search capabilities, enabling researchers to explore AMPs against VRSA, VISA, and VSSA. We are hoping that this resource will be helpful to the scientific community in developing targeted peptide-based therapeutics, providing a crucial tool for combating VRSA, VISA, and VSSA, and addressing a major public health concern. AVR/I/SSAPDB is freely accessible via any web-browser at URL: https://bblserver.org.in/avrissa/ .</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"348"},"PeriodicalIF":4.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s11274-024-04150-4
Aili Zhang, Yunpeng Ding, Wenju Shao
Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.
{"title":"Manipulating the nucleolar serine-rich protein Srp40p in Saccharomyces cerevisiae may improve isobutanol production.","authors":"Aili Zhang, Yunpeng Ding, Wenju Shao","doi":"10.1007/s11274-024-04150-4","DOIUrl":"10.1007/s11274-024-04150-4","url":null,"abstract":"<p><p>Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"349"},"PeriodicalIF":4.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s11274-024-04165-x
Xinxin Chen, Bo Zhang, Xiaohan Jiang, Zhiqiang Liu, Yuguo Zheng
The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.
{"title":"Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis.","authors":"Xinxin Chen, Bo Zhang, Xiaohan Jiang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s11274-024-04165-x","DOIUrl":"10.1007/s11274-024-04165-x","url":null,"abstract":"<p><p>The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"350"},"PeriodicalIF":4.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.
{"title":"Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19.","authors":"Çiğdem Otur, Sezer Okay, Ömer Konuksever, Oğuzhan Duyar, Yılmaz Kaya, Aslıhan Kurt-Kızıldoğan","doi":"10.1007/s11274-024-04153-1","DOIUrl":"10.1007/s11274-024-04153-1","url":null,"abstract":"<p><p>Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"347"},"PeriodicalIF":4.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1007/s11274-024-04087-8
Mei Tao, Yan Huang, Jing Luo, Yiwang Wang, Xuegang Luo
Phosphate-solubilizing bacteria (PSB) can solubilize soil fixed phosphorus (P) to plant available forms. In previous studies, the mechanisms of inorganic phosphate solubilization by PSB mostly focused on the acidolysis of organic acids. Here we screened a highly efficient PSB, Advenella kashmirensis DF12, with the maximum P solubilization of 590 mg L- 1 at 6 days. In addition to its P solubilizing ability, DF12 also showed a tolerance to pH from 5 to 10 and a nitrogen fixation potential. The multiple functions of DF12 and its wide adaptability to various environmental conditions make it a promising biofertilizer candidate. The combined analysis of extracellular metabolites and intracellular metabolome data revealed that the production of organic acid (mainly gluconic acid) is not the only mechanism of P solubilized by DF12, the solubilized P content was not correlated with the gluconic acid concentration but was in a highly significant positive correlation with proton concentration, extrusion of proton during NH4+ assimilation plays a key role in phosphate solubilization. Moreover, the contribution of NH4+ assimilation to phosphorus solubilization is generally present in PSB. Therefore, we proposed that applying ammonium fertilizer in P-deficient soil is more appropriate, it can not only supplement nitrogen fertilizer, but also enhance P use efficiency, which contributes to worldwide fertilizer use reduction and efficiency improvement.
{"title":"The role of proton excreted by Advenella kashmirensis DF12 during ammonium assimilation in phosphate solubilization.","authors":"Mei Tao, Yan Huang, Jing Luo, Yiwang Wang, Xuegang Luo","doi":"10.1007/s11274-024-04087-8","DOIUrl":"10.1007/s11274-024-04087-8","url":null,"abstract":"<p><p>Phosphate-solubilizing bacteria (PSB) can solubilize soil fixed phosphorus (P) to plant available forms. In previous studies, the mechanisms of inorganic phosphate solubilization by PSB mostly focused on the acidolysis of organic acids. Here we screened a highly efficient PSB, Advenella kashmirensis DF12, with the maximum P solubilization of 590 mg L<sup>- 1</sup> at 6 days. In addition to its P solubilizing ability, DF12 also showed a tolerance to pH from 5 to 10 and a nitrogen fixation potential. The multiple functions of DF12 and its wide adaptability to various environmental conditions make it a promising biofertilizer candidate. The combined analysis of extracellular metabolites and intracellular metabolome data revealed that the production of organic acid (mainly gluconic acid) is not the only mechanism of P solubilized by DF12, the solubilized P content was not correlated with the gluconic acid concentration but was in a highly significant positive correlation with proton concentration, extrusion of proton during NH<sub>4</sub><sup>+</sup> assimilation plays a key role in phosphate solubilization. Moreover, the contribution of NH<sub>4</sub><sup>+</sup> assimilation to phosphorus solubilization is generally present in PSB. Therefore, we proposed that applying ammonium fertilizer in P-deficient soil is more appropriate, it can not only supplement nitrogen fertilizer, but also enhance P use efficiency, which contributes to worldwide fertilizer use reduction and efficiency improvement.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"346"},"PeriodicalIF":4.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1007/s11274-024-04114-8
Michel Rodrigo Zambrano Passarini, Marahia Isabel Guevara Robayo, Júlia Ronzella Ottoni, Alysson Wagner Fernandes Duarte, Luiz Henrique Rosa
The biotechnological potential for agricultural applications in the soil in the thawing process on Whalers Bay, Deception Island, Antarctica was evaluated using a metagenomic approach through high-throughput sequencing. Approximately 22.70% of the sequences were affiliated to the phyla of the Bacteria dominion, followed by 0.26% to the Eukarya. Proteobacteria (Bacteria) and Ascomycota (Fungi) were the most abundant phyla. Thirty-two and thirty-six bacterial and fungal genera associated with agricultural biotechnological applications were observed. Streptomyces and Pythium were the most abundant genera related to the Bacteria and Oomycota, respectively. The main agricultural application associated with bacteria was nitrogen affixation; in contrast for fungi, was associated with phytopathogenic capabilities. The present study showed the need to use metagenomic technology to understand the dynamics and possible metabolic pathways associated with the microbial communities present in the soil sample in the process of thawing recovered from the Antarctic continent, which presented potential application in processes of agro-industrial interest.
{"title":"Biotechnological potential in agriculture of soil Antarctic microorganisms revealed by omics approach.","authors":"Michel Rodrigo Zambrano Passarini, Marahia Isabel Guevara Robayo, Júlia Ronzella Ottoni, Alysson Wagner Fernandes Duarte, Luiz Henrique Rosa","doi":"10.1007/s11274-024-04114-8","DOIUrl":"10.1007/s11274-024-04114-8","url":null,"abstract":"<p><p>The biotechnological potential for agricultural applications in the soil in the thawing process on Whalers Bay, Deception Island, Antarctica was evaluated using a metagenomic approach through high-throughput sequencing. Approximately 22.70% of the sequences were affiliated to the phyla of the Bacteria dominion, followed by 0.26% to the Eukarya. Proteobacteria (Bacteria) and Ascomycota (Fungi) were the most abundant phyla. Thirty-two and thirty-six bacterial and fungal genera associated with agricultural biotechnological applications were observed. Streptomyces and Pythium were the most abundant genera related to the Bacteria and Oomycota, respectively. The main agricultural application associated with bacteria was nitrogen affixation; in contrast for fungi, was associated with phytopathogenic capabilities. The present study showed the need to use metagenomic technology to understand the dynamics and possible metabolic pathways associated with the microbial communities present in the soil sample in the process of thawing recovered from the Antarctic continent, which presented potential application in processes of agro-industrial interest.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"345"},"PeriodicalIF":4.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
{"title":"Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities.","authors":"Srija Pal, Niloy Chatterjee, Sagnik Sinha Roy, Brajadulal Chattopadhyay, Krishnendu Acharya, Sriparna Datta, Pubali Dhar","doi":"10.1007/s11274-024-04144-2","DOIUrl":"10.1007/s11274-024-04144-2","url":null,"abstract":"<p><p>Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL<sup>-1</sup>) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL<sup>-1</sup>) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL<sup>-1</sup> for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"344"},"PeriodicalIF":4.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}