Hai-Juan Hu, Xue-Ru Xiao, Tong Li, De-Min Liu, Xue Geng, Mei Han, Wei Cui
Background: Umbilical cord (UC) mesenchymal stem cell (MSC) transplantation is a potential therapeutic intervention for atherosclerotic vascular disease. Integrin beta 3 (ITGB3) promotes cell migration in several cell types. However, whether ITGB-modified MSCs can migrate to plaque sites in vivo and play an anti-atherosclerotic role remains unclear.
Aim: To investigate whether ITGB3-overexpressing MSCs (MSCsITGB3) would exhibit improved homing efficacy in atherosclerosis.
Methods: UC MSCs were isolated and expanded. Lentiviral vectors encoding ITGB3 or green fluorescent protein (GFP) as control were transfected into MSCs. Sixty male apolipoprotein E-/- mice were acquired from Beijing Vital River Lab Animal Technology Co., Ltd and fed with a high-fat diet (HFD) for 12 wk to induce the formation of atherosclerotic lesions. These HFD-fed mice were randomly separated into three clusters. GFP-labeled MSCs (MSCsGFP) or MSCsITGB3 were transplanted into the mice intravenously via the tail vein. Immunofluorescence staining, Oil red O staining, histological analyses, western blotting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction were used for the analyses.
Results: ITGB3 modified MSCs successfully differentiated into the "osteocyte" and "adipocyte" phenotypes and were characterized by positive expression (> 91.3%) of CD29, CD73, and CD105 and negative expression (< 1.35%) of CD34 and Human Leukocyte Antigen-DR. In a transwell assay, MSCsITGB3 showed significantly faster migration than MSCsGFP. ITGB3 overexpression had no effects on MSC viability, differentiation, and secretion. Immunofluorescence staining revealed that ITGB3 overexpression substantially enhanced the homing of MSCs to plaque sites. Oil red O staining and histological analyses further confirmed the therapeutic effects of MSCsITGB3, significantly reducing the plaque area. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction revealed that MSCITGB3 transplantation considerably decreased the inflammatory response in pathological tissues by improving the dynamic equilibrium of pro- and anti-inflammatory cytokines.
Conclusion: These results showed that ITGB3 overexpression enhanced the MSC homing ability, providing a potential approach for MSC delivery to plaque sites, thereby optimizing their therapeutic effects.
{"title":"Integrin beta 3-overexpressing mesenchymal stromal cells display enhanced homing and can reduce atherosclerotic plaque.","authors":"Hai-Juan Hu, Xue-Ru Xiao, Tong Li, De-Min Liu, Xue Geng, Mei Han, Wei Cui","doi":"10.4252/wjsc.v15.i9.931","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i9.931","url":null,"abstract":"<p><strong>Background: </strong>Umbilical cord (UC) mesenchymal stem cell (MSC) transplantation is a potential therapeutic intervention for atherosclerotic vascular disease. Integrin beta 3 (ITGB3) promotes cell migration in several cell types. However, whether ITGB-modified MSCs can migrate to plaque sites <i>in vivo</i> and play an anti-atherosclerotic role remains unclear.</p><p><strong>Aim: </strong>To investigate whether ITGB3-overexpressing MSCs (MSCs<sup>ITGB3</sup>) would exhibit improved homing efficacy in atherosclerosis.</p><p><strong>Methods: </strong>UC MSCs were isolated and expanded. Lentiviral vectors encoding ITGB3 or green fluorescent protein (GFP) as control were transfected into MSCs. Sixty male apolipoprotein E<sup>-/-</sup> mice were acquired from Beijing Vital River Lab Animal Technology Co., Ltd and fed with a high-fat diet (HFD) for 12 wk to induce the formation of atherosclerotic lesions. These HFD-fed mice were randomly separated into three clusters. GFP-labeled MSCs (MSCs<sup>GFP</sup>) or MSCs<sup>ITGB3</sup> were transplanted into the mice intravenously <i>via</i> the tail vein. Immunofluorescence staining, Oil red O staining, histological analyses, western blotting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction were used for the analyses.</p><p><strong>Results: </strong>ITGB3 modified MSCs successfully differentiated into the \"osteocyte\" and \"adipocyte\" phenotypes and were characterized by positive expression (> 91.3%) of CD29, CD73, and CD105 and negative expression (< 1.35%) of CD34 and Human Leukocyte Antigen-DR. In a transwell assay, MSCs<sup>ITGB3</sup> showed significantly faster migration than MSCs<sup>GFP</sup>. ITGB3 overexpression had no effects on MSC viability, differentiation, and secretion. Immunofluorescence staining revealed that ITGB3 overexpression substantially enhanced the homing of MSCs to plaque sites. Oil red O staining and histological analyses further confirmed the therapeutic effects of MSCs<sup>ITGB3</sup>, significantly reducing the plaque area. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction revealed that MSC<sup>ITGB3</sup> transplantation considerably decreased the inflammatory response in pathological tissues by improving the dynamic equilibrium of pro- and anti-inflammatory cytokines.</p><p><strong>Conclusion: </strong>These results showed that ITGB3 overexpression enhanced the MSC homing ability, providing a potential approach for MSC delivery to plaque sites, thereby optimizing their therapeutic effects.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 9","pages":"931-946"},"PeriodicalIF":4.1,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71414085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Rapid wound healing remains a pressing clinical challenge, necessitating studies to hasten this process. A promising approach involves the utilization of human umbilical cord mesenchymal stem cells (hUC-MSCs) derived exosomes. The hypothesis of this study was that these exosomes, when loaded onto a gelatin sponge, a common hemostatic material, would enhance hemostasis and accelerate wound healing.
Aim: To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.
Methods: Ultracentrifugation was used to extract exosomes from hUC-MSCs. Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot techniques were used to validate the exosomes. In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival. New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions. Hemolysis test was conducted using a 2% rabbit red blood cell suspension to detect whether they caused hemolysis. Moreover, in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley (SD) rats to perform biocompatibility tests. In addition, coagulation index test was conducted to evaluate their impact on blood coagulation. Meanwhile, SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing.
Results: The NTA, TEM, and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs. The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity, skin irritation, or hemolysis, and they demonstrated good compatibility in SD rats. Additionally, the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated. The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge, and they showed excellent hemostatic performance in a liver defect hemostasis model. Finally, the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups.
Conclusion: Collectively, the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing, warranting further clinical application.
{"title":"Enhanced wound healing and hemostasis with exosome-loaded gelatin sponges from human umbilical cord mesenchymal stem cells.","authors":"Xin-Mei Hu, Can-Can Wang, Yu Xiao, Peng Jiang, Yu Liu, Zhong-Quan Qi","doi":"10.4252/wjsc.v15.i9.947","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i9.947","url":null,"abstract":"<p><strong>Background: </strong>Rapid wound healing remains a pressing clinical challenge, necessitating studies to hasten this process. A promising approach involves the utilization of human umbilical cord mesenchymal stem cells (hUC-MSCs) derived exosomes. The hypothesis of this study was that these exosomes, when loaded onto a gelatin sponge, a common hemostatic material, would enhance hemostasis and accelerate wound healing.</p><p><strong>Aim: </strong>To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.</p><p><strong>Methods: </strong>Ultracentrifugation was used to extract exosomes from hUC-MSCs. Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot techniques were used to validate the exosomes. <i>In vitro</i> experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival. New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions. Hemolysis test was conducted using a 2% rabbit red blood cell suspension to detect whether they caused hemolysis. Moreover, <i>in vivo</i> experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley (SD) rats to perform biocompatibility tests. In addition, coagulation index test was conducted to evaluate their impact on blood coagulation. Meanwhile, SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing.</p><p><strong>Results: </strong>The NTA, TEM, and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs. The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity, skin irritation, or hemolysis, and they demonstrated good compatibility in SD rats. Additionally, the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated. The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge, and they showed excellent hemostatic performance in a liver defect hemostasis model. Finally, the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups.</p><p><strong>Conclusion: </strong>Collectively, the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing, warranting further clinical application.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 9","pages":"947-959"},"PeriodicalIF":4.1,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71414084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cardiovascular diseases particularly myocardial infarction (MI) are the leading cause of mortality and morbidity around the globe. As cardiac tissue possesses very limited regeneration potential, therefore use of a potent small molecule, inhibitor Wnt production-4 (IWP-4) for stem cell differentiation into cardiomyocytes could be a promising approach for cardiac regeneration. Wnt pathway inhibitors may help stem cells in their fate determination towards cardiomyogenic lineage and provide better homing and survival of cells in vivo. Mesenchymal stem cells (MSCs) derived from the human umbilical cord have the potential to regenerate cardiac tissue, as they are easy to isolate and possess multilineage differentiation capability. IWP-4 may promote the differentiation of MSCs into the cardiac lineage.
Aim: To evaluate the cardiac differentiation ability of IWP-4 and its subsequent in vivo effects.
Methods: Umbilical cord tissue of human origin was utilized to isolate the MSCs which were characterized by their morphology, immunophenotyping of surface markers specific to MSCs, as well as by tri-lineage differentiation capability. Cytotoxicity analysis was performed to identify the optimal concentration of IWP-4. MSCs were treated with 5 μM IWP-4 at two different time intervals. Differentiation of MSCs into cardiomyocytes was evaluated at DNA and protein levels. The MI rat model was developed. IWP-4 treated as well as untreated MSCs were implanted in the MI model, then the cardiac function was analyzed via echocardiography. MSCs were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) dye for tracking, while the regeneration of infarcted myocardium was examined by histology and immunohistochemistry.
Results: MSCs were isolated and characterized. Cytotoxicity analysis showed that IWP-4 was non-cytotoxic at 5 μM concentration. Cardiac specific gene and protein expression analyses exhibited more remarkable results in fourteen days treated group that was eventually selected for in vivo transplantation. Cardiac function was restored in the IWP-4 treated group in comparison to the MI group. Immunohistochemical analysis confirmed the homing of pre-differentiated MSCs that were labeled with DiI cell labeling dye. Histological analysis confirmed the significant reduction in fibrotic area, and improved left ventricular wall thickness in IWP-4 treated MSC group.
Conclusion: Treatment of MSCs with IWP-4 inhibits Wnt pathway and promotes cardiac differentiation. These pre-conditioned MSCs transplanted in vivo improved cardiac function by cell homing, survival, and differentiation at the infarcted region, increased left ventricular wall thickness, and reduced infarct size.
{"title":"Wnt signaling pathway inhibitor promotes mesenchymal stem cells differentiation into cardiac progenitor cells <i>in vitro</i> and improves cardiomyopathy <i>in vivo</i>.","authors":"Rabbia Muneer, Rida-E-Maria Qazi, Abiha Fatima, Waqas Ahmad, Asmat Salim, Luciana Dini, Irfan Khan","doi":"10.4252/wjsc.v15.i8.821","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.821","url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases particularly myocardial infarction (MI) are the leading cause of mortality and morbidity around the globe. As cardiac tissue possesses very limited regeneration potential, therefore use of a potent small molecule, inhibitor Wnt production-4 (IWP-4) for stem cell differentiation into cardiomyocytes could be a promising approach for cardiac regeneration. Wnt pathway inhibitors may help stem cells in their fate determination towards cardiomyogenic lineage and provide better homing and survival of cells <i>in vivo</i>. Mesenchymal stem cells (MSCs) derived from the human umbilical cord have the potential to regenerate cardiac tissue, as they are easy to isolate and possess multilineage differentiation capability. IWP-4 may promote the differentiation of MSCs into the cardiac lineage.</p><p><strong>Aim: </strong>To evaluate the cardiac differentiation ability of IWP-4 and its subsequent <i>in vivo</i> effects.</p><p><strong>Methods: </strong>Umbilical cord tissue of human origin was utilized to isolate the MSCs which were characterized by their morphology, immunophenotyping of surface markers specific to MSCs, as well as by tri-lineage differentiation capability. Cytotoxicity analysis was performed to identify the optimal concentration of IWP-4. MSCs were treated with 5 μM IWP-4 at two different time intervals. Differentiation of MSCs into cardiomyocytes was evaluated at DNA and protein levels. The MI rat model was developed. IWP-4 treated as well as untreated MSCs were implanted in the MI model, then the cardiac function was analyzed <i>via</i> echocardiography. MSCs were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) dye for tracking, while the regeneration of infarcted myocardium was examined by histology and immunohistochemistry.</p><p><strong>Results: </strong>MSCs were isolated and characterized. Cytotoxicity analysis showed that IWP-4 was non-cytotoxic at 5 μM concentration. Cardiac specific gene and protein expression analyses exhibited more remarkable results in fourteen days treated group that was eventually selected for <i>in vivo</i> transplantation. Cardiac function was restored in the IWP-4 treated group in comparison to the MI group. Immunohistochemical analysis confirmed the homing of pre-differentiated MSCs that were labeled with DiI cell labeling dye. Histological analysis confirmed the significant reduction in fibrotic area, and improved left ventricular wall thickness in IWP-4 treated MSC group.</p><p><strong>Conclusion: </strong>Treatment of MSCs with IWP-4 inhibits Wnt pathway and promotes cardiac differentiation. These pre-conditioned MSCs transplanted <i>in vivo</i> improved cardiac function by cell homing, survival, and differentiation at the infarcted region, increased left ventricular wall thickness, and reduced infarct size.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"821-841"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/35/WJSC-15-821.PMC10494566.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Bone marrow mesenchymal stromal cells (BMSCs) are the commonly used seed cells in tissue engineering. Aryl hydrocarbon receptor (AhR) is a transcription factor involved in various cellular processes. However, the function of constitutive AhR in BMSCs remains unclear.
Aim: To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs (mBMSCs) and the underlying mechanism.
Methods: Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs. The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid. The osteogenic potential was observed by alkaline phosphatase and alizarin red staining. The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction (qPCR) and western blot. After coculture with different mBMSCs, the cluster of differentiation (CD) 86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry. To explore the underlying molecular mechanism, the interaction of AhR with signal transducer and activator of transcription 3 (STAT3) was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.
Results: AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected. AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it. The ratio of CD86+ RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+ cells was increased. AhR directly interacted with STAT3. AhR overexpression increased the phosphorylation of STAT3. After inhibition of STAT3 via stattic, the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.
Conclusion: AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3.
背景:骨髓间充质基质细胞是组织工程中常用的种子细胞。芳烃受体(Aryl hydrocarbon receptor, AhR)是一种参与多种细胞过程的转录因子。然而,组成型AhR在骨髓间充质干细胞中的功能尚不清楚。目的:探讨AhR在小鼠骨髓间充质干细胞(mBMSCs)成骨和巨噬细胞调节中的作用及其机制。方法:采用免疫化学和免疫荧光染色法观察AhR在小鼠骨髓组织和骨髓间充质干细胞中的表达。通过慢病毒介导的质粒实现AhR的过表达或低表达。碱性磷酸酶和茜素红染色观察成骨潜能。采用定量聚合酶链反应(qPCR)和western blot检测成骨标志物mRNA和蛋白水平。与不同mBMSCs共培养后,流式细胞术检测RAW 264.7细胞中cd86和CD206的表达水平。为了探究其潜在的分子机制,我们采用共免疫沉淀法观察AhR与转录信号传导和激活因子3 (STAT3)的相互作用,并用western blot检测STAT3的磷酸化水平。结果:小鼠骨髓组织和离体骨髓间充质干细胞中均检测到AhR的表达。AhR过表达增强了mBMSCs的成骨潜能,而AhR敲低则抑制其成骨潜能。CD86+ RAW 264.7细胞与过表达ahr的mBMSCs共培养的比例降低,CD206+细胞的比例增加。AhR直接与STAT3交互。AhR过表达增加STAT3的磷酸化。通过static抑制STAT3后,AhR过表达对成骨分化和巨噬细胞调节的促进作用被部分抵消。结论:AhR通过提高STAT3的磷酸化水平,对mBMSCs的再生潜能起一定的促进作用。
{"title":"Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells.","authors":"Jing Huang, Yi-Ning Wang, Yi Zhou","doi":"10.4252/wjsc.v15.i8.807","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.807","url":null,"abstract":"<p><strong>Background: </strong>Bone marrow mesenchymal stromal cells (BMSCs) are the commonly used seed cells in tissue engineering. Aryl hydrocarbon receptor (AhR) is a transcription factor involved in various cellular processes. However, the function of constitutive AhR in BMSCs remains unclear.</p><p><strong>Aim: </strong>To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs (mBMSCs) and the underlying mechanism.</p><p><strong>Methods: </strong>Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs. The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid. The osteogenic potential was observed by alkaline phosphatase and alizarin red staining. The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction (qPCR) and western blot. After coculture with different mBMSCs, the cluster of differentiation (CD) 86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry. To explore the underlying molecular mechanism, the interaction of AhR with signal transducer and activator of transcription 3 (STAT3) was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.</p><p><strong>Results: </strong>AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected. AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it. The ratio of CD86+ RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+ cells was increased. AhR directly interacted with STAT3. AhR overexpression increased the phosphorylation of STAT3. After inhibition of STAT3 <i>via</i> stattic, the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.</p><p><strong>Conclusion: </strong>AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"807-820"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/91/62/WJSC-15-807.PMC10494570.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear.
Aim: To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.
Methods: We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an in vitro mixed lymphocyte culture assay, and in vivo in mice with dextran sulfate sodium-induced acute colitis.
Results: Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice.
Conclusion: Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
{"title":"Interferon-gamma and tumor necrosis factor-alpha synergistically enhance the immunosuppressive capacity of human umbilical-cord-derived mesenchymal stem cells by increasing PD-L1 expression.","authors":"Zhuo Chen, Meng-Wei Yao, Zhi-Lin Shen, Shi-Dan Li, Wei Xing, Wei Guo, Zhan Li, Xiao-Feng Wu, Luo-Quan Ao, Wen-Yong Lu, Qi-Zhou Lian, Xiang Xu, Xiang Ao","doi":"10.4252/wjsc.v15.i8.787","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.787","url":null,"abstract":"<p><strong>Background: </strong>The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the \"license\" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear.</p><p><strong>Aim: </strong>To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.</p><p><strong>Methods: </strong>We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an <i>in vitro</i> mixed lymphocyte culture assay, and <i>in vivo</i> in mice with dextran sulfate sodium-induced acute colitis.</p><p><strong>Results: </strong>Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice.</p><p><strong>Conclusion: </strong>Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"787-806"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/29/a1/WJSC-15-787.PMC10494569.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Intervertebral disc degeneration (IDD) is a main contributor to low back pain. Oxidative stress, which is highly associated with the progression of IDD, increases senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs (IVDs). Quercetin (Que) has been demonstrated to reduce oxidative stress in diverse degenerative diseases.
Aim: To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.
Methods: In vitro, NPMSCs were isolated from rat tails. Senescence-associated β-galactosidase (SA-β-Gal) staining, cell cycle, reactive oxygen species (ROS), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and western blot analyses were used to evaluated the protective effects of Que. Meanwhile the relationship between miR-34a-5p and Sirtuins 1 (SIRT1) was evaluated by dual-luciferase reporter assay. To explore whether Que modulates tert-butyl hydroperoxide (TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway, we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression. In vivo, a puncture-induced rat IDD model was constructed, and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.
Results: We found that TBHP can cause NPMSCs senescence changes, such as reduced cell proliferation ability, increased SA-β-Gal activity, cell cycle arrest, the accumulation of ROS, and increased expression of senescence-related proteins. While abovementioned senescence indicators were significantly alleviated by Que treatment. Que decreased the expression levels of senescence-related proteins (p16, p21, and p53) and senescence-associated secreted phenotype (SASP), including IL-1β, IL-6, and MMP-13, and it increased the expression of SIRT1. In addition, the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown. In vivo, X-ray, and histological analyses indicated that Que alleviated IDD in a puncture-induced rat model.
Conclusion: In summary, the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway, suggesting that Que may be a potential agent for the treatment of IDD.
{"title":"Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells <i>via</i> the miR-34a-5p/SIRT1 axis.","authors":"Wen-Jie Zhao, Xin Liu, Man Hu, Yu Zhang, Peng-Zhi Shi, Jun-Wu Wang, Xu-Hua Lu, Xiao-Fei Cheng, Yu-Ping Tao, Xin-Min Feng, Yong-Xiang Wang, Liang Zhang","doi":"10.4252/wjsc.v15.i8.842","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.842","url":null,"abstract":"<p><strong>Background: </strong>Intervertebral disc degeneration (IDD) is a main contributor to low back pain. Oxidative stress, which is highly associated with the progression of IDD, increases senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs (IVDs). Quercetin (Que) has been demonstrated to reduce oxidative stress in diverse degenerative diseases.</p><p><strong>Aim: </strong>To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.</p><p><strong>Methods: </strong><i>In vitro</i>, NPMSCs were isolated from rat tails. Senescence-associated β-galactosidase (SA-β-Gal) staining, cell cycle, reactive oxygen species (ROS), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and western blot analyses were used to evaluated the protective effects of Que. Meanwhile the relationship between miR-34a-5p and Sirtuins 1 (SIRT1) was evaluated by dual-luciferase reporter assay. To explore whether Que modulates tert-butyl hydroperoxide (TBHP)-induced senescence of NPMSCs <i>via</i> the miR-34a-5p/SIRT1 pathway, we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression. <i>In vivo,</i> a puncture-induced rat IDD model was constructed, and X rays and histological analysis were used to assess whether Que could alleviate IDD <i>in vivo</i>.</p><p><strong>Results: </strong>We found that TBHP can cause NPMSCs senescence changes, such as reduced cell proliferation ability, increased SA-β-Gal activity, cell cycle arrest, the accumulation of ROS, and increased expression of senescence-related proteins. While abovementioned senescence indicators were significantly alleviated by Que treatment. Que decreased the expression levels of senescence-related proteins (p16, p21, and p53) and senescence-associated secreted phenotype (SASP), including IL-1β, IL-6, and MMP-13, and it increased the expression of SIRT1. In addition, the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown. <i>In vivo</i>, X-ray, and histological analyses indicated that Que alleviated IDD in a puncture-induced rat model.</p><p><strong>Conclusion: </strong>In summary, the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs <i>via</i> the miR-34a/SIRT1 signaling pathway, suggesting that Que may be a potential agent for the treatment of IDD.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"842-865"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/9f/WJSC-15-842.PMC10494568.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz et al (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Małgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership and coveted citations. The critical necessity of integrating visionary insights is underscored and achieved through a rigorous analysis of pivotal concepts and innovative ideas. Examples can be harnessed to elucidate the application of these solutions. We advocate a paradigm shift, urging literature review writers to embrace the readers' perspective. A literature review's purpose extends beyond providing a comprehensive panorama; it should illuminate avenues for concept development within a specific field of interest. By achieving this balance, literature reviews stand to captivate a devoted readership, paving the way for manuscripts that are both widely read and frequently cited. The pathway forward requires a fusion of astute analysis and visionary insights, shaping the future of literature review composition.
在Oz等人(2023)的作品中,构建有见地的文献评论手稿的艺术是一个范例,其中概念进展与数字和表格和谐地融合在一起。回顾回顾性数据科学,很明显,被广泛引用的文章可以对《期刊引用报告》的影响因子得分产生变革性的影响,罗伯特·温伯格(Robert Weinberg)关于癌症的里程碑式研究就是一个例子(Hanahan and Weinberg, 2011)。在这里,我们的目标是突出Tuba Oz, Ajeet Kaushik和Małgorzata Kujawska在本期中做出的值得赞扬的贡献,同时重点确定不合格文献综述的特征-阻碍而不是促进进步的因素。在不合格的文献综述中遇到的障碍和障碍是多方面的。对新趋势的预测、对挑战的识别和对解决方案的探索仍然明显缺失。原始贡献没有出现在浩瀚的已有文献中,由于缺乏说明性的数字和表格,明显的差距被放大了。手稿有时呈现出一种骨架的形式,反映出试图容纳过多的参考文献,导致句子中充斥着引用。相反,有效的解决办法在于采取全面的办法。对信息来源进行细致入微的批判性评估,可以促成一场强有力的讨论,而不仅仅是对他人得出的结论进行总结。这种方法经常被忽视,但它有可能提高文章的清晰度、连贯性和逻辑性,最终吸引吸引人的读者和令人垂涎的引用。通过对关键概念和创新思想的严格分析,强调并实现整合远见卓识的关键必要性。可以利用实例来阐明这些解决方案的应用。我们提倡一种范式转换,敦促文学评论作者拥抱读者的视角。文献综述的目的不仅仅是提供一个全面的全景;它应该阐明在特定领域内概念发展的途径。通过实现这种平衡,文学评论能够吸引忠实的读者,为广泛阅读和经常引用的手稿铺平道路。前进的道路需要敏锐的分析和远见卓识的融合,塑造未来的文献综述组成。
{"title":"Mastering the craft: Creating an insightful and widely-cited literature review.","authors":"Shengwen Calvin Li","doi":"10.4252/wjsc.v15.i8.781","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.781","url":null,"abstract":"<p><p>The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz <i>et al</i> (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Małgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership and coveted citations. The critical necessity of integrating visionary insights is underscored and achieved through a rigorous analysis of pivotal concepts and innovative ideas. Examples can be harnessed to elucidate the application of these solutions. We advocate a paradigm shift, urging literature review writers to embrace the readers' perspective. A literature review's purpose extends beyond providing a comprehensive panorama; it should illuminate avenues for concept development within a specific field of interest. By achieving this balance, literature reviews stand to captivate a devoted readership, paving the way for manuscripts that are both widely read and frequently cited. The pathway forward requires a fusion of astute analysis and visionary insights, shaping the future of literature review composition.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"781-786"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f9/48/WJSC-15-781.PMC10494571.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Local mesenchymal stem cell (MSC) therapy for complex perianal fistulas (PFs) has shown considerable promise. But, the long-term safety and efficacy of MSC therapy in complex PFs remain unknown.
Aim: To explore the long-term effectiveness and safety of local MSC therapy for complex PFs.
Methods: Sources included the PubMed, EMBASE, and Cochrane Library databases. A standard meta-analysis was performed using RevMan 5.3.
Results: After screening, 6 studies met the inclusion criteria. MSC therapy was associated with an improved long-term healing rate (HR) compared with the control condition [odds ratio (OR) = 2.13; 95% confidence interval (95%CI): 1.34 to 3.38; P = 0.001]. Compared with fibrin glue (FG) therapy alone, MSC plus FG therapy was associated with an improved long-term HR (OR = 2.30; 95%CI: 1.21 to 4.36; P = 0.01). When magnetic resonance imaging was used to evaluate fistula healing, MSC therapy was found to achieve a higher long-term HR than the control treatment (OR = 2.79; 95%CI: 1.37 to 5.67; P = 0.005). There were no significant differences in long-term safety (OR = 0.77; 95%CI: 0.27 to 2.24; P = 0.64).
Conclusion: Our study indicated that local MSC therapy promotes long-term and sustained healing of complex PFs and that this method is safe.
{"title":"Up-to-date meta-analysis of long-term evaluations of mesenchymal stem cell therapy for complex perianal fistula.","authors":"Fang Cheng, Huang Zhong, Zhong Huang, Zhi Li","doi":"10.4252/wjsc.v15.i8.866","DOIUrl":"10.4252/wjsc.v15.i8.866","url":null,"abstract":"<p><strong>Background: </strong>Local mesenchymal stem cell (MSC) therapy for complex perianal fistulas (PFs) has shown considerable promise. But, the long-term safety and efficacy of MSC therapy in complex PFs remain unknown.</p><p><strong>Aim: </strong>To explore the long-term effectiveness and safety of local MSC therapy for complex PFs.</p><p><strong>Methods: </strong>Sources included the PubMed, EMBASE, and Cochrane Library databases. A standard meta-analysis was performed using RevMan 5.3.</p><p><strong>Results: </strong>After screening, 6 studies met the inclusion criteria. MSC therapy was associated with an improved long-term healing rate (HR) compared with the control condition [odds ratio (OR) = 2.13; 95% confidence interval (95%CI): 1.34 to 3.38; <i>P</i> = 0.001]. Compared with fibrin glue (FG) therapy alone, MSC plus FG therapy was associated with an improved long-term HR (OR = 2.30; 95%CI: 1.21 to 4.36; <i>P</i> = 0.01). When magnetic resonance imaging was used to evaluate fistula healing, MSC therapy was found to achieve a higher long-term HR than the control treatment (OR = 2.79; 95%CI: 1.37 to 5.67; <i>P</i> = 0.005). There were no significant differences in long-term safety (OR = 0.77; 95%CI: 0.27 to 2.24; <i>P</i> = 0.64).</p><p><strong>Conclusion: </strong>Our study indicated that local MSC therapy promotes long-term and sustained healing of complex PFs and that this method is safe.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"866-875"},"PeriodicalIF":3.6,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/04/WJSC-15-866.PMC10494567.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing significant challenges in the treatment of severe AP and contributing to increased mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that participate in various inflammatory diseases. Similarly, extracellular vesicles (EVs) secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation. Recently, the therapeutic potential of MSCs-EVs in various inflammatory diseases, including sepsis and AP, has gained increasing recognition. Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited, several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases, wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs. Consequently, we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. This paper aims to discuss this topic. However, additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury, as well as to ascertain their safety and efficacy.
{"title":"Could extracellular vesicles derived from mesenchymal stem cells be a potential therapy for acute pancreatitis-induced cardiac injury?","authors":"Long-Fei Pan, Ze-Qun Niu, Song Ren, Hong-Hong Pei, Yan-Xia Gao, Hui Feng, Jiang-Li Sun, Zheng-Liang Zhang","doi":"10.4252/wjsc.v15.i7.654","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.654","url":null,"abstract":"<p><p>Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing significant challenges in the treatment of severe AP and contributing to increased mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that participate in various inflammatory diseases. Similarly, extracellular vesicles (EVs) secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation. Recently, the therapeutic potential of MSCs-EVs in various inflammatory diseases, including sepsis and AP, has gained increasing recognition. Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited, several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases, wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs. Consequently, we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. This paper aims to discuss this topic. However, additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury, as well as to ascertain their safety and efficacy.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"654-664"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b9/dd/WJSC-15-654.PMC10401421.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor.
Aim: To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs).
Methods: hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry.
Results: Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (CDC20, CDK1, CCNA2, CDCA2), proliferation (transforming growth factor β1, GDF5, hypoxia-inducible factor 1α), migration (CXCR4, VCAM1, VEGF-A), and self-renewal (OCT4, SOX2, NANOG) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn.
Conclusion: Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.
{"title":"Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells.","authors":"Iqra Sahibdad, Shumaila Khalid, G Rasul Chaudhry, Asmat Salim, Sumreen Begum, Irfan Khan","doi":"10.4252/wjsc.v15.i7.751","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.751","url":null,"abstract":"<p><strong>Background: </strong>Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor.</p><p><strong>Aim: </strong>To determine the effect of Zn on <i>in vitro</i> growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs).</p><p><strong>Methods: </strong>hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An i<i>n vitro</i> scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry.</p><p><strong>Results: </strong>Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (<i>CDC20, CDK1, CCNA2, CDCA2</i>), proliferation (<i>transforming growth factor β1, GDF5, hypoxia-inducible factor 1α</i>), migration (<i>CXCR4, VCAM1, VEGF-A</i>), and self-renewal (<i>OCT4, SOX2, NANOG</i>) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn.</p><p><strong>Conclusion: </strong>Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"751-767"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/37/WJSC-15-751.PMC10401417.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}