Pub Date : 2024-05-01Epub Date: 2024-03-27DOI: 10.1111/wrr.13175
Thang T Nguyen, Jason G Langenfeld, Benjamin C Reinhart, Elizabeth I Lyden, Abraham S Campos, Michael C Wadman, Matthew R Jamison, Stephen A Morin, Aaron N Barksdale
The capability to produce suture material using three-dimensional (3D) printing technology may have applications in remote health facilities where rapid restocking of supplies is not an option. This is a feasibility study evaluating the usability of 3D-printed sutures in the repair of a laceration wound when compared with standard suture material. The 3D-printed suture material was manufactured using a fused deposition modelling 3D printer and nylon 3D printing filament. Study participants were tasked with performing laceration repairs on the pigs' feet, first with 3-0 WeGo nylon suture material, followed by the 3D-printed nylon suture material. Twenty-six participants were enrolled in the study. Survey data demonstrated statistical significance with how well the 3D suture material performed with knot tying, 8.9 versus 7.5 (p = 0.0018). Statistical significance was observed in the 3D-printed suture's ultimate tensile strength when compared to the 3-0 Novafil suture (274.8 vs. 199.8 MPa, p = 0.0096). The 3D-printed suture also demonstrated statistical significance in ultimate extension when compared to commercial 3-0 WeGo nylon suture (49% vs. 37%, p = 0.0215). This study was successful in using 3D printing technology to manufacture suture material and provided insight into its usability when compared to standard suture material.
{"title":"An evaluation of the usability and durability of 3D printed versus standard suture materials.","authors":"Thang T Nguyen, Jason G Langenfeld, Benjamin C Reinhart, Elizabeth I Lyden, Abraham S Campos, Michael C Wadman, Matthew R Jamison, Stephen A Morin, Aaron N Barksdale","doi":"10.1111/wrr.13175","DOIUrl":"10.1111/wrr.13175","url":null,"abstract":"<p><p>The capability to produce suture material using three-dimensional (3D) printing technology may have applications in remote health facilities where rapid restocking of supplies is not an option. This is a feasibility study evaluating the usability of 3D-printed sutures in the repair of a laceration wound when compared with standard suture material. The 3D-printed suture material was manufactured using a fused deposition modelling 3D printer and nylon 3D printing filament. Study participants were tasked with performing laceration repairs on the pigs' feet, first with 3-0 WeGo nylon suture material, followed by the 3D-printed nylon suture material. Twenty-six participants were enrolled in the study. Survey data demonstrated statistical significance with how well the 3D suture material performed with knot tying, 8.9 versus 7.5 (p = 0.0018). Statistical significance was observed in the 3D-printed suture's ultimate tensile strength when compared to the 3-0 Novafil suture (274.8 vs. 199.8 MPa, p = 0.0096). The 3D-printed suture also demonstrated statistical significance in ultimate extension when compared to commercial 3-0 WeGo nylon suture (49% vs. 37%, p = 0.0215). This study was successful in using 3D printing technology to manufacture suture material and provided insight into its usability when compared to standard suture material.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"229-233"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-10-10DOI: 10.1111/wrr.13119
Xilin Ye, Enshuo Zhang, Yaqin Huang, Feng Tian, Jiajia Xue
Wound management for acute and chronic wounds has become a serious clinical problem worldwide, placing considerable pressure on public health systems. Owing to the high-precision, adjustable pore structure, and repeatable manufacturing process, 3D-printed electrospun fibre (3DP-ESF) has attracted widespread attention for fabricating wound dressing. In addition, in comparison with 2D electrospun fibre membranes fabricated by traditional electrospinning, the 3D structures provide additional guidance on cell behaviour. In this perspective article, we first summarise the basic manufacturing principles and methods to fabricate 3DP-ESF. Then, we discuss the function of 3DP-ESF in manipulating the different stages of wound healing, including anti-bacteria, anti-inflammation, and promotion of cell migration and proliferation, as well as the construction of tissue-engineered scaffolds. In the end, we provide the current challenge faced by 3DP-ESF in the application of skin wound regeneration and its promising future directions.
{"title":"3D-printed electrospun fibres for wound healing.","authors":"Xilin Ye, Enshuo Zhang, Yaqin Huang, Feng Tian, Jiajia Xue","doi":"10.1111/wrr.13119","DOIUrl":"10.1111/wrr.13119","url":null,"abstract":"<p><p>Wound management for acute and chronic wounds has become a serious clinical problem worldwide, placing considerable pressure on public health systems. Owing to the high-precision, adjustable pore structure, and repeatable manufacturing process, 3D-printed electrospun fibre (3DP-ESF) has attracted widespread attention for fabricating wound dressing. In addition, in comparison with 2D electrospun fibre membranes fabricated by traditional electrospinning, the 3D structures provide additional guidance on cell behaviour. In this perspective article, we first summarise the basic manufacturing principles and methods to fabricate 3DP-ESF. Then, we discuss the function of 3DP-ESF in manipulating the different stages of wound healing, including anti-bacteria, anti-inflammation, and promotion of cell migration and proliferation, as well as the construction of tissue-engineered scaffolds. In the end, we provide the current challenge faced by 3DP-ESF in the application of skin wound regeneration and its promising future directions.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"195-207"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41183782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-14DOI: 10.1111/wrr.13158
Yu Li, Haiting Huang, Cuijin Gu, Wenyi Huang, Xianxian Chen, Xiaoting Lu, Aijia You, Sen Ye, Jun Zhong, Yao Zhao, Yu Yan, Chun Li
Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/β-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/β-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.
褥疮(PU)是一个难以解决的世界性难题,因为相关的炎症反应、局部缺氧和反复缺血/再灌注,给患者造成了巨大的痛苦和经济负担。传统中药龟板散可治疗皮肤创伤,但其成分复杂,使用不便。在此,我们将胆固醇肉豆蔻酸酯(S8)与具有消炎抗菌作用的小檗碱(BBR)作为药物,以羟丙基甲基纤维素和聚乙烯吡咯烷酮 K30 为载体,构建了一种新型成膜聚合物溶液(S8 + BBR FFPS),全面研究了其对 PU 的修复作用,并在大鼠 PU 模型中探索了其潜在机制。结果表明,S8 + BBR FFPS 在 PU 愈合过程中可抑制过度炎症反应,促进上皮重建,促进毛囊生长,这可能与 S8 + BBR FFPS 激活 Wnt/β-catenin 信号通路,介导毛囊干细胞增殖,维持皮肤稳态有关。因此,S8 + BBR FFPS 可能是治疗慢性皮肤损伤的潜在候选药物,它与 Wnt/β-catenin 信号通路的关联可能为指导设计用于慢性伤口修复的生物材料伤口敷料提供了新思路。
{"title":"Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway.","authors":"Yu Li, Haiting Huang, Cuijin Gu, Wenyi Huang, Xianxian Chen, Xiaoting Lu, Aijia You, Sen Ye, Jun Zhong, Yao Zhao, Yu Yan, Chun Li","doi":"10.1111/wrr.13158","DOIUrl":"10.1111/wrr.13158","url":null,"abstract":"<p><p>Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/β-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/β-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"279-291"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-01-02DOI: 10.1111/wrr.13137
Allison N Ramey-Ward, Howard P Walthall, Shakesia Smith, Thomas H Barrows
A wide variety of biomaterials has been developed to assist in wound healing, including acellular animal and human-derived protein matrices. However, millions of patients worldwide still suffer from non-healing chronic wounds, demonstrating a need for further innovation in wound care. To address this need, a novel biomaterial, the human keratin matrix (HKM), was developed, characterised, and tested in vitro and in vivo. HKM was found to be degradation-resistant, and a proteomics analysis showed it to be greater than 99% human keratin proteins. PCR revealed adult human epidermal keratinocytes (HEKa) grown in contact with HKM showed increased gene expression of keratinocyte activations markers such as Epidermal Growth Factor (EGF). Additionally, a cytokine microarray demonstrated culture on HKM increased the release of cytokines involved in wound inflammatory modulation by both HEKa cells and adult human dermal fibroblasts (HDFa). Finally, in a murine chronic wound model, full-thickness wounds treated weekly with HKM were smaller through the healing process than those treated with human amniotic membrane (AM), bovine dermis (BD), or porcine decellularized small intestinal submucosa (SIS). HKM-treated wounds also closed significantly faster than AM- and SIS-treated wounds. These data suggest that HKM is an effective novel treatment for chronic wounds.
{"title":"Human keratin matrices promote wound healing by modulating skin cell expression of cytokines and growth factors.","authors":"Allison N Ramey-Ward, Howard P Walthall, Shakesia Smith, Thomas H Barrows","doi":"10.1111/wrr.13137","DOIUrl":"10.1111/wrr.13137","url":null,"abstract":"<p><p>A wide variety of biomaterials has been developed to assist in wound healing, including acellular animal and human-derived protein matrices. However, millions of patients worldwide still suffer from non-healing chronic wounds, demonstrating a need for further innovation in wound care. To address this need, a novel biomaterial, the human keratin matrix (HKM), was developed, characterised, and tested in vitro and in vivo. HKM was found to be degradation-resistant, and a proteomics analysis showed it to be greater than 99% human keratin proteins. PCR revealed adult human epidermal keratinocytes (HEKa) grown in contact with HKM showed increased gene expression of keratinocyte activations markers such as Epidermal Growth Factor (EGF). Additionally, a cytokine microarray demonstrated culture on HKM increased the release of cytokines involved in wound inflammatory modulation by both HEKa cells and adult human dermal fibroblasts (HDFa). Finally, in a murine chronic wound model, full-thickness wounds treated weekly with HKM were smaller through the healing process than those treated with human amniotic membrane (AM), bovine dermis (BD), or porcine decellularized small intestinal submucosa (SIS). HKM-treated wounds also closed significantly faster than AM- and SIS-treated wounds. These data suggest that HKM is an effective novel treatment for chronic wounds.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"257-267"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138804471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-09DOI: 10.1111/wrr.13168
Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown
Cells integrate many mechanical and chemical cues to drive cell signalling responses. Because of the complex nature and interdependency of alterations in extracellular matrix (ECM) composition, ligand density, mechanics, and cellular responses it is difficult to tease out individual and combinatorial contributions of these various factors in driving cell behavior in homeostasis and disease. Tuning of material viscous and elastic properties, and ligand densities, in combinatorial fashions would enhance our understanding of how cells process complex signals. For example, it is known that increased ECM mechanics and transforming growth factor beta (TGF-β) receptor (TGF-β-R) spacing/clustering independently drive TGF-β signalling and associated myofibroblastic differentiation. However, it remains unknown how these inputs orthogonally contribute to cellular outcomes. Here, we describe the development of a novel material platform that combines microgel thin films with controllable viscoelastic properties and DNA origami to probe how viscoelastic properties and nanoscale spacing of TGF-β-Rs contribute to TGF-β signalling and myofibroblastic differentiation. We found that highly viscous materials with non-fixed TGF-β-R spacing promoted increased TGF-β signalling and myofibroblastic differentiation. This is likely due to the ability of cells to better cluster receptors on these surfaces. These results provide insight into the contribution of substrate properties and receptor localisation on downstream signalling. Future studies allow for exploration into other receptor-mediated processes.
{"title":"Utilizing multiscale engineered biomaterials to examine TGF-β-mediated myofibroblastic differentiation.","authors":"Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown","doi":"10.1111/wrr.13168","DOIUrl":"10.1111/wrr.13168","url":null,"abstract":"<p><p>Cells integrate many mechanical and chemical cues to drive cell signalling responses. Because of the complex nature and interdependency of alterations in extracellular matrix (ECM) composition, ligand density, mechanics, and cellular responses it is difficult to tease out individual and combinatorial contributions of these various factors in driving cell behavior in homeostasis and disease. Tuning of material viscous and elastic properties, and ligand densities, in combinatorial fashions would enhance our understanding of how cells process complex signals. For example, it is known that increased ECM mechanics and transforming growth factor beta (TGF-β) receptor (TGF-β-R) spacing/clustering independently drive TGF-β signalling and associated myofibroblastic differentiation. However, it remains unknown how these inputs orthogonally contribute to cellular outcomes. Here, we describe the development of a novel material platform that combines microgel thin films with controllable viscoelastic properties and DNA origami to probe how viscoelastic properties and nanoscale spacing of TGF-β-Rs contribute to TGF-β signalling and myofibroblastic differentiation. We found that highly viscous materials with non-fixed TGF-β-R spacing promoted increased TGF-β signalling and myofibroblastic differentiation. This is likely due to the ability of cells to better cluster receptors on these surfaces. These results provide insight into the contribution of substrate properties and receptor localisation on downstream signalling. Future studies allow for exploration into other receptor-mediated processes.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"234-245"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-12-04DOI: 10.1111/wrr.13123
K Benabdderrahmane, J Stirnemann, S Ramtani, C Falentin-Daudré
Myelomeningocele (MMC) is a congenital defect of the spine characterised by meningeal and spinal cord protrusion through the open vertebral arches. This defect causes progressive prenatal damage of the spinal cord, leading to lifelong handicap. Although mid-trimester surgical repair may reduce part of the handicap, an earlier and less invasive approach would further improve the prognosis, possibly minimising maternal and foetal risks. Several studies have proposed an alternative approach to surgical repair by covering the defect with a patch and protecting the exposed neural tissue. Our study aims to elaborate on a waterproof and biodegradable bioactive patch for MMC prenatal foetal repair. We developed a double-layer patch that can provide a waterproof coverage for the spinal cord, with a bioactive side, conducive to cell proliferation, and an antiadhesive side to avoid its attachment to the medulla.
{"title":"Development of a double-layer electrospun patch as a potential prenatal treatment for myelomeningocele.","authors":"K Benabdderrahmane, J Stirnemann, S Ramtani, C Falentin-Daudré","doi":"10.1111/wrr.13123","DOIUrl":"10.1111/wrr.13123","url":null,"abstract":"<p><p>Myelomeningocele (MMC) is a congenital defect of the spine characterised by meningeal and spinal cord protrusion through the open vertebral arches. This defect causes progressive prenatal damage of the spinal cord, leading to lifelong handicap. Although mid-trimester surgical repair may reduce part of the handicap, an earlier and less invasive approach would further improve the prognosis, possibly minimising maternal and foetal risks. Several studies have proposed an alternative approach to surgical repair by covering the defect with a patch and protecting the exposed neural tissue. Our study aims to elaborate on a waterproof and biodegradable bioactive patch for MMC prenatal foetal repair. We developed a double-layer patch that can provide a waterproof coverage for the spinal cord, with a bioactive side, conducive to cell proliferation, and an antiadhesive side to avoid its attachment to the medulla.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"246-256"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2023-10-21DOI: 10.1111/wrr.13122
Wuliang Diao, Peiting Li, Xilin Jiang, Jianda Zhou, Songbo Yang
Chronic wounds have become the leading cause of death, particularly among diabetic patients. Chronic wounds affect ~6.5 million patients each year, according to statistics, and wound care and management incur significant financial costs. The rising prevalence of chronic wounds, combined with the limitations of current treatments, necessitates the development of new and innovative approaches to accelerate wound healing. Copper has been extensively studied for its antibacterial and anti-inflammatory activities. Copper in its nanoparticle form could have better biological properties and many applications in health care.
{"title":"Progress in copper-based materials for wound healing.","authors":"Wuliang Diao, Peiting Li, Xilin Jiang, Jianda Zhou, Songbo Yang","doi":"10.1111/wrr.13122","DOIUrl":"10.1111/wrr.13122","url":null,"abstract":"<p><p>Chronic wounds have become the leading cause of death, particularly among diabetic patients. Chronic wounds affect ~6.5 million patients each year, according to statistics, and wound care and management incur significant financial costs. The rising prevalence of chronic wounds, combined with the limitations of current treatments, necessitates the development of new and innovative approaches to accelerate wound healing. Copper has been extensively studied for its antibacterial and anti-inflammatory activities. Copper in its nanoparticle form could have better biological properties and many applications in health care.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"314-322"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-01-04DOI: 10.1111/wrr.13145
Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang
Dysregulation of iron metabolism has been associated with impaired chronic wound healing. However, changes in iron metabolism have yet to be reported in pressure injuries, a type of chronic wound. In this study, we aimed to investigate changes in iron metabolism and associated regulatory mechanisms in pressure injuries. We collected tissue biopsies and data from 20 consenting stage IV-pressure injuries patients and 5 non-pressure injuries patients hospitalised at the Affiliated Hospital of Qingdao University between March 2021 and June 2021. In addition, we measured the iron content by inductively coupled plasma mass spectrometry and Prussian blue staining in deep tissue pressure injury mouse models. An Enzyme-linked immune sorbent assay measured the expression of ferritin, ferroportin-1 and transferrin. Immunofluorescence staining, high-throughput transcriptome sequencing, Western blot and RT-qPCR further analysed the fundamental mechanisms regulating iron metabolism. In this study, we observed numerous inflammatory cells infiltrating the marginal tissues of stage IV pressure injury patients and in deep tissue pressure injury models. The expression levels of pro-inflammatory factors, such as inducible nitric oxide synthase and interleukin-6, were significantly increased (p < 0.05). The iron level was proportional to the degree of progression, with the most significant change appearing on the third day in deep tissue pressure injury models (p < 0.05). Enzyme-linked immune sorbent assay results suggested abnormal gene expression was related to iron metabolism, including a substantial increase in ferritin and a significant decrease in the expression of ferroportin-1 (p < 0.05). In addition, immunofluorescence staining and Western blot showed that the expression of macrophage membrane receptor CD163 was abnormally elevated (p < 0.05). Both high-throughput transcriptome sequencing and qRT-PCR results suggested aberrant expression of the CD163/Homx-1-mediated signalling pathway. Dysfunctional iron metabolism was suggested to be related to the aberrant CD163/Homx-1 signalling pathway in deep tissue pressure injury models.
{"title":"Dysfunctional iron metabolism in pressure injuries is related to aberrant CD163 and Homx-1 signal transduction.","authors":"Ju Zhang, Hui Shan, Jinglin Guo, Xiaoying Wang, Weiwei Wang","doi":"10.1111/wrr.13145","DOIUrl":"10.1111/wrr.13145","url":null,"abstract":"<p><p>Dysregulation of iron metabolism has been associated with impaired chronic wound healing. However, changes in iron metabolism have yet to be reported in pressure injuries, a type of chronic wound. In this study, we aimed to investigate changes in iron metabolism and associated regulatory mechanisms in pressure injuries. We collected tissue biopsies and data from 20 consenting stage IV-pressure injuries patients and 5 non-pressure injuries patients hospitalised at the Affiliated Hospital of Qingdao University between March 2021 and June 2021. In addition, we measured the iron content by inductively coupled plasma mass spectrometry and Prussian blue staining in deep tissue pressure injury mouse models. An Enzyme-linked immune sorbent assay measured the expression of ferritin, ferroportin-1 and transferrin. Immunofluorescence staining, high-throughput transcriptome sequencing, Western blot and RT-qPCR further analysed the fundamental mechanisms regulating iron metabolism. In this study, we observed numerous inflammatory cells infiltrating the marginal tissues of stage IV pressure injury patients and in deep tissue pressure injury models. The expression levels of pro-inflammatory factors, such as inducible nitric oxide synthase and interleukin-6, were significantly increased (p < 0.05). The iron level was proportional to the degree of progression, with the most significant change appearing on the third day in deep tissue pressure injury models (p < 0.05). Enzyme-linked immune sorbent assay results suggested abnormal gene expression was related to iron metabolism, including a substantial increase in ferritin and a significant decrease in the expression of ferroportin-1 (p < 0.05). In addition, immunofluorescence staining and Western blot showed that the expression of macrophage membrane receptor CD163 was abnormally elevated (p < 0.05). Both high-throughput transcriptome sequencing and qRT-PCR results suggested aberrant expression of the CD163/Homx-1-mediated signalling pathway. Dysfunctional iron metabolism was suggested to be related to the aberrant CD163/Homx-1 signalling pathway in deep tissue pressure injury models.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"268-278"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-06DOI: 10.1111/wrr.13163
Farzaneh Jabbari, Valiollah Babaeipour
Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.
烧伤伤口再生是一个复杂的过程,面临着许多严峻的挑战,如伤口愈合缓慢、继发感染和炎症。因此,利用适当的生物材料来加速和引导伤口愈合过程至关重要。细菌纤维素(BC)是一种由某些细菌合成的天然聚合物,由于其独特的性能,包括优异的物理化学和机械性能、简单的提纯过程、与细胞外基质相似的三维(3D)网络结构、高纯度、高持水性以及对气体和液体的显著渗透性,它在伤口愈合方面的应用已引起广泛关注。BC 缺乏抗菌活性,这大大限制了它在生物医学和组织工程方面的应用,但添加抗菌剂后,它在组织再生应用方面的性能明显提高。烧伤伤口愈合是一个复杂而持久的过程。在伤口治疗中使用生物材料表明,它们可以令人满意地加速伤口愈合。本综述旨在阐述以 BC 为基础的结构作为治疗烧伤创面最广泛应用的现代创面敷料之一的重要性。此外,还讨论了各种药物、制剂、细胞和生物大分子与 BC 的结合,以扩大其在烧伤再生中的应用。最后,探讨了基于 BC 的烧伤创面修复结构所面临的主要挑战和未来发展方向。我们使用了 PubMed/MEDLINE、Science Direct、Scopus 和 Google Scholar 四个最流行的搜索引擎来帮助我们查找相关论文。最常使用的关键词是细菌纤维素、BC 基生物复合材料、伤口愈合、烧伤创面和血管移植。
{"title":"Bacterial cellulose as an ideal potential treatment for burn wounds: A comprehensive review.","authors":"Farzaneh Jabbari, Valiollah Babaeipour","doi":"10.1111/wrr.13163","DOIUrl":"10.1111/wrr.13163","url":null,"abstract":"<p><p>Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"323-339"},"PeriodicalIF":3.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy Campbell, Jaewon Bae, Maria Hein, Stephen L. Hillis, Olivia N. Rebeck, Barbara A. Rakel, Elizabeth Grice, Sue E. Gardner
Wound dressing changes are essential procedures for wound management. However, ~50% of patients experience severe pain during these procedures despite the availability of analgesic medications, indicating a need for novel therapeutics that address underlying causes of pain. Along with other clinical factors, wound pathogens and inflammatory immune responses have previously been implicated in wound pain. To test whether these factors could contribute to severe pain during wound dressing changes, we conducted an exploratory, cross‐sectional analysis of patient‐reported pain, inflammatory immune responses, and wound microbiome composition in 445 wounds at the time of a study dressing change. We profiled the bacterial composition of 406 wounds using 16S ribosomal RNA amplicon sequencing and quantified gene expression of 13 inflammatory markers in wound fluid using quantitative real‐time polymerase chain reaction (qPCR). Neither inflammatory gene expression nor clinically observed inflammation were associated with severe pain, but Corynebacterium and Streptococcus were of lower relative abundance in wounds of patients reporting severe pain than those reporting little or no pain. Wound microbiome composition differed by wound location, and correlated with six of the inflammatory markers, including complement receptor C5AR1, pro‐inflammatory cytokine interleukin (IL)1β, chemokine IL‐8, matrix metalloproteinase MMP2, and the antimicrobial peptide encoding cathelicidin antimicrobial peptide. Interestingly, we found a relationship between the wound microbiome and vacuum‐assisted wound closure (VAC). These findings identify preliminary, associative relationships between wound microbiota and host factors which motivate future investigation into the directional relationships between wound care pain, wound closure technologies, and the wound microbiome.
{"title":"The heterogeneous wound microbiome varies with wound care pain, dressing type, and inflammatory gene expression","authors":"Amy Campbell, Jaewon Bae, Maria Hein, Stephen L. Hillis, Olivia N. Rebeck, Barbara A. Rakel, Elizabeth Grice, Sue E. Gardner","doi":"10.1111/wrr.13184","DOIUrl":"https://doi.org/10.1111/wrr.13184","url":null,"abstract":"Wound dressing changes are essential procedures for wound management. However, ~50% of patients experience severe pain during these procedures despite the availability of analgesic medications, indicating a need for novel therapeutics that address underlying causes of pain. Along with other clinical factors, wound pathogens and inflammatory immune responses have previously been implicated in wound pain. To test whether these factors could contribute to severe pain during wound dressing changes, we conducted an exploratory, cross‐sectional analysis of patient‐reported pain, inflammatory immune responses, and wound microbiome composition in 445 wounds at the time of a study dressing change. We profiled the bacterial composition of 406 wounds using 16S ribosomal RNA amplicon sequencing and quantified gene expression of 13 inflammatory markers in wound fluid using quantitative real‐time polymerase chain reaction (qPCR). Neither inflammatory gene expression nor clinically observed inflammation were associated with severe pain, but <jats:italic>Corynebacterium</jats:italic> and <jats:italic>Streptococcus</jats:italic> were of lower relative abundance in wounds of patients reporting severe pain than those reporting little or no pain. Wound microbiome composition differed by wound location, and correlated with six of the inflammatory markers, including complement receptor C5AR1, pro‐inflammatory cytokine interleukin (IL)1β, chemokine IL‐8, matrix metalloproteinase MMP2, and the antimicrobial peptide encoding cathelicidin antimicrobial peptide. Interestingly, we found a relationship between the wound microbiome and vacuum‐assisted wound closure (VAC). These findings identify preliminary, associative relationships between wound microbiota and host factors which motivate future investigation into the directional relationships between wound care pain, wound closure technologies, and the wound microbiome.","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":"27 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}