Pub Date : 2023-10-01Epub Date: 2023-08-31DOI: 10.1002/yea.3897
Thomas A Dixon, Roy S K Walker, Isak S Pretorius
Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.
{"title":"Visioning synthetic futures for yeast research within the context of current global techno-political trends.","authors":"Thomas A Dixon, Roy S K Walker, Isak S Pretorius","doi":"10.1002/yea.3897","DOIUrl":"10.1002/yea.3897","url":null,"abstract":"<p><p>Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"443-456"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-31DOI: 10.1002/yea.3896
Katasha S McCullough, Yi Yang, Melodie A Lindsay, Neill Culley, Rebecca C Deed
Pinot noir grapes require careful management in the winery to prevent loss of color density and promote aging stability. Winemaking with flocculent yeast has been shown to increase color density, which is desirable to consumers. This research explored interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine color. Sedimentation rates of six non-Saccharomyces species and two Saccharomyces cerevisiae strains were assayed individually and in combination. The most flocculent pairings, Torulaspora delbrueckii BIODIVA with S. cerevisiae RC212 or VL3, were used to ferment 20 L Pinot noir must. Sequential fermentations produced wines with greater color density at 420 + 520 nm, confirmed by sensory panel. Total and monomeric anthocyanin concentrations were decreased in sequentially fermented wines, despite being the main source of red wine color. BIODIVA adsorbed more anthocyanins than S. cerevisiae, indicating a greater number of cell wall mannoproteins in flocculent yeast, that could then result in a later release of anthocyanins and enhance copigment formation in red wines.
{"title":"Sequential inoculation of flocculent Torulaspora delbrueckii with Saccharomyces cerevisiae increases color density of Pinot Noir wines.","authors":"Katasha S McCullough, Yi Yang, Melodie A Lindsay, Neill Culley, Rebecca C Deed","doi":"10.1002/yea.3896","DOIUrl":"10.1002/yea.3896","url":null,"abstract":"<p><p>Pinot noir grapes require careful management in the winery to prevent loss of color density and promote aging stability. Winemaking with flocculent yeast has been shown to increase color density, which is desirable to consumers. This research explored interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine color. Sedimentation rates of six non-Saccharomyces species and two Saccharomyces cerevisiae strains were assayed individually and in combination. The most flocculent pairings, Torulaspora delbrueckii BIODIVA with S. cerevisiae RC212 or VL3, were used to ferment 20 L Pinot noir must. Sequential fermentations produced wines with greater color density at 420 + 520 nm, confirmed by sensory panel. Total and monomeric anthocyanin concentrations were decreased in sequentially fermented wines, despite being the main source of red wine color. BIODIVA adsorbed more anthocyanins than S. cerevisiae, indicating a greater number of cell wall mannoproteins in flocculent yeast, that could then result in a later release of anthocyanins and enhance copigment formation in red wines.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"493-505"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10122144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-18DOI: 10.1002/yea.3894
Melisa Gonzalez-Flores, Ana V Delfino, María E Rodríguez, Christian A Lopes
Patagonia (Argentina and Chile) harbors the highest Saccharomyces eubayanus genomic diversity and its widest predominance in natural environments. In this work, S. eubayanus was isolated for the first time from a fermentative environment. This species was found dominating both a traditional apple chicha fermentation as well as feral apple trees in the Andean region of Aluminé (Argentina). S. eubayanus was the only Saccharomyces species found in the isolation substrates, although it coexisted with other non-Saccharomyces species. The absence of strong fermentative competitors of the Saccharomyces genus (like Saccharomyces uvarum or Saccharomyces cerevisiae) in the feral apples could promote the development and implantation of S. eubayanus in a spontaneous apple must fermentation. Phylogeographic analyses revealed a high intraspecific diversity in S. eubayanus, enabling the characterization of strains belonging to the genomic subpopulations PA1, PA2, and PB1 according to the sequences obtained for the intFR gene region. This result evidence that the studied sampling area represents a natural habitat for the species. Being a novel finding, studying the causes that allowed this species to prosper in a fermentative environment becomes essential. Hence, the physiological profile of the new isolates, including their ability to grow at different temperature, nitrogen, and ethanol concentrations was evaluated in comparison with a set of S. eubayanus strains previously isolated from natural environment and representing different genomic subpopulations. Greater physiological diversity was evidenced when strains isolated from both natural and fermentative environments were analyzed overall. Furthermore, no direct relationship between genomic population and physiological behavior was observed; on the opposite, strains appeared to exhibit similar behavior, primarily grouped by isolation origin.
{"title":"Presence of Saccharomyces eubayanus in fermentative environments reveals a new adaptive scenario in Patagonia.","authors":"Melisa Gonzalez-Flores, Ana V Delfino, María E Rodríguez, Christian A Lopes","doi":"10.1002/yea.3894","DOIUrl":"10.1002/yea.3894","url":null,"abstract":"<p><p>Patagonia (Argentina and Chile) harbors the highest Saccharomyces eubayanus genomic diversity and its widest predominance in natural environments. In this work, S. eubayanus was isolated for the first time from a fermentative environment. This species was found dominating both a traditional apple chicha fermentation as well as feral apple trees in the Andean region of Aluminé (Argentina). S. eubayanus was the only Saccharomyces species found in the isolation substrates, although it coexisted with other non-Saccharomyces species. The absence of strong fermentative competitors of the Saccharomyces genus (like Saccharomyces uvarum or Saccharomyces cerevisiae) in the feral apples could promote the development and implantation of S. eubayanus in a spontaneous apple must fermentation. Phylogeographic analyses revealed a high intraspecific diversity in S. eubayanus, enabling the characterization of strains belonging to the genomic subpopulations PA1, PA2, and PB1 according to the sequences obtained for the intFR gene region. This result evidence that the studied sampling area represents a natural habitat for the species. Being a novel finding, studying the causes that allowed this species to prosper in a fermentative environment becomes essential. Hence, the physiological profile of the new isolates, including their ability to grow at different temperature, nitrogen, and ethanol concentrations was evaluated in comparison with a set of S. eubayanus strains previously isolated from natural environment and representing different genomic subpopulations. Greater physiological diversity was evidenced when strains isolated from both natural and fermentative environments were analyzed overall. Furthermore, no direct relationship between genomic population and physiological behavior was observed; on the opposite, strains appeared to exhibit similar behavior, primarily grouped by isolation origin.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"476-492"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10024148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.
{"title":"Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol.","authors":"Bilal Agirman, Erdem Carsanba, Luca Settanni, Huseyin Erten","doi":"10.1002/yea.3895","DOIUrl":"10.1002/yea.3895","url":null,"abstract":"<p><p>Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"457-475"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10483824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to \"Experimental approaches to study evolutionary cell biology using yeasts\".","authors":"","doi":"10.1002/yea.3889","DOIUrl":"https://doi.org/10.1002/yea.3889","url":null,"abstract":"","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"437"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-07-19DOI: 10.1002/yea.3888
Hosam Elhalis, Julian Cox, Jian Zhao
During wet fermentation, mucilage layers in coffee cherries must be removed completely. To explain mucilage degradation, several controversial hypotheses have been proposed. The aim of this work was to improve our understanding of the kinetics of mucilage breakdown. Pulped coffee beans were wet fermented with seven different treatments for 36 h. Endogenous bacteria and yeasts are selectively suppressed, and pectinases or lactic acid are added. They also involve maintaining the beans at pH 7 throughout fermentation and using spontaneous fermentation without additives as a control. During spontaneous fermentation, yeast and lactic acid bacteria were detected and significantly increased to 5.5 log colony-forming units (CFU)/mL and 5.2 log CFU/mL, respectively. In the first 12 h of fermentation, there was a significant degree of endogenous pectinolytic activity, which resulted in partly destroyed beans in the absence of microorganisms. By adding pectinase and lactic acid to the fermentation mass, the breakdown process was accelerated in less than 8 h. When yeast was present throughout the fermentation, complete degradation was achieved. Bacteria played no critical role in the degradation. Klebsiella pneumoniae and Erwinia soli were found in a lower population and showed weaker pectinolytic activities compared to Hanseniaspora uvarum and Pichia kudriavzevii. During wet fermentation, mucilage degradation appears to be mediated by endogenous enzymes at the early stage, whereas microbial contributions, mainly yeasts, occur subsequently. H. uvarum and P. kudriavzevii may be promising candidates to be tested in future studies as coffee starter cultures to better control the mucilage degradation process.
{"title":"Yeasts are essential for mucilage degradation of coffee beans during wet fermentation.","authors":"Hosam Elhalis, Julian Cox, Jian Zhao","doi":"10.1002/yea.3888","DOIUrl":"10.1002/yea.3888","url":null,"abstract":"<p><p>During wet fermentation, mucilage layers in coffee cherries must be removed completely. To explain mucilage degradation, several controversial hypotheses have been proposed. The aim of this work was to improve our understanding of the kinetics of mucilage breakdown. Pulped coffee beans were wet fermented with seven different treatments for 36 h. Endogenous bacteria and yeasts are selectively suppressed, and pectinases or lactic acid are added. They also involve maintaining the beans at pH 7 throughout fermentation and using spontaneous fermentation without additives as a control. During spontaneous fermentation, yeast and lactic acid bacteria were detected and significantly increased to 5.5 log colony-forming units (CFU)/mL and 5.2 log CFU/mL, respectively. In the first 12 h of fermentation, there was a significant degree of endogenous pectinolytic activity, which resulted in partly destroyed beans in the absence of microorganisms. By adding pectinase and lactic acid to the fermentation mass, the breakdown process was accelerated in less than 8 h. When yeast was present throughout the fermentation, complete degradation was achieved. Bacteria played no critical role in the degradation. Klebsiella pneumoniae and Erwinia soli were found in a lower population and showed weaker pectinolytic activities compared to Hanseniaspora uvarum and Pichia kudriavzevii. During wet fermentation, mucilage degradation appears to be mediated by endogenous enzymes at the early stage, whereas microbial contributions, mainly yeasts, occur subsequently. H. uvarum and P. kudriavzevii may be promising candidates to be tested in future studies as coffee starter cultures to better control the mucilage degradation process.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"425-436"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10192435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-06-05DOI: 10.1002/yea.3884
Philipp Akentyev, Daria Sokolova, Aleksei Korzhenkov, Irek Gubaidullin, Dmitry Kozlov
The yeast strain Komagataella kurtzmanii VKPM Y-727 shows a significant defect in sorbitol utilization compared to closely related yeast K. phaffii (including strains formerly identified as Pichia pastoris). Our aim was to investigate the factors that determine the phenotype of the wild-type strain and to obtain a K. kurtzmanii strain with an improved ability to utilize sorbitol. We sequenced and annotated the genome of K. kurtzmanii VKPM Y-727 and compared it with that of K. phaffii GS115. Five K. phaffii GS115 genes that might be involved in sorbitol metabolism were selected and transferred into K. kurtzmanii Y-727. The transfer of the modified SOR1 gene resulted in an increased growth rate of K. kurtzmanii in sorbitol, despite the fact that Y-727 already contains its own SOR1 gene without any apparent mutations. The enzymes encoded by the SOR1 genes were analyzed in vitro and found to have similar properties. Differences in promoter activity were assessed using lacZ as a reporter gene, and the PSDH727 (promoter of SOR1 (SDH727) from K. kurtzmanii Y-727) promoter was shown to be 1.5-2.0 times weaker than PSDH115 (promoter of SOR1 (SDH115) from K. phaffii GS115). Moreover, both promoters were less active in K. kurtzmanii than in K. phaffii when evaluated in cells grown in synthetic complete media with glucose or sorbitol. Thus, SOR1 gene expression was identified as a bottleneck in sorbitol metabolism in K. kurtzmanii. Also, the positive effect of additional modified SOR1 gene copies was observed in both yeasts, as K. kurtzmanii and K. phaffii could grow on synthetic complete media with sorbitol three times faster than the original K. phaffii GS115 strain.
{"title":"Expression level of SOR1 is a bottleneck for efficient sorbitol utilization by yeast Komagataella kurtzmanii.","authors":"Philipp Akentyev, Daria Sokolova, Aleksei Korzhenkov, Irek Gubaidullin, Dmitry Kozlov","doi":"10.1002/yea.3884","DOIUrl":"10.1002/yea.3884","url":null,"abstract":"<p><p>The yeast strain Komagataella kurtzmanii VKPM Y-727 shows a significant defect in sorbitol utilization compared to closely related yeast K. phaffii (including strains formerly identified as Pichia pastoris). Our aim was to investigate the factors that determine the phenotype of the wild-type strain and to obtain a K. kurtzmanii strain with an improved ability to utilize sorbitol. We sequenced and annotated the genome of K. kurtzmanii VKPM Y-727 and compared it with that of K. phaffii GS115. Five K. phaffii GS115 genes that might be involved in sorbitol metabolism were selected and transferred into K. kurtzmanii Y-727. The transfer of the modified SOR1 gene resulted in an increased growth rate of K. kurtzmanii in sorbitol, despite the fact that Y-727 already contains its own SOR1 gene without any apparent mutations. The enzymes encoded by the SOR1 genes were analyzed in vitro and found to have similar properties. Differences in promoter activity were assessed using lacZ as a reporter gene, and the P<sub>SDH727</sub> (promoter of SOR1 (SDH727) from K. kurtzmanii Y-727) promoter was shown to be 1.5-2.0 times weaker than P<sub>SDH115</sub> (promoter of SOR1 (SDH115) from K. phaffii GS115). Moreover, both promoters were less active in K. kurtzmanii than in K. phaffii when evaluated in cells grown in synthetic complete media with glucose or sorbitol. Thus, SOR1 gene expression was identified as a bottleneck in sorbitol metabolism in K. kurtzmanii. Also, the positive effect of additional modified SOR1 gene copies was observed in both yeasts, as K. kurtzmanii and K. phaffii could grow on synthetic complete media with sorbitol three times faster than the original K. phaffii GS115 strain.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"414-424"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10545104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-08-01DOI: 10.1002/yea.3890
David J Krause
Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.
{"title":"The evolution of anaerobic growth in Saccharomycotina yeasts.","authors":"David J Krause","doi":"10.1002/yea.3890","DOIUrl":"10.1002/yea.3890","url":null,"abstract":"<p><p>Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"395-400"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10546632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helicobacter pylori are transmissible from person to person and among family members. Mother-to-child transmission is the main intrafamilial route of H. pylori transmission. However, how it transmits from mother to child is still being determined. Vaginal yeast often transmits to neonates during delivery. Therefore, H. pylori hosted in yeast might follow the same transmission route. This study aimed to detect intracellular H. pylori in vaginal and fecal yeasts isolates and explore the role of yeast in H. pylori transmission. Yeast was isolated from the mothers' vaginal discharge and neonates' feces and identified by internal transcribed spacer (ITS) sequencing. H. pylori 16S rRNA and antigen were detected in yeast isolates by polymerase chain reaction and direct immunofluorescence assay. Genetic relationships of Candida strains isolated from seven mothers and their corresponding neonates were determined by random amplified polymorphic DNA (RAPD) fingerprinting and ITS alignment. The Candida isolates from four mother-neonate pairs had identical RAPD patterns and highly homologous ITS sequences. The current study showed H. pylori could be sheltered within yeast colonizing the vagina, and fecal yeast from neonates is genetically related to the vaginal yeast from their mothers. Thus, vaginal yeast presents a potential reservoir of H. pylori and plays a vital role in the transmission from mother to neonate.
{"title":"Intracellular presence and genetic relationship of Helicobacter pylori within neonates' fecal yeasts and their mothers' vaginal yeasts.","authors":"Tingxiu Yang, Yuanyuan Zhang, Hua Zhang, Xiaojuan Wu, Jianchao Sun, Dengxiong Hua, Ke Pan, Qi Liu, Guzhen Cui, Zhenghong Chen","doi":"10.1002/yea.3891","DOIUrl":"10.1002/yea.3891","url":null,"abstract":"<p><p>Helicobacter pylori are transmissible from person to person and among family members. Mother-to-child transmission is the main intrafamilial route of H. pylori transmission. However, how it transmits from mother to child is still being determined. Vaginal yeast often transmits to neonates during delivery. Therefore, H. pylori hosted in yeast might follow the same transmission route. This study aimed to detect intracellular H. pylori in vaginal and fecal yeasts isolates and explore the role of yeast in H. pylori transmission. Yeast was isolated from the mothers' vaginal discharge and neonates' feces and identified by internal transcribed spacer (ITS) sequencing. H. pylori 16S rRNA and antigen were detected in yeast isolates by polymerase chain reaction and direct immunofluorescence assay. Genetic relationships of Candida strains isolated from seven mothers and their corresponding neonates were determined by random amplified polymorphic DNA (RAPD) fingerprinting and ITS alignment. The Candida isolates from four mother-neonate pairs had identical RAPD patterns and highly homologous ITS sequences. The current study showed H. pylori could be sheltered within yeast colonizing the vagina, and fecal yeast from neonates is genetically related to the vaginal yeast from their mothers. Thus, vaginal yeast presents a potential reservoir of H. pylori and plays a vital role in the transmission from mother to neonate.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"401-413"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10250580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasiya Z Zazulya, Marta V Semkiv, Maxim Stec, Zuzanna Cyske, Lidia Gaffke, Karolina Pierzynowska, Grzegorz Węgrzyn, Andriy A Sibirny
The methylotrophic yeast Komagataella phaffii is considered one of the most effective producers of recombinant proteins of industrial importance. Effective producers should be characterized by the maximal reduction of degradation of the cytosolic recombinant proteins. The mechanisms of degradation of cytosolic proteins in K. phaffii have not been elucidated; however, data suggest that they are partially degraded in the autophagic pathway. To identify factors that influence this process, a developed system for the selection of recombinant strains of K. phaffii with impaired autophagic degradation of the heterologous model cytosolic protein (yeast β-galactosidase) was used for insertional tagging of the genes involved in cytosolic proteins degradation. In one of the obtained strains, the insertion cassette disrupted the open reading frame of the gene encoding β-1,6-N-acetylglucosaminyltransferase. A recombinant strain with deletion of this gene was also obtained. The rate of degradation of the β-galactosidase enzyme was two times slower in the insertion mutant and 1.5 times slower in the deletion strain as compared to the parental strain with native β-1,6-N-acetylglucosaminyltransferase. The rate of degradation of native K. phaffii cytosolic and peroxisomal enzymes, formaldehyde dehydrogenase, formate dehydrogenase, and alcohol oxidase, respectively, showed similar trends to that of β-galactosidase-slower degradation in the deletion and insertional mutants as compared to the wild-type strain, but faster protein degradation relative to the strain completely defective in autophagy. We conclude that K. phaffii gene designated ACG1, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in autophagy of the cytosolic and peroxisomal proteins.
甲基营养化酵母法菲Komagataella phaffii被认为是最有效的重组蛋白的工业重要性的生产者之一。有效的生产者应该以最大限度地减少细胞质重组蛋白的降解为特征。法菲克氏菌胞质蛋白降解的机制尚未阐明;然而,数据表明它们在自噬途径中被部分降解。为了确定影响这一过程的因素,我们开发了一套系统,用于选择重组菌株,这些菌株的自噬降解受损的异种模型细胞质蛋白(酵母β-半乳糖苷酶)被用于插入标记参与细胞质蛋白降解的基因。在其中一株菌株中,插入盒破坏了编码β-1,6- n -乙酰氨基葡萄糖转移酶基因的开放阅读框。同时获得了该基因缺失的重组菌株。与含有天然β-1,6- n -乙酰氨基葡萄糖转移酶的亲本菌株相比,插入突变株的β-半乳糖苷酶降解速度慢2倍,缺失菌株的β-半乳糖苷酶降解速度慢1.5倍。天然菲氏K.胞质酶和过氧化物酶、甲醛脱氢酶、甲酸脱氢酶和酒精氧化酶的降解速率与β-半乳糖苷酶的降解速率相似,缺失和插入突变体的降解速度比野生型菌株慢,而蛋白质降解速度比完全自噬缺陷的菌株快。我们得出结论,K. phaffii基因指定的ACG1编码β-1,6- n -乙酰氨基葡萄糖转移酶,参与细胞质和过氧化物酶体蛋白的自噬。
{"title":"The Komagatella phaffii ACG1 gene, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in the autophagy of cytosolic and peroxisomal proteins.","authors":"Anastasiya Z Zazulya, Marta V Semkiv, Maxim Stec, Zuzanna Cyske, Lidia Gaffke, Karolina Pierzynowska, Grzegorz Węgrzyn, Andriy A Sibirny","doi":"10.1002/yea.3846","DOIUrl":"https://doi.org/10.1002/yea.3846","url":null,"abstract":"<p><p>The methylotrophic yeast Komagataella phaffii is considered one of the most effective producers of recombinant proteins of industrial importance. Effective producers should be characterized by the maximal reduction of degradation of the cytosolic recombinant proteins. The mechanisms of degradation of cytosolic proteins in K. phaffii have not been elucidated; however, data suggest that they are partially degraded in the autophagic pathway. To identify factors that influence this process, a developed system for the selection of recombinant strains of K. phaffii with impaired autophagic degradation of the heterologous model cytosolic protein (yeast β-galactosidase) was used for insertional tagging of the genes involved in cytosolic proteins degradation. In one of the obtained strains, the insertion cassette disrupted the open reading frame of the gene encoding β-1,6-N-acetylglucosaminyltransferase. A recombinant strain with deletion of this gene was also obtained. The rate of degradation of the β-galactosidase enzyme was two times slower in the insertion mutant and 1.5 times slower in the deletion strain as compared to the parental strain with native β-1,6-N-acetylglucosaminyltransferase. The rate of degradation of native K. phaffii cytosolic and peroxisomal enzymes, formaldehyde dehydrogenase, formate dehydrogenase, and alcohol oxidase, respectively, showed similar trends to that of β-galactosidase-slower degradation in the deletion and insertional mutants as compared to the wild-type strain, but faster protein degradation relative to the strain completely defective in autophagy. We conclude that K. phaffii gene designated ACG1, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in autophagy of the cytosolic and peroxisomal proteins.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"367-376"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}