Pub Date : 2023-08-01Epub Date: 2023-04-10DOI: 10.1002/yea.3849
Jennifer J Tate, Rajendra Rai, Terrance G Cooper
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
{"title":"TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression.","authors":"Jennifer J Tate, Rajendra Rai, Terrance G Cooper","doi":"10.1002/yea.3849","DOIUrl":"10.1002/yea.3849","url":null,"abstract":"<p><p>Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"318-332"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Rapala-Kozik, Magdalena Surowiec, Magdalena Juszczak, Ewelina Wronowska, Kamila Kulig, Aneta Bednarek, Miriam Gonzalez-Gonzalez, Justyna Karkowska-Kuleta, Marcin Zawrotniak, Dorota Satała, Andrzej Kozik
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
{"title":"Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity.","authors":"Maria Rapala-Kozik, Magdalena Surowiec, Magdalena Juszczak, Ewelina Wronowska, Kamila Kulig, Aneta Bednarek, Miriam Gonzalez-Gonzalez, Justyna Karkowska-Kuleta, Marcin Zawrotniak, Dorota Satała, Andrzej Kozik","doi":"10.1002/yea.3855","DOIUrl":"https://doi.org/10.1002/yea.3855","url":null,"abstract":"<p><p>The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"303-317"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10334344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dorota Satala, Justyna Karkowska-Kuleta, Grazyna Bras, Maria Rapala-Kozik, Andrzej Kozik
One of the initial steps necessary for the development of Candida infections is the adherence to the host tissues and cells. Recent transcriptomic studies suggest that, in Candida parapsilosis—a fungal infectious agent that causes systemic candidiasis in immunosuppressed individuals—the adhesion is mediated by pathogen cell‐exposed proteins belonging to the agglutinin‐like sequence (Als) family. However, to date, the actual interactions of individual members of this family with human cells and extracellular matrix (ECM) have not been characterized in detail. In the current study, we focused attention on two of these C. parapsilosis Als proteins—CPAR2_404800 and CPAR2_404780—that were proteomically identified in the fungal cell wall of yeasts grown in the media suitable for culturing human epithelial and endothelial cells. Both proteins were extracted from the cell wall and purified, and using a microplate binding assay and a fluorescence microscopic analysis were shown to adhere to human cells of A431 (epithelial) and HMEC‐1 (endothelial) lines. The human extracellular matrix components that are also plasma proteins—fibronectin and vitronectin—enhanced these interactions, and also could directly bind to CPAR2_404800 and CPAR2_404780 proteins, with a high affinity (KD in a range of 10−7 to 10−8 M) as determined by surface plasmon resonance measurements. Our findings highlight the role of proteins CPAR2_404800 and CPAR2_404780 in adhesion to host cells and proteins, contributing to the knowledge of the mechanisms of host‐pathogen interactions during C. parapsilosis‐caused infections.
{"title":"Candida parapsilosis cell wall proteins-CPAR2_404800 and CPAR2_404780-Are adhesins that bind to human epithelial and endothelial cells and extracellular matrix proteins.","authors":"Dorota Satala, Justyna Karkowska-Kuleta, Grazyna Bras, Maria Rapala-Kozik, Andrzej Kozik","doi":"10.1002/yea.3847","DOIUrl":"https://doi.org/10.1002/yea.3847","url":null,"abstract":"One of the initial steps necessary for the development of Candida infections is the adherence to the host tissues and cells. Recent transcriptomic studies suggest that, in Candida parapsilosis—a fungal infectious agent that causes systemic candidiasis in immunosuppressed individuals—the adhesion is mediated by pathogen cell‐exposed proteins belonging to the agglutinin‐like sequence (Als) family. However, to date, the actual interactions of individual members of this family with human cells and extracellular matrix (ECM) have not been characterized in detail. In the current study, we focused attention on two of these C. parapsilosis Als proteins—CPAR2_404800 and CPAR2_404780—that were proteomically identified in the fungal cell wall of yeasts grown in the media suitable for culturing human epithelial and endothelial cells. Both proteins were extracted from the cell wall and purified, and using a microplate binding assay and a fluorescence microscopic analysis were shown to adhere to human cells of A431 (epithelial) and HMEC‐1 (endothelial) lines. The human extracellular matrix components that are also plasma proteins—fibronectin and vitronectin—enhanced these interactions, and also could directly bind to CPAR2_404800 and CPAR2_404780 proteins, with a high affinity (KD in a range of 10−7 to 10−8 M) as determined by surface plasmon resonance measurements. Our findings highlight the role of proteins CPAR2_404800 and CPAR2_404780 in adhesion to host cells and proteins, contributing to the knowledge of the mechanisms of host‐pathogen interactions during C. parapsilosis‐caused infections.","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"377-389"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10333879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proline is the most abundant amino acid in wine and beer, because the yeast Saccharomyces cerevisiae hardly assimilates proline during fermentation processes. Our previous studies showed that arginine induces endocytosis of the proline transporter Put4, resulting in inhibition of proline utilization. We here report a possible role of arginine sensing in the inhibition of proline utilization. We first found that two basic amino acids, ornithine, and lysine, inhibit proline utilization by inducing Put4 endocytosis in a manner similar to arginine, but citrulline does not. Our genetic screening revealed that the arginine transporter Can1 is involved in the inhibition of proline utilization by arginine. Intriguingly, the arginine uptake activity of Can1 was not required for the arginine-dependent inhibition of proline utilization, suggesting that Can1 has a function beyond its commonly known function of transporting arginine. More importantly, our biochemical analyses revealed that Can1 activates signaling cascades of protein kinase A in response to extracellular arginine. Hence, we proposed that Can1 regulates proline utilization by functioning as a transceptor possessing the activity of both a transporter and receptor of arginine.
{"title":"The arginine transporter Can1 acts as a transceptor for regulation of proline utilization in the yeast Saccharomyces cerevisiae.","authors":"Ryoya Tanahashi, Akira Nishimura, Fumika Morita, Hayate Nakazawa, Atsuki Taniguchi, Kazuki Ichikawa, Kazuki Nakagami, Kyria Boundy-Mills, Hiroshi Takagi","doi":"10.1002/yea.3836","DOIUrl":"https://doi.org/10.1002/yea.3836","url":null,"abstract":"<p><p>Proline is the most abundant amino acid in wine and beer, because the yeast Saccharomyces cerevisiae hardly assimilates proline during fermentation processes. Our previous studies showed that arginine induces endocytosis of the proline transporter Put4, resulting in inhibition of proline utilization. We here report a possible role of arginine sensing in the inhibition of proline utilization. We first found that two basic amino acids, ornithine, and lysine, inhibit proline utilization by inducing Put4 endocytosis in a manner similar to arginine, but citrulline does not. Our genetic screening revealed that the arginine transporter Can1 is involved in the inhibition of proline utilization by arginine. Intriguingly, the arginine uptake activity of Can1 was not required for the arginine-dependent inhibition of proline utilization, suggesting that Can1 has a function beyond its commonly known function of transporting arginine. More importantly, our biochemical analyses revealed that Can1 activates signaling cascades of protein kinase A in response to extracellular arginine. Hence, we proposed that Can1 regulates proline utilization by functioning as a transceptor possessing the activity of both a transporter and receptor of arginine.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"333-348"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Volkmar Passoth, Jule Brandenburg, Mikołaj Chmielarz, Giselle Martín-Hernandez, Yashaswini Nagaraj, Bettina Müller, Johanna Blomqvist
Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.
{"title":"Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol.","authors":"Volkmar Passoth, Jule Brandenburg, Mikołaj Chmielarz, Giselle Martín-Hernandez, Yashaswini Nagaraj, Bettina Müller, Johanna Blomqvist","doi":"10.1002/yea.3838","DOIUrl":"https://doi.org/10.1002/yea.3838","url":null,"abstract":"<p><p>Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"290-302"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcin Zawrotniak, Magdalena Juszczak, Maria Rapała-Kozik
Candida albicans is one of the main pathogens responsible for the development of difficult-to-fight fungal infections called candidiasis. Neutrophils are the major effector cells involved in the eradication of fungal pathogens. This group of immune cells uses several mechanisms that enable the rapid neutralization of pathogens. The most frequently identified mechanisms are phagocytosis and the release of neutrophil extracellular traps (NETs). The mechanism for selecting the type of neutrophil immune response is still unknown. In our study, we analyzed the relationship between the activation of phagocytosis and netosis. We detected the presence of two neutrophil populations characterized by different response patterns to contact with C. albicans blastospores. The first neutrophil population showed an increased ability to rapidly release NETs without prior internalization of the pathogen. In the second population, the netosis process was inherently associated with phagocytosis. Differences between populations also referred to the production of reactive oxygen species. Our results suggest that neutrophils use different strategies to fight C. albicans and, contrary to previous reports, these mechanisms are not mutually exclusive.
{"title":"Release of neutrophil extracellular traps in response to Candida albicans yeast, as a secondary defense mechanism activated by phagocytosis.","authors":"Marcin Zawrotniak, Magdalena Juszczak, Maria Rapała-Kozik","doi":"10.1002/yea.3842","DOIUrl":"https://doi.org/10.1002/yea.3842","url":null,"abstract":"<p><p>Candida albicans is one of the main pathogens responsible for the development of difficult-to-fight fungal infections called candidiasis. Neutrophils are the major effector cells involved in the eradication of fungal pathogens. This group of immune cells uses several mechanisms that enable the rapid neutralization of pathogens. The most frequently identified mechanisms are phagocytosis and the release of neutrophil extracellular traps (NETs). The mechanism for selecting the type of neutrophil immune response is still unknown. In our study, we analyzed the relationship between the activation of phagocytosis and netosis. We detected the presence of two neutrophil populations characterized by different response patterns to contact with C. albicans blastospores. The first neutrophil population showed an increased ability to rapidly release NETs without prior internalization of the pathogen. In the second population, the netosis process was inherently associated with phagocytosis. Differences between populations also referred to the production of reactive oxygen species. Our results suggest that neutrophils use different strategies to fight C. albicans and, contrary to previous reports, these mechanisms are not mutually exclusive.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"349-359"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10035240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dariya V Fedorovych, Andriy O Tsyrulnyk, Justyna Ruchala, Svitlana M Sobchuk, Kostyantyn V Dmytruk, Lyubov R Fayura, Andriy A Sibirny
Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.
{"title":"Construction of the advanced flavin mononucleotide producers in the flavinogenic yeast Candida famata.","authors":"Dariya V Fedorovych, Andriy O Tsyrulnyk, Justyna Ruchala, Svitlana M Sobchuk, Kostyantyn V Dmytruk, Lyubov R Fayura, Andriy A Sibirny","doi":"10.1002/yea.3843","DOIUrl":"https://doi.org/10.1002/yea.3843","url":null,"abstract":"<p><p>Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B<sub>2</sub> ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"360-366"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10035241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.
{"title":"tRNA-derived fragments as new players in regulatory processes in yeast.","authors":"Agata Tyczewska, Kamilla Grzywacz","doi":"10.1002/yea.3829","DOIUrl":"https://doi.org/10.1002/yea.3829","url":null,"abstract":"<p><p>For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"283-289"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10333853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andriy A Sibirny, Terrance G Cooper, Hiroshi Takagi
The first Polish Yeast Conference was held at the University of Rzeszow in South‐Eastern Poland. Investigators from all the major Polish cities, Warsaw, Wroclaw, Poznan, Cracow, Gdansk, Lodz, Lublin, and Rzeszow, were joined by international colleagues from the United States, Japan, Sweden, Belgium, France, United Kingdom, Slovakia, and Ukraine in eight scientific sessions. The 114 attendees presented lectures and posters covering a wide variety of current topics leading to a very stimulating and successful conference. The conference demonstrated the presence and great potential for further development of yeast research in Poland. Dr. Gianni Liti, Editor‐in‐Chief of the Journal Yeast generously provided the conference's participants the opportunity of contributing peer‐reviewed articles to the Yeast Special Issue “Yeast Science in Central and Eastern Europe”. The 13 manuscripts, most from Poland, covered many of the topics presented during the conference. P. Fickers (Belgium) and his Chinese colleagues described improved production of the sweetener, erythritol, in Yarrowia lipolytica emanating from activation of the alternative glycerol catabolic, known as dihydroxyacetone, pathway. Overexpression of DAK2 coding for dihydroxyacetone kinase together with genes TKL1 and TAL1 coding for transketolase and transaldolase, respectively, led to a strain with increased productivity and yield of erythritol in glycerol medium. The paper of T. Cooper and co‐authors from the United States described the mechanisms through which nitrogen catabolite repression‐sensitive transcription activator Gln3 and TorC1 kinase regulate and integrate transcriptional control of the GABA (g‐aminobutyric acid) shunt and retrograde pathway genes. TorC1 regulates the last three shunt genes in a Gln3‐dependent manner, whereas it does so in a Gln3‐independent manner for the first shunt GABA decarboxylase gene. GABA shunt and retrograde pathway gene expression increase in the presence of nickel, likely to cope with increased ROS that nickel detoxification generates. H. Takagi and colleagues from Japan showed that arginine permease, Can1, beyond being an arginine transporter, also acts as an arginine transceptor that participates in the inhibition of proline utilization. They also reported that arginine activates protein kinase A signaling via the Can1 permease. The review of A. Tyczewska and K. Grzywacz from Poznan (Poland), assembled data showing that tRNA fragments are responsible for numerous regulatory functions in yeast. While the regulatory role of microRNAs and small interfering RNAs has been known for many years, recent studies demonstrated that specific tRNA fragments (tRFs) also affect gene expression in pathogenic and non‐pathogenic yeasts. D. Satala et al. from Cracow (Poland) described interactions between Candida parapsilosis adhesins, a family of the agglutinin‐like sequence protein, and human cells. These interactions were shown to be enhanced in the presence of fibr
{"title":"Editorial: On the Special Issue \"Yeast Science in Central and Eastern Europe\".","authors":"Andriy A Sibirny, Terrance G Cooper, Hiroshi Takagi","doi":"10.1002/yea.3883","DOIUrl":"https://doi.org/10.1002/yea.3883","url":null,"abstract":"The first Polish Yeast Conference was held at the University of Rzeszow in South‐Eastern Poland. Investigators from all the major Polish cities, Warsaw, Wroclaw, Poznan, Cracow, Gdansk, Lodz, Lublin, and Rzeszow, were joined by international colleagues from the United States, Japan, Sweden, Belgium, France, United Kingdom, Slovakia, and Ukraine in eight scientific sessions. The 114 attendees presented lectures and posters covering a wide variety of current topics leading to a very stimulating and successful conference. The conference demonstrated the presence and great potential for further development of yeast research in Poland. Dr. Gianni Liti, Editor‐in‐Chief of the Journal Yeast generously provided the conference's participants the opportunity of contributing peer‐reviewed articles to the Yeast Special Issue “Yeast Science in Central and Eastern Europe”. The 13 manuscripts, most from Poland, covered many of the topics presented during the conference. P. Fickers (Belgium) and his Chinese colleagues described improved production of the sweetener, erythritol, in Yarrowia lipolytica emanating from activation of the alternative glycerol catabolic, known as dihydroxyacetone, pathway. Overexpression of DAK2 coding for dihydroxyacetone kinase together with genes TKL1 and TAL1 coding for transketolase and transaldolase, respectively, led to a strain with increased productivity and yield of erythritol in glycerol medium. The paper of T. Cooper and co‐authors from the United States described the mechanisms through which nitrogen catabolite repression‐sensitive transcription activator Gln3 and TorC1 kinase regulate and integrate transcriptional control of the GABA (g‐aminobutyric acid) shunt and retrograde pathway genes. TorC1 regulates the last three shunt genes in a Gln3‐dependent manner, whereas it does so in a Gln3‐independent manner for the first shunt GABA decarboxylase gene. GABA shunt and retrograde pathway gene expression increase in the presence of nickel, likely to cope with increased ROS that nickel detoxification generates. H. Takagi and colleagues from Japan showed that arginine permease, Can1, beyond being an arginine transporter, also acts as an arginine transceptor that participates in the inhibition of proline utilization. They also reported that arginine activates protein kinase A signaling via the Can1 permease. The review of A. Tyczewska and K. Grzywacz from Poznan (Poland), assembled data showing that tRNA fragments are responsible for numerous regulatory functions in yeast. While the regulatory role of microRNAs and small interfering RNAs has been known for many years, recent studies demonstrated that specific tRNA fragments (tRFs) also affect gene expression in pathogenic and non‐pathogenic yeasts. D. Satala et al. from Cracow (Poland) described interactions between Candida parapsilosis adhesins, a family of the agglutinin‐like sequence protein, and human cells. These interactions were shown to be enhanced in the presence of fibr","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 8","pages":"281-282"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10334351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco S Ruiz-Pérez, Francisco J Ruiz-Castilla, Carlos Leal, José L Martínez, José Ramos
Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.
汉斯德巴氏酵母是一种耐盐/嗜盐酵母,通常在咸环境中发现。酵母在高浓度下积累钠,促进了盐培养基中的生长。相反,即使在低浓度下,锂也是有毒的,它的存在会阻止细胞增殖。为了分析对这两种阳离子的反应,测定了代谢产物水平、酶活性和基因表达,表明NaCl和LiCl引发了不同的细胞反应。在高浓度NaCl(0.5或1.5 M)下,细胞积累了大量的中间代谢物乙醛酸盐和苹果酸盐,同时细胞内氧戊二酸盐水平下降。此外,0.5 M NaCl处理提高了异柠檬酸裂解酶和苹果酸合成酶的活性,降低了异柠檬酸脱氢酶的活性。此外,NaCl还激活了异柠檬酸裂解酶和苹果酸合成酶编码基因的转录。此外,细胞在NaCl暴露下积累磷酸盐。当用0.1或0.3 M的LiCl代替NaCl时,没有引起这些影响。锂诱导大量氧戊二酸盐的积累,并将乙醛酸盐和苹果酸盐的浓度降低到无法检测的水平。用锂培养的细胞也显示出较高的异柠檬酸脱氢酶活性,但没有增加异柠檬酸裂解酶和苹果酸合成酶的活性,也没有增加相应基因的转录。总之,我们发现钠,而不是锂,向上调节了D. hansenii中乙醛酸的分流,我们提出这是一个重要的代谢适应,以便在咸环境中茁壮成长。
{"title":"Sodium and lithium exert differential effects on the central carbon metabolism of Debaryomyces hansenii through the glyoxylate shunt regulation.","authors":"Francisco S Ruiz-Pérez, Francisco J Ruiz-Castilla, Carlos Leal, José L Martínez, José Ramos","doi":"10.1002/yea.3856","DOIUrl":"https://doi.org/10.1002/yea.3856","url":null,"abstract":"<p><p>Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 7","pages":"265-275"},"PeriodicalIF":2.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}