Objective: To investigate the effects of fucoidan inducing impairment of human osteosarcoma cell 143B, as well its mechanisms. Methods: After 143B cells were treated with different concentrations of FUC (0, 0.5, 1, 10, 100, 400, 800 μg/ml) for 48 h, the cell viability and dehydrogenase (LDH) level were detected by MTT assay and chemical colorimetry with six multiple wells for each concentration. Based on MTT results, we determined the value of IC50 was 244.5 μg/ml. The follow-up experiments were divided into control group (without FUC), FUC (10 μg/ml)-treated group, FUC (100 μg/ml)-treated group, FUC (400 μg/ml)-treated group and positive group (resveratrol, 40 μmol/L). There were four multiple wells for each concentration, and each experiment was repeated at least three times. Flow cytometry was performed to detect cell apoptosis and intracellular reactive oxygen species (ROS) level; acridine orange (AO) staining and lyso-tracker red staining were used to observe the autophagolysosome formation; chemical colorimetric analysis was performed to determine malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); Western blot was used to detect protein expressions of nuclear factor E2-associated factor 2 (Nrf2), heme oxygenase 1 (HO-1) and autophagy-associated proteins including microtubule-associated light chain protein 3 (LC-3), Atg7, Beclin-1 and p62. Results: Compared with control group, the cell viability was decreased significantly in FUC (100~400 μg/ml)-treated groups (P<0.01); LDH levels in the supernatant (P<0.05 or P<0.01), the percentage of cell apoptosis (P<0.01), intracellular ROS level and MDA content (P<0.01) were increased remarkably; protein expressions of Atg7 and Beclin-1 were upregulated (P<0.05 or P<0.01); the conversion from LC-3I to LC-3II was significant (P<0.01) together with elevation of autophagolysosome formation (P<0.05 or P<0.01); while the activities of SOD and GSH-Px and protein expressions of Nrf2, HO-1 and p62 were decreased remarkably (P<0.05 or P<0.01). Conclusion: FUC (100~400 μg/ml) treatment induces oxidative damage and autophagic death in osteosarcoma 143B cells.
Objective: To investigate the effects of bosutinib on the early stage of cerebral ischemia-reperfusion injury in rats. Methods: Forty Sprague-Dawley rats were randomly divided into four groups (random number method), 10 rats in each group; sham group (control group): only neck vessels were isolated without other treatments; MCAO (model group): the rat brain ischemia/reperfusion injury model was made by a modified wire bolus method,ischemia for 2 h followed by reperfusion for 24 h; DMSO group (solvent group): DMSO ( 0.752 ml/kg) was injected into the tail vein one day before the experiment, brain ischemia 2 h reperfusion for 24 h; Bosutinib group (intervention group): one day before the experiment, the tail vein was injected with Bosutinib (4 mg/kg), brain ischemia 2 h reperfusion for 24 h. After 24 h of ischemia reperfusion, neurological function score was performed; brain infarct area was calculated after staining with TTC; SIK2 was detected by Western blot; the contents of TNF-α and IL-6 in brain tissue were detected by ELISA. Results: Compared with the sham group, the neurological function scores, the infarct volume percentages and the levels of inflammatory factors IL-6 and TNF-α of the MCAO and DMSO groups were increased significantly (P<0.05 or P<0.01). Compared with the MCAO and DMSO groups, the above mentioned indexes of the bosutinib group were all decreased significantly (P<0.05 or P< 0.01). Compared with sham group, the expression levels of SIK2 protein in MCAO and DMSO groups had no significant changes(P> 0.05); compared with the MCAO and DMSO group, the expression level of SIK2 protein in the bosutinib group was decreased significantly (P<0.05). Conclusion: Bosutinib reduces cerebral ischemia-reperfusion-induced injury, and its possible mechanism is related to the decreased expression of SIK2 protein and inflammatory factors.
Objective: Three modeling methods were used to establish a mouse primary liver cancer model, and compared them to find a more optimal modeling method. Methods: Forty 15-day-old C3H/HeN male mice were randomly divided into groups I-IV, 10 mice in each group. Group Ⅰ were not treated; Group Ⅱ were intraperitoneally injected with 25 mg/kg diethylnitrosamine (DEN) once; Group Ⅲ were intraperitoneally injected with 100 mg/kg DEN once; Group Ⅳ were intraperitoneally injected with 25 mg/kg DEN once and followed by another intraperitoneal injection of 100 mg/kg DEN at 42 days of age. The mortality of mice in each group was analyzed. At the 18th week of modeling, blood was collected from eyeballs after anesthesia, and liver was taken from abdominal cavity after neck was broken. The appearance of liver, the number of cancer nodules and the incidence of liver tumor were observed. The histopathological changes of liver were observed by HE staining. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected. Results: At the 18th week of modeling, compared with the group I, serum levels of ALT and AST in groups II-IV were increased significantly (P<0.05); The number of cancer nodules and the incidence of tumors in the surviving mice of groups III and IV were also increased significantly (P<0.05). At the 18th week of modeling, no mice died in both groups I and II, and the incidence of liver cancer was 0%; The incidence of liver cancer in surviving mice in both groups III and IV was 100%, but the mortality rate of mice in group III was as high as 50%, and that in group IV was only 20%. Conclusion: C3H/HeN male mice can successfully establish a mouse liver cancer model by intraperitoneal injection of 25 mg/kg of DEN once at the age of 15 days and another intraperitoneal injection of 100 mg/kg of DEN once at the age of 42 days with short cycle and low mortality, which is an ideal method to establish a primary liver cancer model.
Objective: To investigate the effects of adipokines chemerin on the improvement of islet function caused by exercise in mice with diabetes, and the possible mechanism of glucagon-like peptide 1 (GLP-1). Methods: Male ICR mice were randomly divided into a control group fed with normal diet (Con, n=6) and a diabetic modeling group fed with 60% kcal high-fat diet (n=44). After 6 weeks, the diabetic modeling group was once given a fasting intraperitoneal injection of streptozotocin (100 mg/kg). The successfully modeled mice were divided into diabetes group (DM), diabetes plus exercise group (EDM), and diabetes plus exercise and exogenous chemerin group (EDMC), 6 in each group. Mice in exercise groups participated in a six-week modest intensity treadmill running exercise with a gradually increased load. Mice in the EDMC group were intraperitoneally injected with exogenous chemerin (8 μg/kg) from the 4th week of the exercise period, six days per week, and one time per day. And the other groups were untreated. Adipose chemerin knockout mice were constructed. Then they and the control mice were divided into 6 groups (n=4): Normal diet control group (Con-ND), Normal diet chemerin knockout heterozygote mice group (Chemerin(+/-)-ND), Normal diet chemerin knockout homozygotes mice group(Chemerin(-/-)-ND), High-fat diet control group (Con-HFD), High-fat diet chemerin knockout heterozygote mice group (Chemerin(+/-)-HFD), High-fat diet chemerin knockout homozygotes mice group (Chemerin(-/-)-HFD). They were fed with normal or high-fat diet for 11 weeks and oral glucose tolerance test (OGTT) was conducted. After the mice of each group were executed under anesthesia, the samples such as pancreas and colon were collected. Fasting blood glucose (FBG) and fasting insulin (FINS) levels in mice were measured, and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the structure of islets. ELISA was used to detect the GLP-1 level in serum. The mRNA levels of proglucagon (GCG) and chemerin in the colon were measured by real-time PCR. And the protein levels of GCG and chemerin in the colon were detected by Western blot. Results: Compared with the DM group, the vacuolar degeneration and shrinkage of islet cells in the EDM group were reduced, the islet structure was improved, while the levels of FINS, HOMA-IR and FBG were decreased significantly (P<0.05 or P<0.01). The colon and serum chemerin levels were decreased significantly(P<0.05), while the colonic GCG mRNA and protein levels were increased significantly (P<0.05 or P<0.01). Compared with the EDM group, the islet cells in the EDMC group were shrunken, with unclear borders. The structure of the islets was damaged, and the levels of FINS, HOMA-IR and FBG were increased significantly (P<0.01), while the mRNA and protein levels of GCG were decreased significantly (P<0.05 or P<0.01). Co
Objective: To investigate the interventional effects of a new SUR2B/Kir6.1-type KATP Channel opener iptakalim on injury renal cells (the renal glomerular endothelial, mesangial and tubular epithelial cells) and its mechanisms. Methods: ①Experimental protocol: control: the cells were treated with with 0 mg/L uric acid for 24 h; model: the cells were treated with with 1 200 mg/L uric acid for 24 h; pretreatment with iptakalim: the cells were pretreated with 0.01,0.1,1,10,100 μmol/L iptakalim for 24 h prior to treatment with 1 200 mg/L uric acid for 24 h; pretreatment with glibenclamide: the cells were preincubated with/without 10 μmol/L glibenclamide for 1 h and then treated with 10 μmol/L iptakalim for 24 h followed by incubation with 1 200 mg/L uric acid for another 24 h. ②The cell viability was measured by MTT assay and flow cytometry; the protein expressions of Kir6.1 and SUR2B and nuclear translocation were detected by immunostaining; the protein expressions of Kir6.1 and SUR2B were determined by Western blot analysis; adhesion of mononuclear cells to endothelial cells were tested by fluorimetric assay; the content of MCP-1 was measured by enzyme linked-immunosorbent assay (ELISA). Results: The renal glomerular endothelial, mesangial and tubular epithelial cells were exposed to 1 200 mg/L uric acid for 24 h. Compared with the control group, 1 200 mg/L uric acid decreased the cell survival rates significantly (P<0.01, P<0.01, P<0.01). Compared with the model group, pretreatment with 0.1, 1, 10, 100 μmol/L iptakalim could remarkably alleviate cellular damages of glomerular endothelium, mesangium cells induced by uric acid (P<0.05, P<0.01, P<0.01, P<0.01). The KATP channel blocker could clearly reduce survival rates of the renal glomerular endothelial, mesangial cells(P<0.01) and markedly reverse the inhibitory effects of iptakalim on cell death (P<0.05, P<0.01), no obvious difference in comparison with the model group (P>0.05). Compared with the model group, pretreatment with 10, 100 μmol/L iptakalim could notably attenuate cellular damages of tubular epithelial cells induced by uric acid (P<0.05, P<0.05). The KATP channel blocker could obviously damage the tubular epithelial cells (P<0.01), no obvious difference in comparison with the model group (P>0.05). Compared with control group, exposure of renal tubular epithelial, mesangial and glomerular endothelial cells to 1 200 mg/L uric acid for 24 h caused a significant increase in the protein expressions of Kir6.1 and SUR2B(P<0.05). Compared with the model group, the overexpressions of Kir6.1 and SUR2B were suppressed in presence of iptakalim at a concentration of 10 μmol/L (P<0.05). These decreases in the expressions of Kir6.1 and SUR2B were prevented by the KATP channel blocker, no obvious difference in comp
Objective: To investigate the effects of oil-mist particulate matter (OMPM) on cardiac tissue structure fibrosis in rats and the role of epithelial-mesenchymal transition (EMT). Methods: Six-week-old Wistar rats (half male and half female) were randomly divided into 3 groups: control group (without OMPM exposure), low-dose exposure group (50 mg/m3) and high-dose exposure group (100 mg/m3), 18 rats in each group, with 6.5 hours per day of dynamic inhalation exposure. After 42 days of continuous exposure, cardiac tissues were collected for morphological observation; Western blot was used to detect fibrosis markers collagen I and collagen III levels, epithelial marker E-cadherin levels, interstitial markers N-cadherin, fibronectin, vimentin, alpha-smooth muscle actin (α-SMA) levels, and EMT transcription factor Twist protein levels; Real-time polymerase chain reaction (RT-qPCR) was used to detect collagen I and collagen III mRNA levels. Results: After OMPM exposure, myocardial cell edema and collagen fiber deposition were increased gradually with increasing exposure dose. Western blot results showed that compared with the control group, the expression levels of collagen I, collagen III, N-Cadherin, fibronectin, vimentin, α-SMA, and Twist protein were increased significantly in the low-dose exposure group and the high-dose exposure group (P<0.01), and protein expression levels were higher in the high-dose exposure group than those in the low-dose exposure group (P<0.01). In contrast, E-Cadherin protein expression levels were decreased significantly, and lower in the high-dose exposure group (P<0.01). RT-qPCR results showed that compared with the control group, collagen I and collagen III mRNA levels were increased significantly in the low-dose exposure group and the high-dose exposure group (P<0.01), and were increased with increasing exposure dose. (P<0.01). Conclusion: OMPM may induce cardiac fibrosis in rats by promoting EMT process.