The Malabar dwarf puffer, Carinotetraodon travancoricus is the smallest known pufferfish (family Tetraodontidae) and one of the smallest freshwater fishes of the Indian subcontinent. Due to their miniature size, wacky behaviour and appearance, they are much preferred in the international aquarium fish trade, although little is known regarding their breeding activity in captivity and their embryonic development. The purpose of this study was to fill these knowledge gaps. Wild-caught Malabar dwarf puffers were acclimatised to conditions, and pairs were introduced to breeding tanks. Adult fishes were fed with live and frozen diets including Artemia nauplii, moina and bloodworm. During spawning seasons, adult fish displayed elaborate courtship behaviour around sunset. Carinotetraodon travancoricus is a batch spawner releasing 1 to 5 eggs per diem. The eggs were spherical, and non-sticky, with a diameter of 1.48 ± 0.1 mm, and hatching took place after 108 to 116 h post-incubation. The newly hatched larvae were 3.5 ± 0.2 mm in length, and weighed 2.9 ± 0.4 mg. The early larvae have substantial yolk and oil globules as an energy reserve. Histological studies on mature females suggested the batch spawning nature of the species and low fecundity. Given its unique reproductive behaviour and characters, in situ protected habitats are required to ensure their continued survival in the wild, apart from encouraging captive breeding to augment the demand in the international aquarium fish trade.
Although many Fertility Centers have adopted day 5 or 6 embryo transfer policy, yet, 30% of embryo transfers in the US are performed on day 3. This is mainly due to concerns related to longer embryo culture effect and higher rates of embryo transfer cancellation on day 5, with no effect on cumulative pregnancy rate. We conducted a retrospective cohort study comparing individual embryo transfer order rank, best embryo for fresh transfer and intention to freeze, of day-3 and day-5 embryos based on their morphology score. Day-3 embryos of each patient were ranked by embryologists for the order of transfer and intention to freeze, based on morphological score, blinded to actual blastulation outcome. The corresponding blastocysts were similarly ranked for the order of transfer and vitrification intention. Ranking was compared to test the predictive value of day-3 morphological assessment. Sixty patients with 784 day-3 embryos were included. There was only a moderate positive significant correlation between ranks on day-3 and ranks on day-5 [r = 0.662 95% CI (0.611-0.706, p < 0.001)]. Only 25% of the best embryos for transfer on day 3 (rank = 1) were chosen for fresh transfer on day 5. A total of 441 embryos were intended to be frozen on day 3. Of those, 201 were not transferred nor vitrified on day 5-6 (45%), 3.35 embryos per patient. No significant difference was found between average day-3 rank of embryos ranked 1, 2 (3.12 vs 4.12, p = 0.074) and 3 (3.12 vs 4.08, p = 0.082) on day-5-6. To conclude, this study brings a different perspective to the comparison of day 3 and day 5 by following each embryo's putative and actual designation. Day-3 ranking of embryo morphology did not provide a reliable prediction for blastocyst formation, transfer order and vitrification intention, and may support transfer or cryopreservation of blastocysts over cleavage stage embryos.
To date, implantation is the rate-limiting step for the success of in vitro fertilization (IVF) treatment. Accumulating evidence suggests that immune cells contribute to embryo implantation, and several therapeutic approaches have been proposed for the treatment of recurrent implantation failure (RIF). Endometrial immune modulation with autologous activated peripheral blood mononuclear cells (PBMCs) is one of the most widely used protocols. However, the effect of intrauterine insemination of mixed paternal and maternal-activated PBMCs has not yet been attempted and studied. The aim of our study is to test the effect of the addition of paternal lymphocytes on the implantation rate in RIF patients. Mononuclear cells were isolated from the peripheral blood of 98 RIF patients and cultured for 72 h before insemination into the endometrial cavity 48 h before embryo transfer. Our patients were divided into 4 groups according to the type and number of PBMCs inseminations. Our study shows that activated PBMCs promoted clinical pregnancy rates (CPR) in all groups. Moreover, we found that the groups injected with more than 2 million cells showed a better clinical outcome and, more interestingly, patients inseminated with both paternal and maternal activated PBMCs showed the highest CPR, reaching 47.2%, in addition to the highest implantation rate 31. 2% and the live birth rate 41.39%. Our work demonstrates the importance of administering a large number of activated PBMCs with the addition of paternal activated PBMCs to immunomodulate the endometrium for the success of in vitro fertilization in RIF patients.
Metabolite supplementation during in vitro embryo development improves blastocyst quality, however, our understanding of the incorporation of metabolites during in vitro maturation (IVM) is limited. Two important metabolites, follistatin and choline, have beneficial impacts during in vitro culture; however, effects of supplementation during IVM are unknown. The objective of this study was to investigate combining choline and follistatin during IVM on bovine oocytes and subsequent early embryonic development. We hypothesized that supplementation of choline with follistatin would synergistically improve oocyte quality and subsequent early embryonic development. Small follicles were aspirated from slaughterhouse ovaries to obtain cumulus oocyte complexes for IVM with choline (0, 1.3 or 1.8 mM) and follistatin (0 or 10 ng/mL) supplementation in a 3 × 2 design. A subset of oocytes underwent transcriptomic analysis, the remaining oocytes were used for IVF and in vitro culture (IVC). Transcript abundance of CEPT1 tended to be reduced in oocytes supplemented with 1.8 mM choline and follistatin compared to control oocytes (P = 0.07). Combination of follistatin with 1.8 mM choline supplementation during maturation, tended (P = 0.08) to reduce CPEB4 in oocytes. In the blastocysts, HDCA8, NANOG, SAV1 and SOX2 were increased with choline 1.8 mM supplementation without follistatin (P < 0.05), while HDCA8 and SOX2 were increased when follistatin was incorporated (P < 0.05). The combination of choline and follistatin during oocyte maturation may provide a beneficial impact on early embryonic development. Further research is warranted to investigate the interaction between these two metabolites during early embryonic development and long-term influence on fetal development.

