Pub Date : 2024-02-22DOI: 10.1017/s0967199424000042
Mohammad Seify, Mohammad Ali Khalili, Fatemeh Anbari, Yeganeh Koohestanidehaghi
Electromagnetic radiation (EMR) has deleterious effects on sperm motility and viability, as well as oocyte membrane and organelle structure. The aim was to assess the effects of cell phone radiation on preimplantation embryo morphokinetics and blastocyst viability in mice. For superovulation, 20 female mice were treated with intraperitoneal (IP) injections of 10 IU pregnant mare’s serum gonadotropin (Folligon® PMSG), followed by 10 IU of human chorionic gonadotropin (hCG) after 48 h. The zygotes (n = 150) from the control group were incubated for 4 days. The experimental zygotes (n = 150) were exposed to a cell phone emitting EMR with a frequency range 900–1800 MHz for 30 min on day 1. Then, all embryos were cultured in the time-lapse system and annotated based on time points from the 2-cell stage (t2) to hatched blastocyst (tHDyz), as well as abnormal cleavage patterns. Blastocyst viability was assessed using Hoechst and propidium iodide staining. Significant increases (P < 0.05) were observed in the cleavage division time points of t2, t8, t10, and t12 of the experimental group compared with the controls. In terms of blastocyst formation parameters, a delay in embryo development was observed in the experimental group compared with the controls. Data analysis of the time intervals between the two groups showed a significant difference in the s3 time interval (P < 0.05). Also, the rates of fragmentation, reverse cleavage, vacuole formation, and embryo arrest were significantly higher in the experimental group (P < 0.05). Furthermore, the cell survival rate in the experimental group was lower than the control group (P < 0.05). Exposure to EMR has detrimental consequences for preimplantation embryo development in mice. These effects can manifest as defects in the cleavage stage and impaired blastocyst formation, leading to lower cell viability.
{"title":"Detrimental effects of electromagnetic radiation emitted from cell phone on embryo morphokinetics and blastocyst viability in mice","authors":"Mohammad Seify, Mohammad Ali Khalili, Fatemeh Anbari, Yeganeh Koohestanidehaghi","doi":"10.1017/s0967199424000042","DOIUrl":"https://doi.org/10.1017/s0967199424000042","url":null,"abstract":"<p>Electromagnetic radiation (EMR) has deleterious effects on sperm motility and viability, as well as oocyte membrane and organelle structure. The aim was to assess the effects of cell phone radiation on preimplantation embryo morphokinetics and blastocyst viability in mice. For superovulation, 20 female mice were treated with intraperitoneal (IP) injections of 10 IU pregnant mare’s serum gonadotropin (Folligon<span>®</span> PMSG), followed by 10 IU of human chorionic gonadotropin (hCG) after 48 h. The zygotes (<span>n</span> = 150) from the control group were incubated for 4 days. The experimental zygotes (<span>n</span> = 150) were exposed to a cell phone emitting EMR with a frequency range 900–1800 MHz for 30 min on day 1. Then, all embryos were cultured in the time-lapse system and annotated based on time points from the 2-cell stage (t2) to hatched blastocyst (tHDyz), as well as abnormal cleavage patterns. Blastocyst viability was assessed using Hoechst and propidium iodide staining. Significant increases (<span>P</span> < 0.05) were observed in the cleavage division time points of t2, t8, t10, and t12 of the experimental group compared with the controls. In terms of blastocyst formation parameters, a delay in embryo development was observed in the experimental group compared with the controls. Data analysis of the time intervals between the two groups showed a significant difference in the s3 time interval (<span>P</span> < 0.05). Also, the rates of fragmentation, reverse cleavage, vacuole formation, and embryo arrest were significantly higher in the experimental group (<span>P</span> < 0.05). Furthermore, the cell survival rate in the experimental group was lower than the control group (<span>P</span> < 0.05). Exposure to EMR has detrimental consequences for preimplantation embryo development in mice. These effects can manifest as defects in the cleavage stage and impaired blastocyst formation, leading to lower cell viability.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":"25 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
{"title":"CRMP5 participates in oocyte meiosis by regulating spastin to correct microtubule-kinetochore misconnection.","authors":"Zhen Jin, Zhi-Cai Zhang, Chen-Yu Xiao, Mei-Qi Li, Qian-Ru Li, Lei-Lei Gao","doi":"10.1017/S0967199423000564","DOIUrl":"10.1017/S0967199423000564","url":null,"abstract":"<p><p>Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"21-27"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-04DOI: 10.1017/S0967199423000576
Paola Maria da Silva Rosa, Pedro Henrique Evagelista Guedes, Joaquim Mansano Garcia, Clara Slade Oliveira
Oocyte cytoplasmic evaluation is based on homogeneity and granular appearance. Our study investigated if a granular cytoplasm, highly heterogeneous, would affect oocyte competence in bovine. In two experiments, bovine cumulus-oocyte complexes (COCs) with homogeneous cytoplasm (control, CC) and granulated cytoplasm (granular, GC) were selected from a regular pool of COCs. Experiment 1 was performed with slaughterhouse ovaries, and Experiment 2 was carried out in Girolando COCs obtained from ovum pick-up. Granular oocytes had higher caspase 3 levels (66.17 ± 11.61 vs 172.08 ± 16.95, P < 0.01) and similar GAP junction activity (5.64 ± 0.45 vs 6.29 ± 0.29). ZAR1 relative mRNA amount was lower in granular oocytes (178.27 ± 151.63 vs 0.89 ± 0.89, P = 0.01) and no effect was detected for MATER, PPP2R1A, ENY2, IGF2R, and BMP15 genes. Despite molecular differences, no detrimental effect was detected on oocyte competence in GC oocytes. Cleavage (Experiment 1: 59.52 ± 7.21% vs 59.79 ± 6.10% and Experiment 2: 68.88 ± 4.82 vs 74.41 ± 5.89%) and blastocyst (Experiment 1: 29.28 ± 4.14% vs 23.15 ± 2.96% and Experiment 2: 21.11 ± 3.28% vs 21.02 ± 6.08%) rates were similar between CC and GC (Experiments 1 and 2, respectively). Post-transfer embryo development revealed that pregnancy (CC: 24.27 ± 9.70% vs GC: 26.31 ± 7.23%) and calving (23.68% vs 33.33%) rates and fetal growth were not affected by the presence of cytoplasmic granules. Our results demonstrated that oocytes with granular cytoplasm present equivalent efficiency for IVF and calf production compared with homogenous cytoplasm oocytes. This could be observed through similar cleavage, blastocyst rates, and fetal growth development. In addition to differences in oocyte gene expression related to oocyte quality, it seems not to affect oocyte developmental competence.
卵母细胞细胞质评价是基于均匀性和颗粒状外观。本研究探讨了高度异质性的颗粒状细胞质是否会影响牛卵母细胞的能力。在两个实验中,从常规的COCs池中选择具有均匀细胞质(对照,CC)和粒状细胞质(颗粒,GC)的牛卵母细胞复合物(COCs)。试验1以屠宰场子房为试验材料,试验2以采卵获得的Girolando COCs为试验材料。颗粒状卵母细胞的caspase 3水平较高(66.17±11.61 vs 172.08±16.95,P 0.01), GAP连接活性相似(5.64±0.45 vs 6.29±0.29)。颗粒状卵母细胞中ZAR1相对mRNA量较低(178.27±151.63 vs 0.89±0.89,P = 0.01),对MATER、PPP2R1A、ENY2、IGF2R和BMP15基因无影响。尽管存在分子差异,但未检测到GC卵母细胞对卵母细胞能力的不利影响。CC和GC的卵裂率(实验1:59.52±7.21% vs 59.79±6.10%,实验2:68.88±4.82 vs 74.41±5.89%)和囊胚率(实验1:29.28±4.14% vs 23.15±2.96%,实验2:21.11±3.28% vs 21.02±6.08%)相似(实验1和2)。移植后胚胎发育结果显示,细胞质颗粒的存在对妊娠率(CC: 24.27±9.70% vs GC: 26.31±7.23%)、产羔率(23.68% vs 33.33%)和胎儿生长均无影响。我们的研究结果表明,颗粒状细胞质的卵母细胞与均匀细胞质的卵母细胞相比,在试管婴儿和犊牛生产中具有同等的效率。这可以通过相似的卵裂、囊胚率和胎儿生长发育来观察。除了与卵母细胞质量相关的卵母细胞基因表达差异外,似乎不影响卵母细胞的发育能力。
{"title":"Cytoplasmic granules in bovine oocytes do not affect embryonic or fetal development.","authors":"Paola Maria da Silva Rosa, Pedro Henrique Evagelista Guedes, Joaquim Mansano Garcia, Clara Slade Oliveira","doi":"10.1017/S0967199423000576","DOIUrl":"10.1017/S0967199423000576","url":null,"abstract":"<p><p>Oocyte cytoplasmic evaluation is based on homogeneity and granular appearance. Our study investigated if a granular cytoplasm, highly heterogeneous, would affect oocyte competence in bovine. In two experiments, bovine cumulus-oocyte complexes (COCs) with homogeneous cytoplasm (control, CC) and granulated cytoplasm (granular, GC) were selected from a regular pool of COCs. Experiment 1 was performed with slaughterhouse ovaries, and Experiment 2 was carried out in Girolando COCs obtained from ovum pick-up. Granular oocytes had higher caspase 3 levels (66.17 ± 11.61 vs 172.08 ± 16.95, <i>P <</i> 0.01) and similar GAP junction activity (5.64 ± 0.45 vs 6.29 ± 0.29). <i>ZAR1</i> relative mRNA amount was lower in granular oocytes (178.27 ± 151.63 vs 0.89 ± 0.89, <i>P =</i> 0.01) and no effect was detected for <i>MATER</i>, <i>PPP2R1A</i>, <i>ENY2</i>, <i>IGF2R</i>, and <i>BMP15</i> genes. Despite molecular differences, no detrimental effect was detected on oocyte competence in GC oocytes. Cleavage (Experiment 1: 59.52 ± 7.21% vs 59.79 ± 6.10% and Experiment 2: 68.88 ± 4.82 vs 74.41 ± 5.89%) and blastocyst (Experiment 1: 29.28 ± 4.14% vs 23.15 ± 2.96% and Experiment 2: 21.11 ± 3.28% vs 21.02 ± 6.08%) rates were similar between CC and GC (Experiments 1 and 2, respectively). Post-transfer embryo development revealed that pregnancy (CC: 24.27 ± 9.70% vs GC: 26.31 ± 7.23%) and calving (23.68% vs 33.33%) rates and fetal growth were not affected by the presence of cytoplasmic granules. Our results demonstrated that oocytes with granular cytoplasm present equivalent efficiency for IVF and calf production compared with homogenous cytoplasm oocytes. This could be observed through similar cleavage, blastocyst rates, and fetal growth development. In addition to differences in oocyte gene expression related to oocyte quality, it seems not to affect oocyte developmental competence.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"28-37"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-01-04DOI: 10.1017/S0967199423000618
Francisco Vergara, Javier Fernández, Concepción Pedrosa, María Muñoz, Elvira Jerez, Mireia Varón, Carmen Moyano, Alberto Yoldi, Jordi Ponce
Despite the high level of standardization of the intracytoplasmic sperm injection (ICSI) technique, there are some aspects that deserve special attention and should still be improved. The major drawback of the technique is its invasiveness, as during cytoplasmic aspiration different structures of the oocyte may be lost or damaged. This is partly because the microtools used in ICSI were not specially designed for assisted reproduction but for other medical-biological disciplines. In view of the above caveats, the aim of the study was to compare the results of ICSI with the traditional oocyte-holding pipette and the oocyte-holding pipette without aspiration (PiWA). In total, 155 patients and 1037 oocytes were included in the study. In each ICSI cycle, half of the oocytes were microinjected using a traditional holding pipette and the other half using a PiWA. In result, the PiWA technique produced a significant increase in the fertilization rate: 88.12% (95%CI: 84.62-90.92%); holding pipette: 73.33% (95%CI: 68.72-77.49%). Also, it produced a significant decrease in the embryo degeneration rate compared with the traditional holding pipette [PiWA: 2.07% (95%CI: 1.11-3.8%); holding pipette: 4.51% (95%CI: 3.06-6.59%)]. Pregnancy rate depended on the holding technique used, both in single embryo transfers (n = 59; χ2 = 4.608; P-value = 0.032) and double embryo transfers (n = 156; χ2 = 4.344; P-value = 0.037); with PiWA presenting a significantly higher pregnancy rate than the traditional holding technique. Based on current evidence and the present results, improvements should focus on decreasing the invasiveness of the microinjection itself by minimizing or avoiding aspiration and cytoplasmic disorganization, as is successfully achieved with PiWA.
{"title":"Comparative study of intracytoplasmic sperm injection using the traditional holding and the oocyte-holding pipette without aspiration.","authors":"Francisco Vergara, Javier Fernández, Concepción Pedrosa, María Muñoz, Elvira Jerez, Mireia Varón, Carmen Moyano, Alberto Yoldi, Jordi Ponce","doi":"10.1017/S0967199423000618","DOIUrl":"10.1017/S0967199423000618","url":null,"abstract":"<p><p>Despite the high level of standardization of the intracytoplasmic sperm injection (ICSI) technique, there are some aspects that deserve special attention and should still be improved. The major drawback of the technique is its invasiveness, as during cytoplasmic aspiration different structures of the oocyte may be lost or damaged. This is partly because the microtools used in ICSI were not specially designed for assisted reproduction but for other medical-biological disciplines. In view of the above caveats, the aim of the study was to compare the results of ICSI with the traditional oocyte-holding pipette and the oocyte-holding pipette without aspiration (PiWA). In total, 155 patients and 1037 oocytes were included in the study. In each ICSI cycle, half of the oocytes were microinjected using a traditional holding pipette and the other half using a PiWA. In result, the PiWA technique produced a significant increase in the fertilization rate: 88.12% (95%CI: 84.62-90.92%); holding pipette: 73.33% (95%CI: 68.72-77.49%). Also, it produced a significant decrease in the embryo degeneration rate compared with the traditional holding pipette [PiWA: 2.07% (95%CI: 1.11-3.8%); holding pipette: 4.51% (95%CI: 3.06-6.59%)]. Pregnancy rate depended on the holding technique used, both in single embryo transfers (<i>n</i> = 59; χ<sup>2</sup> = 4.608; <i>P</i>-value = 0.032) and double embryo transfers (<i>n</i> = 156; χ<sup>2</sup> = 4.344; <i>P</i>-value = 0.037); with PiWA presenting a significantly higher pregnancy rate than the traditional holding technique. Based on current evidence and the present results, improvements should focus on decreasing the invasiveness of the microinjection itself by minimizing or avoiding aspiration and cytoplasmic disorganization, as is successfully achieved with PiWA.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"96-101"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-04DOI: 10.1017/S0967199423000461
Roya Harsini, Saeed Zavareh, Meysam Nasiri, Sara Seyfi
The aim of this research was to investigate the effect of Coenzyme Q10 (CoQ10) on the expression of the Transcription Factor A Mitochondrial (Tfam) gene and mtDNA copy number in preantral follicles (PFs) of mice during in vitro culture. To conduct this experimental study, PFs were isolated from 14-day-old National Medical Research Institute mice and cultured in the presence of 50 µm CoQ10 for 12 days. On the 12th day, human chorionic gonadotropin was added to stimulate ovulation. The fundamental parameters, including preantral follicle developmental rate and oocyte maturation, were evaluated. Additionally, the Tfam gene expression and mtDNA copy number of granulosa cells and oocytes were assessed using the real-time polymerase chain reaction. The results revealed that CoQ10 significantly increased the diameter of PFs, survival rate, antrum formation, and metaphase II (MII) oocytes (P < 0.05). Moreover, in the CoQ10-treated groups, the Tfam gene expression in granulosa cells and oocytes increased considerably compared with the control group. The mtDNA copy number of granulosa cells and oocytes cultured in the presence of CoQ10 was substantially higher compared with the control groups (P < 0.05). The addition of CoQ10 to the culture medium enhances the developmental competence of PFs during in vitro culture by upregulating Tfam gene expression and increasing mtDNA copy number in oocyte and granulosa cells.
{"title":"The effect of Coenzyme Q10 on mitochondrial biogenesis in mouse ovarian follicles during <i>in vitro</i> culture.","authors":"Roya Harsini, Saeed Zavareh, Meysam Nasiri, Sara Seyfi","doi":"10.1017/S0967199423000461","DOIUrl":"10.1017/S0967199423000461","url":null,"abstract":"<p><p>The aim of this research was to investigate the effect of Coenzyme Q10 (CoQ10) on the expression of the Transcription Factor A Mitochondrial (<i>Tfam</i>) gene and mtDNA copy number in preantral follicles (PFs) of mice during <i>in vitro</i> culture. To conduct this experimental study, PFs were isolated from 14-day-old National Medical Research Institute mice and cultured in the presence of 50 µm CoQ10 for 12 days. On the 12th day, human chorionic gonadotropin was added to stimulate ovulation. The fundamental parameters, including preantral follicle developmental rate and oocyte maturation, were evaluated. Additionally, the <i>Tfam</i> gene expression and mtDNA copy number of granulosa cells and oocytes were assessed using the real-time polymerase chain reaction. The results revealed that CoQ10 significantly increased the diameter of PFs, survival rate, antrum formation, and metaphase II (MII) oocytes (<i>P</i> < 0.05). Moreover, in the CoQ10-treated groups, the <i>Tfam</i> gene expression in granulosa cells and oocytes increased considerably compared with the control group. The mtDNA copy number of granulosa cells and oocytes cultured in the presence of CoQ10 was substantially higher compared with the control groups (<i>P</i> < 0.05). The addition of CoQ10 to the culture medium enhances the developmental competence of PFs during <i>in vitro</i> culture by upregulating <i>Tfam</i> gene expression and increasing mtDNA copy number in oocyte and granulosa cells.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"14-20"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-05DOI: 10.1017/S0967199423000552
Maria Mangini, Nunzia Limatola, Maria Antonietta Ferrara, Giuseppe Coppola, Jong Tai Chun, Anna Chiara De Luca, Luigia Santella
The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca2+ signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca2+ release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.
{"title":"Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization.","authors":"Maria Mangini, Nunzia Limatola, Maria Antonietta Ferrara, Giuseppe Coppola, Jong Tai Chun, Anna Chiara De Luca, Luigia Santella","doi":"10.1017/S0967199423000552","DOIUrl":"10.1017/S0967199423000552","url":null,"abstract":"<p><p>The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca<sup>2+</sup> signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca<sup>2+</sup> release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"38-48"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-07DOI: 10.1017/S096719942300059X
B Divya Sri, S Harsha Lekha, K Narendra Gopal Reddy, Deepa Pathipati, B Rambabu Naik, P Jagapathy Ramayya, K Veera Bramhaiah, L S S Varaprasad Reddy, A V N Siva Kumar
The present study was conducted to elucidate (1) the influence of kisspeptin (KP) on the in vitro development of preantral follicles (PFs) and (2) evolution of KP receptor gene (KISS1R) expression during ovarian follicular development in sheep. Kisspeptin was supplemented (0-100 µg/ml) in the culture medium of PFs for 6 days. The cumulus-oocyte complexes (COCs) from cultured PFs were subsequently matured to metaphase II (MII) for an additional 24 h. The proportions of PFs exhibiting growth, antrum formation, average increase in diameter, and maturation of oocytes to MII stage were the indicators of follicular development in vitro. The expression of the kisspeptin receptor gene at each development stages of in vivo developed (preantral, early antral, antral, large antral and COCs from Graafian follicles) and in vitro cultured PFs supplemented with KP was assessed using a real-time polymerase chain reaction. The best development in all the parameters under study was elicited with 10 µg/ml of KP. Supplementation of KP (10 µg/ml) in a medium containing other growth factors (insulin-like growth factor-I) and hormones (growth hormone, thyroxine, follicle-stimulating hormone) resulted in better PF development. The KISS1R gene was expressed in follicular cells and oocytes at all the development stages of both in vivo developed and in vitro cultured follicles. Higher KISS1R gene expression was supported by culture medium containing KP along with other hormones and growth factors. Accordingly, it is suggested that one of the mechanisms through which KP and other growth factors and hormones influence the ovarian follicular development in mammals is through the upregulation of expression of the KP receptor gene.
{"title":"Kisspeptin stimulates sheep ovarian follicular development <i>in vitro</i> through homologous receptors.","authors":"B Divya Sri, S Harsha Lekha, K Narendra Gopal Reddy, Deepa Pathipati, B Rambabu Naik, P Jagapathy Ramayya, K Veera Bramhaiah, L S S Varaprasad Reddy, A V N Siva Kumar","doi":"10.1017/S096719942300059X","DOIUrl":"10.1017/S096719942300059X","url":null,"abstract":"<p><p>The present study was conducted to elucidate (1) the influence of kisspeptin (KP) on the <i>in vitro</i> development of preantral follicles (PFs) and (2) evolution of KP receptor gene (<i>KISS1R</i>) expression during ovarian follicular development in sheep. Kisspeptin was supplemented (0-100 µg/ml) in the culture medium of PFs for 6 days. The cumulus-oocyte complexes (COCs) from cultured PFs were subsequently matured to metaphase II (MII) for an additional 24 h. The proportions of PFs exhibiting growth, antrum formation, average increase in diameter, and maturation of oocytes to MII stage were the indicators of follicular development <i>in vitro</i>. The expression of the kisspeptin receptor gene at each development stages of <i>in vivo</i> developed (preantral, early antral, antral, large antral and COCs from Graafian follicles) and <i>in vitro</i> cultured PFs supplemented with KP was assessed using a real-time polymerase chain reaction. The best development in all the parameters under study was elicited with 10 µg/ml of KP. Supplementation of KP (10 µg/ml) in a medium containing other growth factors (insulin-like growth factor-I) and hormones (growth hormone, thyroxine, follicle-stimulating hormone) resulted in better PF development. The <i>KISS1R</i> gene was expressed in follicular cells and oocytes at all the development stages of both <i>in vivo</i> developed and <i>in vitro</i> cultured follicles. Higher <i>KISS1R</i> gene expression was supported by culture medium containing KP along with other hormones and growth factors. Accordingly, it is suggested that one of the mechanisms through which KP and other growth factors and hormones influence the ovarian follicular development in mammals is through the upregulation of expression of the KP receptor gene.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"49-57"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-27DOI: 10.1017/S096719942300062X
Zahra Bashiri, Mansoureh Movahedin, Vahid Pirhajati, Hamidreza Asgari, Morteza Koruji
Mouse testicular tissue is composed of seminiferous tubules and interstitial tissue. Mammalian spermatogenesis is divided into three stages: spermatocytogenesis (mitotic divisions) in which spermatogonial stem cells (SSCs) turn into spermatocytes, followed by two consecutive meiotic divisions in which spermatocytes form spermatids. Spermatids differentiate into spermatozoa during spermiogenesis. Various factors affect the process of spermatogenesis and the organization of cells in the testis. Any disorder in different stages of spermatogenesis will have negative effects on male fertility. The aim of the current study was to compare the in vitro and in vivo spermatogenesis processes before and after transplantation to azoospermic mice using ultrastructural techniques. In this study, mice were irradiated with single doses of 14 Gy 60Co radiation. SSCs isolated from neonatal mice were cultured in vitro for 1 week and were injected into the seminiferous tubule recipient's mice. Testicular cells of neonatal mice were cultured in the four groups on extracellular matrix-based 3D printing scaffolds. The transplanted testes (8 weeks after transplantation) and cultured testicular cells in vitro (after 3 weeks) were then processed for transmission electron microscopy studies. Our study's findings revealed that the morphology and ultrastructure of testicular cells after transplantation and in vitro culture are similar to those of in vivo spermatogenesis, indicating that spermatogenic cell nature is unaltered in vitro.
{"title":"Ultrastructural study: <i>in vitro</i> and <i>in vivo</i> differentiation of mice spermatogonial stem cells.","authors":"Zahra Bashiri, Mansoureh Movahedin, Vahid Pirhajati, Hamidreza Asgari, Morteza Koruji","doi":"10.1017/S096719942300062X","DOIUrl":"10.1017/S096719942300062X","url":null,"abstract":"<p><p>Mouse testicular tissue is composed of seminiferous tubules and interstitial tissue. Mammalian spermatogenesis is divided into three stages: spermatocytogenesis (mitotic divisions) in which spermatogonial stem cells (SSCs) turn into spermatocytes, followed by two consecutive meiotic divisions in which spermatocytes form spermatids. Spermatids differentiate into spermatozoa during spermiogenesis. Various factors affect the process of spermatogenesis and the organization of cells in the testis. Any disorder in different stages of spermatogenesis will have negative effects on male fertility. The aim of the current study was to compare the <i>in vitro</i> and <i>in vivo</i> spermatogenesis processes before and after transplantation to azoospermic mice using ultrastructural techniques. In this study, mice were irradiated with single doses of 14 Gy <sup>60</sup>Co radiation. SSCs isolated from neonatal mice were cultured <i>in vitro</i> for 1 week and were injected into the seminiferous tubule recipient's mice. Testicular cells of neonatal mice were cultured in the four groups on extracellular matrix-based 3D printing scaffolds. The transplanted testes (8 weeks after transplantation) and cultured testicular cells <i>in vitro</i> (after 3 weeks) were then processed for transmission electron microscopy studies. Our study's findings revealed that the morphology and ultrastructure of testicular cells after transplantation and <i>in vitro</i> culture are similar to those of <i>in vivo</i> spermatogenesis, indicating that spermatogenic cell nature is unaltered <i>in vitro</i>.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"87-95"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-22DOI: 10.1017/S0967199423000588
Hong Ji, Qing Zhang, Lu Ding, Rongjuan Chen, Fu Liu, Ping Li
This study aimed to investigate the structural and metabolic changes in cumulus cells of underweight women and their effects on oocyte maturation and fertilization. The cytoplasmic ultrastructure was analyzed by electron microscopy, mitochondrial membrane potential by immunofluorescence, and mitochondrial DNA copy number by relative quantitative polymerase chain reaction. The expression of various proteins including the oxidative stress-derived product 4-hydroxynonenal (4-HNE) and autophagy and apoptosis markers such as Vps34, Atg-5, Beclin 1, Lc3-I, II, Bax, and Bcl-2 was assessed and compared between groups. Oocyte maturation and fertilization rates were lower in underweight women (P < 0.05), who presented with cumulus cells showing abnormal mitochondrial morphology and increased cell autophagy. Compared with the mitochondrial DNA copies of the control group, those of the underweight group increased but not significantly. The mitochondrial membrane potential was similar between the groups (P = 0.8). Vps34, Atg-5, Lc3-II, Bax, and Bcl-2 expression and 4-HNE levels were higher in the underweight group compared with the control group (P < 0.01); however, the Bax/Bcl-2 ratio was lower in the underweight group compared with the control group (P = 0.031). Additionally, Beclin 1 protein levels were higher in the underweight group compared with the control group but without statistical significance. In conclusion, malnutrition and other conditions in underweight women may adversely affect ovulation, and the development, and fertilization of oocytes resulting from changes to the intracellular structure of cumulus cells and metabolic processes. These changes may lead to reduced fertility or unsatisfactory reproduction outcomes in women.
{"title":"Structural and metabolic cumulus cell alteration affects oocyte quality in underweight women.","authors":"Hong Ji, Qing Zhang, Lu Ding, Rongjuan Chen, Fu Liu, Ping Li","doi":"10.1017/S0967199423000588","DOIUrl":"10.1017/S0967199423000588","url":null,"abstract":"<p><p>This study aimed to investigate the structural and metabolic changes in cumulus cells of underweight women and their effects on oocyte maturation and fertilization. The cytoplasmic ultrastructure was analyzed by electron microscopy, mitochondrial membrane potential by immunofluorescence, and mitochondrial DNA copy number by relative quantitative polymerase chain reaction. The expression of various proteins including the oxidative stress-derived product 4-hydroxynonenal (4-HNE) and autophagy and apoptosis markers such as Vps34, Atg-5, Beclin 1, Lc3-I, II, Bax, and Bcl-2 was assessed and compared between groups. Oocyte maturation and fertilization rates were lower in underweight women (<i>P</i> < 0.05), who presented with cumulus cells showing abnormal mitochondrial morphology and increased cell autophagy. Compared with the mitochondrial DNA copies of the control group, those of the underweight group increased but not significantly. The mitochondrial membrane potential was similar between the groups (<i>P</i> = 0.8). Vps34, Atg-5, Lc3-II, Bax, and Bcl-2 expression and 4-HNE levels were higher in the underweight group compared with the control group (<i>P</i> < 0.01); however, the Bax/Bcl-2 ratio was lower in the underweight group compared with the control group (<i>P</i> = 0.031). Additionally, Beclin 1 protein levels were higher in the underweight group compared with the control group but without statistical significance. In conclusion, malnutrition and other conditions in underweight women may adversely affect ovulation, and the development, and fertilization of oocytes resulting from changes to the intracellular structure of cumulus cells and metabolic processes. These changes may lead to reduced fertility or unsatisfactory reproduction outcomes in women.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"77-86"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-11-29DOI: 10.1017/S0967199423000448
Bin Meng, Jiahui He, Wenbin Cao, Yanru Zhang, Jia Qi, Shiwei Luo, Chong Shen, Juan Zhao, Ying Xue, Pengxiang Qu, Enqi Liu
The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.
{"title":"Paternal high-fat diet altered H3K36me3 pattern of pre-implantation embryos.","authors":"Bin Meng, Jiahui He, Wenbin Cao, Yanru Zhang, Jia Qi, Shiwei Luo, Chong Shen, Juan Zhao, Ying Xue, Pengxiang Qu, Enqi Liu","doi":"10.1017/S0967199423000448","DOIUrl":"10.1017/S0967199423000448","url":null,"abstract":"<p><p>The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (<i>SETD</i><i>2</i>), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that <i>SETD</i><i>2</i> mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in <i>SETD</i>2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"1-6"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}