Objective: To explore the influencing factors of prognosis in patients with sepsis-induced acute kidney injury undergoing continuous renal replacement therapy (CRRT), and to construct a mortality risk prediction model.
Methods: A retrospective research method was adopted, patients with sepsis-induced acute kidney injury who received CRRT at Fuyang People's Hospital from February 2021 to September 2023 were included in this study. Collect general information, comorbidities, vital signs, laboratory indicators, disease severity scores, treatment status, length of stay in the intensive care unit (ICU), and 28-day prognosis were collected within 24 hours of patient enrollment. The Cox regression model was used to identify the factors influencing prognosis in patients with sepsis-induced acute kidney injury, and a nomogram model was developed to predict mortality in these patients. Receiver operator characteristic curve (ROC curve), calibration curve, and Hosmer-Lemeshow test were used to validate the predictive performance of the nomogram model.
Results: A total of 146 patients with sepsis-induced acute kidney injury were included, of which 98 survived and 48 died (with a mortality of 32.88%) after 28 days of treatment. The blood lactic acid, interleukin-6 (IL-6), serum cystatin C, acute physiology and chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA), and proportion of mechanical ventilation in the death group were significantly higher than those in the survival group. The ICU stay was significantly longer than that in the survival group, and the glomerular filtration rate was significantly lower than that in the survival group. Cox regression analysis showed that blood lactic acid [odds ratio (OR) = 2.992, 95% confidence interval (95%CI) was 1.023-8.754], IL-6 (OR = 3.522, 95%CI was 1.039-11.929), serum cystatin C (OR = 3.999, 95%CI was 1.367-11.699), mechanical ventilation (OR = 4.133, 95%CI was 1.413-12.092), APACHE II score (OR = 5.013, 95%CI was 1.713-14.667), SOFA score (OR = 3.404, 95%CI was 1.634-9.959) were risk factors for mortality in patients with sepsis-induced acute kidney injury (all P < 0.05), glomerular filtration rate (OR = 0.294, 95%CI was 0.101-0.860) was a protective factor for mortality in patients with sepsis-induced acute kidney injury (P < 0.05). The ROC curve showed that the column chart model has a sensitivity of 80.0% (95%CI was 69.1%-89.2%) and a specificity of 89.3% (95%CI was 83.1%-95.2%) in predicting 28-day mortality in patients with acute kidney injury caused by sepsis.
Conclusions: Blood lactic acid, IL-6, mechanical ventilation, APACHEII score, SOFA score, glomerular filtration rate, and serum cystatin C are associated with the risk of death in patients with sepsis-induced acute kidney injury. The nomogram model could help early identification of mortality risk in these patients.
Objective: To investigate the effect of hyperbaric oxygen (HBO) on paroxysmal sympathetic hyperexcitation (PSH) after brain injury.
Methods: A multicenter retrospective study was conducted. Fifty-six patients with PSH who received HBO treatment from four hospitals in Henan Province from January 2021 to September 2023 were selected as the HBO group, and 36 patients with PSH who did not receive HBO treatment from Zhengzhou People's Hospital from May 2018 to December 2020 were selected as the control group. PSH assessment measure (PSH-AM) score [clinical feature scale (CFS) score+diagnostic likelihood tool (DLT) score] and Glasgow coma scale (GCS) were compared before and after HBO treatment, and between HBO group and control group to evaluate the effect of HBO treatment on prognosis of PSH patients.
Results: There were no statistically significant differences in age, gender, PSH etiology, GCS score, time from onset to occurrence of PSH, CFS score, CFS+DLT score and frequency of PSH episodes between the two groups, indicating comparability. The duration of HBO treatment ranged from 3 to 11 days for 56 patients receiving HBO treatment, and the duration of HBO treatment ranged from 3 to 5 courses. Compared with before treatment, after HBO treatment, PSH symptoms in HBO patients were significantly relieved (body temperature increase: 14.29% vs. 64.29%, heart rate increase: 25.00% vs. 98.21%, shortness of breath: 14.29% vs. 76.79%, blood pressure increase: 8.93% vs. 85.71%, sweating: 10.71% vs. 85.71%, muscle tone increased: 19.64% vs. 75.00%, all P < 0.05), CFS+DLT score decreased significantly (16.90±4.81 vs. 22.12±3.12, P < 0.01), GCS score improved (12.31±5.34 vs. 5.95±2.18, P < 0.01). After 30 days of hospitalization, compared with the control group, PSH symptoms in the HBO group were improved (body temperature increase: 14.29% vs. 19.44%, heart rate increase: 19.64% vs. 25.00%, shortness of breath: 10.71% vs. 27.78%, blood pressure increase: 7.14% vs. 22.22%, sweating: 8.93% vs. 25.00%, muscle tone increased: 19.64% vs. 38.89%, all P < 0.05 except body temperature increase), CFS+DLT score decreased (16.90±3.81 vs. 19.98±4.89, P < 0.05), GCS score increased (14.12±4.12 vs. 12.31±4.14, P < 0.01), the length of intensive care unit (ICU) stay was shortened (days: 18.01±5.67 vs. 24.93±8.33, P < 0.01).
Conclusions: HBO treatment can significantly relieve the symptoms of patients with PSH after brain injury and provide a new idea for the treatment of PSH patients.
Macrophages are widely distributed in peripheral blood, lungs, liver, brain, kidneys, skin, testes, vascular endothelial cells, and other parts of the body. As sentinel cells of innate immunity, they play an important role in the occurrence and development of sepsis. Recent research in immune metabolism has revealed the complicated relationship between specific metabolic pathways of macrophages and their phenotype and function in sepsis. During the pro-inflammatory phase of sepsis, macrophages are characterized by glycolysis, while in the immunosuppressive phase, they rely more on mitochondrial oxidative phosphorylation (OXPHOS). Hence, this review describes how macrophages metabolism related signaling pathways, molecules, enzymes and metabolic intermediates determine their phenotype and function to find critical targets which regulate the body immune status in sepsis.