Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121941
Y. Shen, Ryu Isono, Satoshi Kodama, Yoka Konishi, Taiga Inoue, Akihiko Onuki, R. Maeda, Jia-Yeu Lin, H. Ishii, A. Takanishi
Periodic inspection of aging gas pipes is important. However, the conventional inspection approach of excavation is unfriendly to the environment. From the perspective of Sustainable Development Goals (SDGs), in this study, we introduced a pneumatically driven robot system called WATER-7 to observe the inner environment of aging pipes, in particular water inside these pipes, without excavation. The robot can locomote similar to an inchworm with a thrust module operating in a periodical pattern, select direction with an active bending module, and acquire images using a camera. The robot is designed and assembled within a diameter of 12[mm] to enable insertion into a gas meter valve as well as transition and retrieval from a 7[m] service pipe consisting of 8 pipe bends. To improve the driving performance, we also shortened the transit time by increasing air flow and improved the robustness of each module of the robot. Furthermore, an autonomous control system for autonomous burr avoidance based on image processing was developed. According to experiments, the robot average transit time and retrieval without damage count for the assumed scenario were 81[min] and 9 times, respectively. In addition, the autonomous burr avoidance was confirmed to be effective.
定期检查老化的燃气管道是很重要的。然而,传统的开挖检测方法对环境不友好。从可持续发展目标(Sustainable Development Goals, SDGs)的角度出发,在本研究中,我们引入了一个名为water -7的气动驱动机器人系统,在不开挖的情况下,对老化管道的内部环境,特别是管道内部的水进行观察。该机器人可以像尺蠖一样通过推力模块周期性地运动,通过主动弯曲模块选择方向,并使用相机获取图像。该机器人的设计和组装直径为12毫米,可以插入燃气表阀,也可以从由8个管道弯头组成的7米服务管道中过渡和回收。为了提高驱动性能,我们还通过增加空气流量来缩短运输时间,并提高机器人各模块的鲁棒性。在此基础上,提出了一种基于图像处理的自动避毛刺控制系统。实验结果表明,在假设场景下,机器人的平均移动时间为81[min],无损伤回收次数为9次。此外,还验证了自动避免毛刺的有效性。
{"title":"Design of a Pneumatically Driven Inchworm-Like Gas Pipe Inspection Robot with Autonomous Control","authors":"Y. Shen, Ryu Isono, Satoshi Kodama, Yoka Konishi, Taiga Inoue, Akihiko Onuki, R. Maeda, Jia-Yeu Lin, H. Ishii, A. Takanishi","doi":"10.1109/RoboSoft55895.2023.10121941","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121941","url":null,"abstract":"Periodic inspection of aging gas pipes is important. However, the conventional inspection approach of excavation is unfriendly to the environment. From the perspective of Sustainable Development Goals (SDGs), in this study, we introduced a pneumatically driven robot system called WATER-7 to observe the inner environment of aging pipes, in particular water inside these pipes, without excavation. The robot can locomote similar to an inchworm with a thrust module operating in a periodical pattern, select direction with an active bending module, and acquire images using a camera. The robot is designed and assembled within a diameter of 12[mm] to enable insertion into a gas meter valve as well as transition and retrieval from a 7[m] service pipe consisting of 8 pipe bends. To improve the driving performance, we also shortened the transit time by increasing air flow and improved the robustness of each module of the robot. Furthermore, an autonomous control system for autonomous burr avoidance based on image processing was developed. According to experiments, the robot average transit time and retrieval without damage count for the assumed scenario were 81[min] and 9 times, respectively. In addition, the autonomous burr avoidance was confirmed to be effective.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131195453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121952
A. Bakır, Doğa Özbek, A. Abazari, Onur Özcan
Detection and control of the physical contact/impact between micro aerial vehicles and the surrounding obstacles have become a significant issue with the rapid growth of their use in inspection and mapping missions in confined, obstacle-cluttered environments. In this work, we introduce a collision-resilient compliant micro quadcopter equipped with soft coil-spring type force sensors to passively resist and detect the physical contact/impact of the drone. The sensors act as resistive elements with a nominal resistance of 130–150 kΩ. They are manufactured from a conductive material via FDM 3D printing. We install these sensors on the protective bumpers of the collision-resilient foldable body of the drone. Any contact/impact between the bumpers and an obstacle results in deformation and buckling of the soft sensors, which results in a drastic change in their resistance, making it possible to detect the contacts/impacts of the bumpers. With a total weight of 220g and dimensions of 22cmx22cmx9cm, SCoReR successfully detects and recovers 100% of the contacts/impacts when it approaches a rigid wall with a velocity in the range of [0.1-1] m/s.
{"title":"SCoReR: Sensorized Collision Resilient Aerial Robot","authors":"A. Bakır, Doğa Özbek, A. Abazari, Onur Özcan","doi":"10.1109/RoboSoft55895.2023.10121952","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121952","url":null,"abstract":"Detection and control of the physical contact/impact between micro aerial vehicles and the surrounding obstacles have become a significant issue with the rapid growth of their use in inspection and mapping missions in confined, obstacle-cluttered environments. In this work, we introduce a collision-resilient compliant micro quadcopter equipped with soft coil-spring type force sensors to passively resist and detect the physical contact/impact of the drone. The sensors act as resistive elements with a nominal resistance of 130–150 kΩ. They are manufactured from a conductive material via FDM 3D printing. We install these sensors on the protective bumpers of the collision-resilient foldable body of the drone. Any contact/impact between the bumpers and an obstacle results in deformation and buckling of the soft sensors, which results in a drastic change in their resistance, making it possible to detect the contacts/impacts of the bumpers. With a total weight of 220g and dimensions of 22cmx22cmx9cm, SCoReR successfully detects and recovers 100% of the contacts/impacts when it approaches a rigid wall with a velocity in the range of [0.1-1] m/s.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"166 7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125974567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122013
M. Uğur, Burak Arslan, Alperen Özzeybek, Onur Özcan
Path-tracking is often challenging in miniature robots because their feet or wheels tend to slip due to the low robot weight. In this work, we investigate the effect of c-leg compliance on path-tracking performance and the obstacle-climbing capabilities of our foldable and miniature robot with soft, c-shaped legs. With its 82 mm x 60 mm x 29 mm size and 29.25 grams weight, a single module of our robot is one of the smallest untethered miniature robots. Our results show that utilizing soft c-shaped legs provides smooth path-tracking performance, similar to a wheeled differential drive robot. However, modules with rigid c-shaped legs are affected significantly by the impact and slip between the leg and the ground, and they perform rather unpredictably. Additionally, modules with wheels cannot climb obstacles 1 mm or larger. We show that using soft legs enhances the obstacle climbing skills of modules by climbing a 9 mm obstacle, while the module with rigid legs can only climb a 7 mm obstacle. These path-tracking abilities and obstacle-climbing capacity support our vision to build a reconfigurable robot using these modules.
{"title":"Effects of Compliance on Path-Tracking Performance of a Miniature Robot","authors":"M. Uğur, Burak Arslan, Alperen Özzeybek, Onur Özcan","doi":"10.1109/RoboSoft55895.2023.10122013","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122013","url":null,"abstract":"Path-tracking is often challenging in miniature robots because their feet or wheels tend to slip due to the low robot weight. In this work, we investigate the effect of c-leg compliance on path-tracking performance and the obstacle-climbing capabilities of our foldable and miniature robot with soft, c-shaped legs. With its 82 mm x 60 mm x 29 mm size and 29.25 grams weight, a single module of our robot is one of the smallest untethered miniature robots. Our results show that utilizing soft c-shaped legs provides smooth path-tracking performance, similar to a wheeled differential drive robot. However, modules with rigid c-shaped legs are affected significantly by the impact and slip between the leg and the ground, and they perform rather unpredictably. Additionally, modules with wheels cannot climb obstacles 1 mm or larger. We show that using soft legs enhances the obstacle climbing skills of modules by climbing a 9 mm obstacle, while the module with rigid legs can only climb a 7 mm obstacle. These path-tracking abilities and obstacle-climbing capacity support our vision to build a reconfigurable robot using these modules.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121868629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122012
Quan Xiong, Xuanyi Zhou, C. Yeow
Soft pneumatic actuator with strain-limiting layers has played an important role in soft robotics in the last decades. However, limited by their pre-designed and permanent strain-limiting layers, their motion pattern is usually single. Here, we proposed a soft pneumatic actuator with multiple motion patterns based on length-tuning strain-limiting layers. We integrated 4 cable-based strain-limiting layers into a 3D printed soft pneumatic actuator. A cable locking system is proposed to lock the cables as strain-limiting layers. The system is actuated by a small fabric balloon and can provide up to 79 N blocking force. With a rotatory sensor, it can also monitor the actual length of the cable. The soft pneumatic actuator can achieve omnidirectional bending and extension by regulating the state of the 4 cable locking systems. By experiments, we verify the work principle of cable locking system. The actuator here can also vary its stiffness from 6 N/m to 97 N/m by antagonism.
{"title":"A Soft Pneumatic Actuator with Multiple Motion Patterns Based on Length-tuning Strain-limiting Layers","authors":"Quan Xiong, Xuanyi Zhou, C. Yeow","doi":"10.1109/RoboSoft55895.2023.10122012","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122012","url":null,"abstract":"Soft pneumatic actuator with strain-limiting layers has played an important role in soft robotics in the last decades. However, limited by their pre-designed and permanent strain-limiting layers, their motion pattern is usually single. Here, we proposed a soft pneumatic actuator with multiple motion patterns based on length-tuning strain-limiting layers. We integrated 4 cable-based strain-limiting layers into a 3D printed soft pneumatic actuator. A cable locking system is proposed to lock the cables as strain-limiting layers. The system is actuated by a small fabric balloon and can provide up to 79 N blocking force. With a rotatory sensor, it can also monitor the actual length of the cable. The soft pneumatic actuator can achieve omnidirectional bending and extension by regulating the state of the 4 cable locking systems. By experiments, we verify the work principle of cable locking system. The actuator here can also vary its stiffness from 6 N/m to 97 N/m by antagonism.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126456661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121919
Kevin Wandke, Z. Y
Soft robots offer an exciting and novel alternative to traditional robots composed of rigid bodies. Many of the primary benefits soft robots have over more traditional robots result from their inherent compliance and their potential for low force interactions with their environments. Therefore, modeling soft robots requires the ability to accurately simulate contact mechanics. In this work, we present the solution of contact mechanics finite element problems specifically for soft robots in a MOOSE-based multiphysics simulation platform we developed, Kraken. The primary contributions of this work are threefold. Firstly, our implementations enable the modeling of additional types of contact critical to the simulation of soft robots. Next, we demonstrate how our new self contact method can be used to dramatically decrease the computational cost of contact modeling. Finally, we demonstrate the abilities of Kraken as a platform to simulate the complex interactions of soft robots and the environment.
{"title":"An Efficient Framework for the Solution of Contact Mechanics Problems in Soft Robotics","authors":"Kevin Wandke, Z. Y","doi":"10.1109/RoboSoft55895.2023.10121919","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121919","url":null,"abstract":"Soft robots offer an exciting and novel alternative to traditional robots composed of rigid bodies. Many of the primary benefits soft robots have over more traditional robots result from their inherent compliance and their potential for low force interactions with their environments. Therefore, modeling soft robots requires the ability to accurately simulate contact mechanics. In this work, we present the solution of contact mechanics finite element problems specifically for soft robots in a MOOSE-based multiphysics simulation platform we developed, Kraken. The primary contributions of this work are threefold. Firstly, our implementations enable the modeling of additional types of contact critical to the simulation of soft robots. Next, we demonstrate how our new self contact method can be used to dramatically decrease the computational cost of contact modeling. Finally, we demonstrate the abilities of Kraken as a platform to simulate the complex interactions of soft robots and the environment.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129164628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122071
M. Grube, R. Seifried
Soft grippers are very popular for complex gripping tasks, as they can easily grip objects of different shapes. Also, usually they cannot damage gripped objects because of their inherent softness. Additionally, in contrast to rigid grippers no or only very little control effort is needed for the gripping process. However, also for soft grippers sensor feedback can help to improve the gripping process and thus expand the range of applications. Thereby, besides gripping force measurements, especially curvature measurements are of interest to reconstruct the deformation of the gripper. In this contribution, a soft three-finger-gripper with integrated optical shape sensor, based on curvature sensors, is presented. The shape sensor allows to control the gripping process and check if an object is gripped correctly.
{"title":"An Optical Shape Sensor for Integration in Soft Grippers","authors":"M. Grube, R. Seifried","doi":"10.1109/RoboSoft55895.2023.10122071","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122071","url":null,"abstract":"Soft grippers are very popular for complex gripping tasks, as they can easily grip objects of different shapes. Also, usually they cannot damage gripped objects because of their inherent softness. Additionally, in contrast to rigid grippers no or only very little control effort is needed for the gripping process. However, also for soft grippers sensor feedback can help to improve the gripping process and thus expand the range of applications. Thereby, besides gripping force measurements, especially curvature measurements are of interest to reconstruct the deformation of the gripper. In this contribution, a soft three-finger-gripper with integrated optical shape sensor, based on curvature sensors, is presented. The shape sensor allows to control the gripping process and check if an object is gripped correctly.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127838839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121955
Lucrezia Lorenzon, Giulia Beccali, M. Cianchetti
In this work, we describe a soft robotic artificial heart ventricle whose novel pumping strategy is based on the programmable deformation of a fluid-containing and passive soft-shell. During pumping, the soft-shell collapses, showing the formation of inward folds that strongly contribute to the volumetric reduction of the soft-shell, thus to the pumping functionality. Our soft robotic artificial ventricle is a stand-alone system actuated by inverse pneumatic artificial muscles, that are arranged in a helical fashion around the soft-shell. We present a cable-driven soft pump as a study platform for preliminary investigation of the pumping strategy and the requirements for actuation. Three typologies of inverse pneumatic artificial muscles were fabricated and experimentally characterized as candidate actuators for the artificial ventricle. Finally, a ventricle prototype constituted by a soft-shell and an actuating system made of five inverse pneumatic actuators was designed and tested under physiologically relevant conditions of preload and afterload pressure. The experimental results demonstrated that our soft robotic artificial ventricle meets the functional requirements of a right heart ventricle operating in pulmonary circulation.
{"title":"A preliminary study on an innovative soft robotic artificial heart ventricle","authors":"Lucrezia Lorenzon, Giulia Beccali, M. Cianchetti","doi":"10.1109/RoboSoft55895.2023.10121955","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121955","url":null,"abstract":"In this work, we describe a soft robotic artificial heart ventricle whose novel pumping strategy is based on the programmable deformation of a fluid-containing and passive soft-shell. During pumping, the soft-shell collapses, showing the formation of inward folds that strongly contribute to the volumetric reduction of the soft-shell, thus to the pumping functionality. Our soft robotic artificial ventricle is a stand-alone system actuated by inverse pneumatic artificial muscles, that are arranged in a helical fashion around the soft-shell. We present a cable-driven soft pump as a study platform for preliminary investigation of the pumping strategy and the requirements for actuation. Three typologies of inverse pneumatic artificial muscles were fabricated and experimentally characterized as candidate actuators for the artificial ventricle. Finally, a ventricle prototype constituted by a soft-shell and an actuating system made of five inverse pneumatic actuators was designed and tested under physiologically relevant conditions of preload and afterload pressure. The experimental results demonstrated that our soft robotic artificial ventricle meets the functional requirements of a right heart ventricle operating in pulmonary circulation.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124021844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122083
Wu-Te Yang, Hannah S. Stuart, M. Tomizuka
Soft pneumatic actuators are widely used for soft grippers, which are known for their compliance as compared with traditional grippers. The generated force/torque of soft pneumatic actuators directly determines the grasping force. This paper introduces a computationally efficient soft pneumatic actuator (SPA) design methodology. The complex structure of the pneumatic actuator is approximated by a cantilever beam. The relationship between input pressure and output torque is derived by standard mechanical analysis. The design problem is formulated as a model-based optimization problem by treating the input-output mathematical model as the objective function. By solving the optimization problem, the optimal design parameters are obtained. Finite element analysis is applied to preliminarily verify the design parameters without the time-consuming fabrication of many actuators. Three soft actuators with different design parameter sets were fabricated to validate the optimal parameters. This work shows the utility of surprisingly simple calculations and assumptions for rapid parametric design studies.
{"title":"Mechanical Modeling and Optimal Model-based Design of a Soft Pneumatic Actuator","authors":"Wu-Te Yang, Hannah S. Stuart, M. Tomizuka","doi":"10.1109/RoboSoft55895.2023.10122083","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122083","url":null,"abstract":"Soft pneumatic actuators are widely used for soft grippers, which are known for their compliance as compared with traditional grippers. The generated force/torque of soft pneumatic actuators directly determines the grasping force. This paper introduces a computationally efficient soft pneumatic actuator (SPA) design methodology. The complex structure of the pneumatic actuator is approximated by a cantilever beam. The relationship between input pressure and output torque is derived by standard mechanical analysis. The design problem is formulated as a model-based optimization problem by treating the input-output mathematical model as the objective function. By solving the optimization problem, the optimal design parameters are obtained. Finite element analysis is applied to preliminarily verify the design parameters without the time-consuming fabrication of many actuators. Three soft actuators with different design parameter sets were fabricated to validate the optimal parameters. This work shows the utility of surprisingly simple calculations and assumptions for rapid parametric design studies.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121292130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122052
David Hardman, Ryman Hashem, F. Iida
As the task-complexities demanded of soft robots continue to increase, so too does the need for soft sensorized skins which can provide complex tactile feedback. Here we consider the detection of asymmetric deformations by designing and validating an easy-to-fabricate hydrogel-silicone composite sensor for deployment in an underactuated soft robotic manipulator. For proprioception and exteroception, this skin can sense asymmetric bifurcations in a stretchable skin without affecting functionality. Our method facilitates the sensor's use in a wide range of soft robotic actuators: we present its ability to respond to repeated, incremental, and oscillating stimuli in the soft manipulator, and demonstrate its ease of integration into a closed-loop control system. We experimentally find the sensors capable of withstanding over 200% strain before the onset of delamination.
{"title":"Composite Stretchable Sensors for the Detection of Asymmetric Deformations in a Soft Manipulator","authors":"David Hardman, Ryman Hashem, F. Iida","doi":"10.1109/RoboSoft55895.2023.10122052","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122052","url":null,"abstract":"As the task-complexities demanded of soft robots continue to increase, so too does the need for soft sensorized skins which can provide complex tactile feedback. Here we consider the detection of asymmetric deformations by designing and validating an easy-to-fabricate hydrogel-silicone composite sensor for deployment in an underactuated soft robotic manipulator. For proprioception and exteroception, this skin can sense asymmetric bifurcations in a stretchable skin without affecting functionality. Our method facilitates the sensor's use in a wide range of soft robotic actuators: we present its ability to respond to repeated, incremental, and oscillating stimuli in the soft manipulator, and demonstrate its ease of integration into a closed-loop control system. We experimentally find the sensors capable of withstanding over 200% strain before the onset of delamination.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125988063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122076
Camilla Agabiti, Etienne Ménager, E. Falotico
In this work, we present a whole-arm grasping strategy for soft arms whose task is to capture space debris. The non-cooperative nature of space debris and the characteristics of the space environment enforce high-level requirements for robotic arms, especially dexterity. Taking inspiration from the outstanding capabilities of the elephant trunk in grasping, we formulated a grasping strategy based upon the identification of contact points on the object to force the bending of the arm and induce the wrapping around the object, as the animal model does. This strategy is implemented by leveraging on coupled Finite Element simulations of a trunk-like soft arm and Reinforcement Learning tools to learn the grasping. The results show that the robot successfully learns the task by moving the proximal part closer to the object and using the distal one to wrap around the object. We show that the obtained policy is valid for diverse object sizes and positions. Our grasping strategy is the first example of bio-inspired whole-arm grasping for a soft arm in space. We believe that, in the near future, this strategy will enable new grasping capabilities in soft arms.
{"title":"Whole-arm Grasping Strategy for Soft Arms to Capture Space Debris","authors":"Camilla Agabiti, Etienne Ménager, E. Falotico","doi":"10.1109/RoboSoft55895.2023.10122076","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122076","url":null,"abstract":"In this work, we present a whole-arm grasping strategy for soft arms whose task is to capture space debris. The non-cooperative nature of space debris and the characteristics of the space environment enforce high-level requirements for robotic arms, especially dexterity. Taking inspiration from the outstanding capabilities of the elephant trunk in grasping, we formulated a grasping strategy based upon the identification of contact points on the object to force the bending of the arm and induce the wrapping around the object, as the animal model does. This strategy is implemented by leveraging on coupled Finite Element simulations of a trunk-like soft arm and Reinforcement Learning tools to learn the grasping. The results show that the robot successfully learns the task by moving the proximal part closer to the object and using the distal one to wrap around the object. We show that the obtained policy is valid for diverse object sizes and positions. Our grasping strategy is the first example of bio-inspired whole-arm grasping for a soft arm in space. We believe that, in the near future, this strategy will enable new grasping capabilities in soft arms.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125019284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}