Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121945
G. Hiramandala, T. Calais, Truman Stalin, A. Chooi, A. R. Plamootil MATHAI, S. Jain, Elgar Vikram Kanhere, P. V. y Alvarado
Soft robotics is an exciting new field of robotics that replaces stiff components with soft materials and actuators, making it an ideal way to design robotic companions. Robotic companions are becoming common and can be helpful in treating patients with dementia by providing comfort, a sense of companionship, and promoting a healthier lifestyle. This work presents a soft robotic companion that uses acupuncture and acupressure principles to facilitate relaxation to its users. Inspired by the hedgehog, the robot provides a unique interaction mode and uses a functional quill array to stimulate pressure points.
{"title":"Design and Additive Manufacturing of a Hedgehog-Inspired Soft Robot Companion","authors":"G. Hiramandala, T. Calais, Truman Stalin, A. Chooi, A. R. Plamootil MATHAI, S. Jain, Elgar Vikram Kanhere, P. V. y Alvarado","doi":"10.1109/RoboSoft55895.2023.10121945","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121945","url":null,"abstract":"Soft robotics is an exciting new field of robotics that replaces stiff components with soft materials and actuators, making it an ideal way to design robotic companions. Robotic companions are becoming common and can be helpful in treating patients with dementia by providing comfort, a sense of companionship, and promoting a healthier lifestyle. This work presents a soft robotic companion that uses acupuncture and acupressure principles to facilitate relaxation to its users. Inspired by the hedgehog, the robot provides a unique interaction mode and uses a functional quill array to stimulate pressure points.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131209904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121920
Abdulaziz Alkayas, Daniel Feliú Talegon, A. Mathew, D. C. Rucker, F. Renda
Recent advances on Concentric Tube Robots (CTRs) enable the construction and analysis of concentric combinations of precurved elastic tubes. These robots are very appropriate for performing Minimally Invasive Surgery (MIS) with a reduction in patient recovery time. In this work, we propose a kinetostatic model for CTRs based on the Geometric Variable-Strain (GVS) approach where the tubes' sliding motion, the distributed external forces along the tubes and concentrated external forces at the tip, are included. Our approach allows us to estimate the shape of CTRs and the tip forces using the displacements of the tubes and the insertion and rotation input forces and torques. Moreover, we propose a modification in the model, which eliminates completely the sliding friction among the tubes. This new approach opens a new way to use CTRs in surgical applications without the need of sensors along the tubes, but only actuation measurements. The simulation results demonstrate the effectiveness of the proposed approach.
{"title":"Shape and Tip Force Estimation of Concentric Tube Robots Based on Actuation Readings Alone","authors":"Abdulaziz Alkayas, Daniel Feliú Talegon, A. Mathew, D. C. Rucker, F. Renda","doi":"10.1109/RoboSoft55895.2023.10121920","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121920","url":null,"abstract":"Recent advances on Concentric Tube Robots (CTRs) enable the construction and analysis of concentric combinations of precurved elastic tubes. These robots are very appropriate for performing Minimally Invasive Surgery (MIS) with a reduction in patient recovery time. In this work, we propose a kinetostatic model for CTRs based on the Geometric Variable-Strain (GVS) approach where the tubes' sliding motion, the distributed external forces along the tubes and concentrated external forces at the tip, are included. Our approach allows us to estimate the shape of CTRs and the tip forces using the displacements of the tubes and the insertion and rotation input forces and torques. Moreover, we propose a modification in the model, which eliminates completely the sliding friction among the tubes. This new approach opens a new way to use CTRs in surgical applications without the need of sensors along the tubes, but only actuation measurements. The simulation results demonstrate the effectiveness of the proposed approach.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131481583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122020
Jacopo Quaglierini, M. Arroyo, A. DeSimone
McKibben artificial muscles are an important example of braided, tubular structures made of many interwoven helical fibers. Their highly non-linear response is very robust and reproducible, making them particularly suitable for applications in Soft Robotics. The rich behavior of McKibben actuators has been studied either through minimal geometric models or through complex Finite Elements Method (FEM) simulations. To obtain a simpler yet accurate model for McKibben actuators, we develop a simplified framework entirely based on the geometry of the virtual envelope surface defined by the fibers of the mesh. In the axisymmetric cases studied here, the problem boils down to solving for a single scalar field of one scalar variable. We validate our model by solving contractor and extensor muscle configurations and comparing them against experimental and numerical results from the literature, achieving good agreement at a significantly lower computational cost. Simulations reveal that loads are sustained mostly by the braided mesh, whereas the inner chamber stores most of the external work as elastic energy. This phenomenon explains why simplified formulas for force-pressure relationship may be quite effective in predicting the behavior of McKibben actuators.
{"title":"Mechanics of tubular meshes made of helical fibers and application to modeling McKibben artificial muscles","authors":"Jacopo Quaglierini, M. Arroyo, A. DeSimone","doi":"10.1109/RoboSoft55895.2023.10122020","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122020","url":null,"abstract":"McKibben artificial muscles are an important example of braided, tubular structures made of many interwoven helical fibers. Their highly non-linear response is very robust and reproducible, making them particularly suitable for applications in Soft Robotics. The rich behavior of McKibben actuators has been studied either through minimal geometric models or through complex Finite Elements Method (FEM) simulations. To obtain a simpler yet accurate model for McKibben actuators, we develop a simplified framework entirely based on the geometry of the virtual envelope surface defined by the fibers of the mesh. In the axisymmetric cases studied here, the problem boils down to solving for a single scalar field of one scalar variable. We validate our model by solving contractor and extensor muscle configurations and comparing them against experimental and numerical results from the literature, achieving good agreement at a significantly lower computational cost. Simulations reveal that loads are sustained mostly by the braided mesh, whereas the inner chamber stores most of the external work as elastic energy. This phenomenon explains why simplified formulas for force-pressure relationship may be quite effective in predicting the behavior of McKibben actuators.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"51 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123693975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122013
M. Uğur, Burak Arslan, Alperen Özzeybek, Onur Özcan
Path-tracking is often challenging in miniature robots because their feet or wheels tend to slip due to the low robot weight. In this work, we investigate the effect of c-leg compliance on path-tracking performance and the obstacle-climbing capabilities of our foldable and miniature robot with soft, c-shaped legs. With its 82 mm x 60 mm x 29 mm size and 29.25 grams weight, a single module of our robot is one of the smallest untethered miniature robots. Our results show that utilizing soft c-shaped legs provides smooth path-tracking performance, similar to a wheeled differential drive robot. However, modules with rigid c-shaped legs are affected significantly by the impact and slip between the leg and the ground, and they perform rather unpredictably. Additionally, modules with wheels cannot climb obstacles 1 mm or larger. We show that using soft legs enhances the obstacle climbing skills of modules by climbing a 9 mm obstacle, while the module with rigid legs can only climb a 7 mm obstacle. These path-tracking abilities and obstacle-climbing capacity support our vision to build a reconfigurable robot using these modules.
{"title":"Effects of Compliance on Path-Tracking Performance of a Miniature Robot","authors":"M. Uğur, Burak Arslan, Alperen Özzeybek, Onur Özcan","doi":"10.1109/RoboSoft55895.2023.10122013","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122013","url":null,"abstract":"Path-tracking is often challenging in miniature robots because their feet or wheels tend to slip due to the low robot weight. In this work, we investigate the effect of c-leg compliance on path-tracking performance and the obstacle-climbing capabilities of our foldable and miniature robot with soft, c-shaped legs. With its 82 mm x 60 mm x 29 mm size and 29.25 grams weight, a single module of our robot is one of the smallest untethered miniature robots. Our results show that utilizing soft c-shaped legs provides smooth path-tracking performance, similar to a wheeled differential drive robot. However, modules with rigid c-shaped legs are affected significantly by the impact and slip between the leg and the ground, and they perform rather unpredictably. Additionally, modules with wheels cannot climb obstacles 1 mm or larger. We show that using soft legs enhances the obstacle climbing skills of modules by climbing a 9 mm obstacle, while the module with rigid legs can only climb a 7 mm obstacle. These path-tracking abilities and obstacle-climbing capacity support our vision to build a reconfigurable robot using these modules.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121868629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122012
Quan Xiong, Xuanyi Zhou, C. Yeow
Soft pneumatic actuator with strain-limiting layers has played an important role in soft robotics in the last decades. However, limited by their pre-designed and permanent strain-limiting layers, their motion pattern is usually single. Here, we proposed a soft pneumatic actuator with multiple motion patterns based on length-tuning strain-limiting layers. We integrated 4 cable-based strain-limiting layers into a 3D printed soft pneumatic actuator. A cable locking system is proposed to lock the cables as strain-limiting layers. The system is actuated by a small fabric balloon and can provide up to 79 N blocking force. With a rotatory sensor, it can also monitor the actual length of the cable. The soft pneumatic actuator can achieve omnidirectional bending and extension by regulating the state of the 4 cable locking systems. By experiments, we verify the work principle of cable locking system. The actuator here can also vary its stiffness from 6 N/m to 97 N/m by antagonism.
{"title":"A Soft Pneumatic Actuator with Multiple Motion Patterns Based on Length-tuning Strain-limiting Layers","authors":"Quan Xiong, Xuanyi Zhou, C. Yeow","doi":"10.1109/RoboSoft55895.2023.10122012","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122012","url":null,"abstract":"Soft pneumatic actuator with strain-limiting layers has played an important role in soft robotics in the last decades. However, limited by their pre-designed and permanent strain-limiting layers, their motion pattern is usually single. Here, we proposed a soft pneumatic actuator with multiple motion patterns based on length-tuning strain-limiting layers. We integrated 4 cable-based strain-limiting layers into a 3D printed soft pneumatic actuator. A cable locking system is proposed to lock the cables as strain-limiting layers. The system is actuated by a small fabric balloon and can provide up to 79 N blocking force. With a rotatory sensor, it can also monitor the actual length of the cable. The soft pneumatic actuator can achieve omnidirectional bending and extension by regulating the state of the 4 cable locking systems. By experiments, we verify the work principle of cable locking system. The actuator here can also vary its stiffness from 6 N/m to 97 N/m by antagonism.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126456661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122104
Francesco Fuentes, Laura H. Blumenschein
Deployable and reconfigurable structures use shape-changing designs to transform between different forms and create usable structures, often from small initial packages. While these structures create reliable transformations, the exact shapes must be defined at design and manufacturing time. However, many applications in unstructured environments would benefit from deployable structures that can adjust to the circumstances of the application on demand. To address this need for autonomous behavior, we propose deployable robotic structures, combining soft shape-changing robots with passive and permanent stiffening. The specific implementation in this paper uses chemical curing capable of creating stiffness change at arbitrary locations along a soft growing robot without impeding the function of the robot or requiring a continuous supply of energy to maintain its rigidity. In structural testing, the application of this method is able to drastically increase load resistances axially by an average of 64 N and transversely by an average of 2.18 Nm. Finally, two demonstrations are performed, which show how this combination of soft growing robot and permanent stiffening can increase the structure's carrying capacity and expand the robot's navigational capabilities, showing the potential of deployable robotic structures.
{"title":"Deployable Robotic Structures via Passive Rigidity on A Soft, Growing Robot","authors":"Francesco Fuentes, Laura H. Blumenschein","doi":"10.1109/RoboSoft55895.2023.10122104","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122104","url":null,"abstract":"Deployable and reconfigurable structures use shape-changing designs to transform between different forms and create usable structures, often from small initial packages. While these structures create reliable transformations, the exact shapes must be defined at design and manufacturing time. However, many applications in unstructured environments would benefit from deployable structures that can adjust to the circumstances of the application on demand. To address this need for autonomous behavior, we propose deployable robotic structures, combining soft shape-changing robots with passive and permanent stiffening. The specific implementation in this paper uses chemical curing capable of creating stiffness change at arbitrary locations along a soft growing robot without impeding the function of the robot or requiring a continuous supply of energy to maintain its rigidity. In structural testing, the application of this method is able to drastically increase load resistances axially by an average of 64 N and transversely by an average of 2.18 Nm. Finally, two demonstrations are performed, which show how this combination of soft growing robot and permanent stiffening can increase the structure's carrying capacity and expand the robot's navigational capabilities, showing the potential of deployable robotic structures.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129770681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122049
Arne Baeyens, B. V. Raemdonck, E. Milana, D. Reynaerts, B. Gorissen
Soft robots designed within a conventional robotic framework typically consist of individually addressable compliant actuators that are merged together into a deformable body. For inflatable soft robots, this comes at a high cost of tethering which drastically limits their autonomy and versatility. This cost can be decreased by connecting multiple actuators in a fluidic network and partially offloading control to the passive interactions within the network. This type of morphological control necessitates some of the elements in the network to have nonlinear characteristics. However a standardized simulation framework for such networks is lacking. Here, we introduce the open-source python library FONS (Fluidic object-oriented network simulator), a tool for simulating fluidic interactions in lumped fluidic networks of arbitrary size. It is compatible with both gaseous and liquid fluids and supports analytical, simulated and measured characteristics for all components. These components can be defined using a library of standard components or can be implemented as custom objects following a modular object-oriented framework. We show that FONS is capable of simulating a multitude of systems with highly non-linear components exhibiting morphological control.
{"title":"FONS: a Python framework for simulating nonlinear inflatable actuator networks","authors":"Arne Baeyens, B. V. Raemdonck, E. Milana, D. Reynaerts, B. Gorissen","doi":"10.1109/RoboSoft55895.2023.10122049","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122049","url":null,"abstract":"Soft robots designed within a conventional robotic framework typically consist of individually addressable compliant actuators that are merged together into a deformable body. For inflatable soft robots, this comes at a high cost of tethering which drastically limits their autonomy and versatility. This cost can be decreased by connecting multiple actuators in a fluidic network and partially offloading control to the passive interactions within the network. This type of morphological control necessitates some of the elements in the network to have nonlinear characteristics. However a standardized simulation framework for such networks is lacking. Here, we introduce the open-source python library FONS (Fluidic object-oriented network simulator), a tool for simulating fluidic interactions in lumped fluidic networks of arbitrary size. It is compatible with both gaseous and liquid fluids and supports analytical, simulated and measured characteristics for all components. These components can be defined using a library of standard components or can be implemented as custom objects following a modular object-oriented framework. We show that FONS is capable of simulating a multitude of systems with highly non-linear components exhibiting morphological control.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130570414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10121941
Y. Shen, Ryu Isono, Satoshi Kodama, Yoka Konishi, Taiga Inoue, Akihiko Onuki, R. Maeda, Jia-Yeu Lin, H. Ishii, A. Takanishi
Periodic inspection of aging gas pipes is important. However, the conventional inspection approach of excavation is unfriendly to the environment. From the perspective of Sustainable Development Goals (SDGs), in this study, we introduced a pneumatically driven robot system called WATER-7 to observe the inner environment of aging pipes, in particular water inside these pipes, without excavation. The robot can locomote similar to an inchworm with a thrust module operating in a periodical pattern, select direction with an active bending module, and acquire images using a camera. The robot is designed and assembled within a diameter of 12[mm] to enable insertion into a gas meter valve as well as transition and retrieval from a 7[m] service pipe consisting of 8 pipe bends. To improve the driving performance, we also shortened the transit time by increasing air flow and improved the robustness of each module of the robot. Furthermore, an autonomous control system for autonomous burr avoidance based on image processing was developed. According to experiments, the robot average transit time and retrieval without damage count for the assumed scenario were 81[min] and 9 times, respectively. In addition, the autonomous burr avoidance was confirmed to be effective.
定期检查老化的燃气管道是很重要的。然而,传统的开挖检测方法对环境不友好。从可持续发展目标(Sustainable Development Goals, SDGs)的角度出发,在本研究中,我们引入了一个名为water -7的气动驱动机器人系统,在不开挖的情况下,对老化管道的内部环境,特别是管道内部的水进行观察。该机器人可以像尺蠖一样通过推力模块周期性地运动,通过主动弯曲模块选择方向,并使用相机获取图像。该机器人的设计和组装直径为12毫米,可以插入燃气表阀,也可以从由8个管道弯头组成的7米服务管道中过渡和回收。为了提高驱动性能,我们还通过增加空气流量来缩短运输时间,并提高机器人各模块的鲁棒性。在此基础上,提出了一种基于图像处理的自动避毛刺控制系统。实验结果表明,在假设场景下,机器人的平均移动时间为81[min],无损伤回收次数为9次。此外,还验证了自动避免毛刺的有效性。
{"title":"Design of a Pneumatically Driven Inchworm-Like Gas Pipe Inspection Robot with Autonomous Control","authors":"Y. Shen, Ryu Isono, Satoshi Kodama, Yoka Konishi, Taiga Inoue, Akihiko Onuki, R. Maeda, Jia-Yeu Lin, H. Ishii, A. Takanishi","doi":"10.1109/RoboSoft55895.2023.10121941","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10121941","url":null,"abstract":"Periodic inspection of aging gas pipes is important. However, the conventional inspection approach of excavation is unfriendly to the environment. From the perspective of Sustainable Development Goals (SDGs), in this study, we introduced a pneumatically driven robot system called WATER-7 to observe the inner environment of aging pipes, in particular water inside these pipes, without excavation. The robot can locomote similar to an inchworm with a thrust module operating in a periodical pattern, select direction with an active bending module, and acquire images using a camera. The robot is designed and assembled within a diameter of 12[mm] to enable insertion into a gas meter valve as well as transition and retrieval from a 7[m] service pipe consisting of 8 pipe bends. To improve the driving performance, we also shortened the transit time by increasing air flow and improved the robustness of each module of the robot. Furthermore, an autonomous control system for autonomous burr avoidance based on image processing was developed. According to experiments, the robot average transit time and retrieval without damage count for the assumed scenario were 81[min] and 9 times, respectively. In addition, the autonomous burr avoidance was confirmed to be effective.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131195453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122010
M. Han, D. Popa, C. Harnett
Grasping control is one of the key features of robot manipulation. Slipping detection, avoidance, and minimum force grasping are of primary concern since it is expected that robot manipulators have similar performance to human hands. In this work, a new type of optoelectronic sensor, which has a human-like soft skin but a simple design, is applied to slip motion control. Based on the model of this soft sensor and the robotic gripper, we describe a model reference adaptive controller (MRAC) to estimate unknown system parameters for grasping random objects. Update laws for unknown parameters are chosen by stability analysis and the system feasibility is illustrated through both numerical simulation and hardware experiment.
{"title":"Anti-Slipping Adaptive Grasping Control with a Novel Optoelectronic Soft Sensor","authors":"M. Han, D. Popa, C. Harnett","doi":"10.1109/RoboSoft55895.2023.10122010","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122010","url":null,"abstract":"Grasping control is one of the key features of robot manipulation. Slipping detection, avoidance, and minimum force grasping are of primary concern since it is expected that robot manipulators have similar performance to human hands. In this work, a new type of optoelectronic sensor, which has a human-like soft skin but a simple design, is applied to slip motion control. Based on the model of this soft sensor and the robotic gripper, we describe a model reference adaptive controller (MRAC) to estimate unknown system parameters for grasping random objects. Update laws for unknown parameters are chosen by stability analysis and the system feasibility is illustrated through both numerical simulation and hardware experiment.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131593876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1109/RoboSoft55895.2023.10122024
V. Sundaram, Raunaq M. Bhirangi, M. Rentschler, Abhi Gupta, T. Hellebrekers
Advances in robotics and rapid prototyping have spurred interest in soft grippers across diverse fields ranging from medical devices to warehouse robotics. With this growing interest, it is imperative to create straight-forward soft grippers with embedded sensing that are more accessible to people outside of the soft robotics community. The DragonClaw - a 3D-printable, pneumatically actuated, three-fingered dexterous gripper with embedded magnetic tactile sensing - is intended to bridge this gap. The 2-DOF thumb design allows for a range of precision and power grasps, enabling the DragonClaw to complete a modified Kapandji test for dexterous ability. The operating range of the gripper is characterized through experiments on grip strength and finger blocking force. Further, the integrated magnetic sensor, ReSkin, is successfully demon-strated in a closed-loop control task to respond to external disturbances. Finally, the documentation, bill of materials, and detailed instructions to replicate the DragonClaw are made available on the DragonClaw website, encouraging people with wide ranging expertise to reproduce this work. In summary, the novelty of this work is the integration of soft robotic gripper feedback in a form factor that can easily be reproduced by inexpensive, simplified manufacturing methods.
{"title":"DragonClaw: A low-cost pneumatic gripper with integrated magnetic sensing","authors":"V. Sundaram, Raunaq M. Bhirangi, M. Rentschler, Abhi Gupta, T. Hellebrekers","doi":"10.1109/RoboSoft55895.2023.10122024","DOIUrl":"https://doi.org/10.1109/RoboSoft55895.2023.10122024","url":null,"abstract":"Advances in robotics and rapid prototyping have spurred interest in soft grippers across diverse fields ranging from medical devices to warehouse robotics. With this growing interest, it is imperative to create straight-forward soft grippers with embedded sensing that are more accessible to people outside of the soft robotics community. The DragonClaw - a 3D-printable, pneumatically actuated, three-fingered dexterous gripper with embedded magnetic tactile sensing - is intended to bridge this gap. The 2-DOF thumb design allows for a range of precision and power grasps, enabling the DragonClaw to complete a modified Kapandji test for dexterous ability. The operating range of the gripper is characterized through experiments on grip strength and finger blocking force. Further, the integrated magnetic sensor, ReSkin, is successfully demon-strated in a closed-loop control task to respond to external disturbances. Finally, the documentation, bill of materials, and detailed instructions to replicate the DragonClaw are made available on the DragonClaw website, encouraging people with wide ranging expertise to reproduce this work. In summary, the novelty of this work is the integration of soft robotic gripper feedback in a form factor that can easily be reproduced by inexpensive, simplified manufacturing methods.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"27 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120894710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}