Given an occurred event, human can easily predict the next event or reason the preceding event, yet which is difficult for machine to perform such event reasoning. Event representation bridges the connection and targets to model the process of event reasoning as a machine-readable format, which then can support a wide range of applications in information retrieval, e.g., question answering and information extraction. Existing work mainly resorts to a joint training to integrate all levels of training loss in event chains by a simple loss summation, which is easily trapped into a local optimum. In addition, the scenario knowledge in event chains is not well investigated for event representation. In this paper, we propose a unified fine-tuning architecture, incorporated with scenario knowledge for event representation, i.e., UniFA-S, which mainly consists of a unified fine-tuning architecture (UniFA) and a scenario-level variational auto-encoder (S-VAE). In detail, UniFA employs a multi-step fine-tuning to integrate all levels of training and S-VAE applies a stochastic variable to implicitly represent the scenario-level knowledge. We evaluate our proposal from two aspects, i.e., the representation and inference abilities. For the representation ability, our ensemble model UniFA-S can beat state-of-the-art baselines for two similarity tasks. For the inference ability, UniFA-S can outperform the best baseline, achieving 4.1%-8.2% improvements in terms of accuracy for various inference tasks.
{"title":"Incorporating Scenario Knowledge into A Unified Fine-tuning Architecture for Event Representation","authors":"Jianming Zheng, Fei Cai, Honghui Chen","doi":"10.1145/3397271.3401173","DOIUrl":"https://doi.org/10.1145/3397271.3401173","url":null,"abstract":"Given an occurred event, human can easily predict the next event or reason the preceding event, yet which is difficult for machine to perform such event reasoning. Event representation bridges the connection and targets to model the process of event reasoning as a machine-readable format, which then can support a wide range of applications in information retrieval, e.g., question answering and information extraction. Existing work mainly resorts to a joint training to integrate all levels of training loss in event chains by a simple loss summation, which is easily trapped into a local optimum. In addition, the scenario knowledge in event chains is not well investigated for event representation. In this paper, we propose a unified fine-tuning architecture, incorporated with scenario knowledge for event representation, i.e., UniFA-S, which mainly consists of a unified fine-tuning architecture (UniFA) and a scenario-level variational auto-encoder (S-VAE). In detail, UniFA employs a multi-step fine-tuning to integrate all levels of training and S-VAE applies a stochastic variable to implicitly represent the scenario-level knowledge. We evaluate our proposal from two aspects, i.e., the representation and inference abilities. For the representation ability, our ensemble model UniFA-S can beat state-of-the-art baselines for two similarity tasks. For the inference ability, UniFA-S can outperform the best baseline, achieving 4.1%-8.2% improvements in terms of accuracy for various inference tasks.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128120205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
How users think, behave, and make decisions when interacting with information retrieval (IR) systems is a fundamental research problem in the area of Interactive IR. There is substantial evidence from behavioral economics and decision sciences demonstrating that in the context of decision-making under uncertainty, the carriers of value behind actions are gains and losses defined relative to a reference point, rather than the absolute final outcomes. This Reference Dependence Effect as a systematic cognitive bias was largely ignored by most formal interaction models built upon a series of unrealistic assumptions of user rationality. To address this gap, our work seeks to 1) understand the effects of reference points on search behavior and satisfaction at both query and session levels; 2) apply the knowledge of reference dependence in predicting users' search decisions and variations in level of satisfaction. Based on our experiments on three datasets collected from 1840 task-based search sessions (5225 query segments), we found that: 1) users' search satisfaction and many aspects of search behaviors and decisions are significantly associated with relative gains, losses and the associated reference points; 2) users' judgments of session-level satisfaction are significantly affected by peak and end reference moments; 3) compared to final-outcome-based baselines, models employing gain- and loss-based features often achieve significantly better performances in predicting search decisions and user satisfaction. The adaptation of behavioral economics perspective enables us to keep taking advantage of the collision of interdisciplinary insights in advancing IR research and also increase the explanatory power of formal search models by providing them with a more realistic behavioral and psychological foundation.
{"title":"Investigating Reference Dependence Effects on User Search Interaction and Satisfaction: A Behavioral Economics Perspective","authors":"Jiqun Liu, Fangyuan Han","doi":"10.1145/3397271.3401085","DOIUrl":"https://doi.org/10.1145/3397271.3401085","url":null,"abstract":"How users think, behave, and make decisions when interacting with information retrieval (IR) systems is a fundamental research problem in the area of Interactive IR. There is substantial evidence from behavioral economics and decision sciences demonstrating that in the context of decision-making under uncertainty, the carriers of value behind actions are gains and losses defined relative to a reference point, rather than the absolute final outcomes. This Reference Dependence Effect as a systematic cognitive bias was largely ignored by most formal interaction models built upon a series of unrealistic assumptions of user rationality. To address this gap, our work seeks to 1) understand the effects of reference points on search behavior and satisfaction at both query and session levels; 2) apply the knowledge of reference dependence in predicting users' search decisions and variations in level of satisfaction. Based on our experiments on three datasets collected from 1840 task-based search sessions (5225 query segments), we found that: 1) users' search satisfaction and many aspects of search behaviors and decisions are significantly associated with relative gains, losses and the associated reference points; 2) users' judgments of session-level satisfaction are significantly affected by peak and end reference moments; 3) compared to final-outcome-based baselines, models employing gain- and loss-based features often achieve significantly better performances in predicting search decisions and user satisfaction. The adaptation of behavioral economics perspective enables us to keep taking advantage of the collision of interdisciplinary insights in advancing IR research and also increase the explanatory power of formal search models by providing them with a more realistic behavioral and psychological foundation.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126005173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present results from an exploratory study to investigate users' behaviors and preferences for three different styles of search results presentation in a virtual reality (VR) head-mounted display (HMD). Prior work in 2D displays has suggested possible benefits of presenting information in ways that exploit users' spatial cognition abilities. We designed a VR system that displays search results in three different spatial arrangements: a list of 8 results, a 4x5 grid, and a 2x10 arc. These spatial display conditions were designed to differ in terms of the number of results displayed per page (8 vs 20) and the amount of head movement required to scan the results (list < grid < arc). Thirty-six participants completed 6 search trials in each display condition (18 total). For each trial, the participant was presented with a display of search results and asked to find a given target result or to indicate that the target was not present. We collected data about users' behaviors with and perceptions about the three display conditions using interaction data, questionnaires, and interviews. We explore the effects of display condition and target presence on behavioral measures (e.g., completion time, head movement, paging events, accuracy) and on users' perceptions (e.g., workload, ease of use, comfort, confidence, difficulty, and lostness). Our results suggest that there was no difference in accuracy among the display conditions, but that users completed tasks more quickly using the arc. However, users also expressed lower preferences for the arc, instead preferring the list and grid displays. Our findings extend prior research on visual search into to the area of 3-dimensional result displays for interactive information retrieval in VR HMD environments.
在本文中,我们介绍了一项探索性研究的结果,该研究调查了用户在虚拟现实(VR)头戴式显示器(HMD)中对三种不同风格的搜索结果显示的行为和偏好。先前在二维显示器上的工作表明,以利用用户空间认知能力的方式呈现信息可能会带来好处。我们设计了一个VR系统,它以三种不同的空间排列方式显示搜索结果:8个结果列表,4x5网格和2x10弧线。这些空间显示条件被设计成在每页显示的结果数量(8 vs 20)和扫描结果所需的头部移动量(列表<网格<圆弧)方面有所不同。36名参与者在每种显示条件下完成6次搜索试验(共18次)。在每次试验中,参与者都会看到搜索结果的显示,并被要求找到一个给定的目标结果,或者指出目标不存在。我们使用交互数据、问卷调查和访谈收集了有关用户对三种显示条件的行为和看法的数据。我们探讨了显示条件和目标存在对行为测量(例如,完成时间,头部运动,分页事件,准确性)和用户感知(例如,工作量,易用性,舒适性,信心,难度和迷失)的影响。我们的研究结果表明,在不同的显示条件下,准确度没有差异,但使用弧线的用户完成任务的速度更快。然而,用户对圆弧的偏好也较低,他们更喜欢列表和网格显示。我们的研究结果将先前的视觉搜索研究扩展到VR HMD环境中交互式信息检索的三维结果显示领域。
{"title":"Immersive Search: Using Virtual Reality to Examine How a Third Dimension Impacts the Searching Process","authors":"Austin R. Ward, Robert G. Capra","doi":"10.1145/3397271.3401303","DOIUrl":"https://doi.org/10.1145/3397271.3401303","url":null,"abstract":"In this paper, we present results from an exploratory study to investigate users' behaviors and preferences for three different styles of search results presentation in a virtual reality (VR) head-mounted display (HMD). Prior work in 2D displays has suggested possible benefits of presenting information in ways that exploit users' spatial cognition abilities. We designed a VR system that displays search results in three different spatial arrangements: a list of 8 results, a 4x5 grid, and a 2x10 arc. These spatial display conditions were designed to differ in terms of the number of results displayed per page (8 vs 20) and the amount of head movement required to scan the results (list < grid < arc). Thirty-six participants completed 6 search trials in each display condition (18 total). For each trial, the participant was presented with a display of search results and asked to find a given target result or to indicate that the target was not present. We collected data about users' behaviors with and perceptions about the three display conditions using interaction data, questionnaires, and interviews. We explore the effects of display condition and target presence on behavioral measures (e.g., completion time, head movement, paging events, accuracy) and on users' perceptions (e.g., workload, ease of use, comfort, confidence, difficulty, and lostness). Our results suggest that there was no difference in accuracy among the display conditions, but that users completed tasks more quickly using the arc. However, users also expressed lower preferences for the arc, instead preferring the list and grid displays. Our findings extend prior research on visual search into to the area of 3-dimensional result displays for interactive information retrieval in VR HMD environments.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127131461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As for many complex diseases, there is no "one size fits all" solutions for patients with a particular diagnosis in practice, which should be treated depends on patient's genetic, environmental, lifestyle choices and so on. Precision medicine can provide personalized treatment for a particular patient that has been drawn more and more attention. There are a large number of treatment options, which is overwhelming for clinicians to make best treatment for a particular patient. One of the effective ways to alleviate this problem is biomedical information retrieval system, which can automatically find out relevant information and proper treatment from mass of alternative treatments and cases. However, in the biomedical literature and clinical trials, there is a larger number of synonymous, polysemous and context terms, causing the semantic gap between query and document in traditional biomedical information retrieval systems. Recently, deep learning-based biomedical information retrieval systems have been adopted to address this problem, which has the potential improvements in the performance of BMIR. With these approaches, the semantic information of query and document would be encoded as low-dimensional feature vectors. Although most existing deep learning-based biomedical information retrieval systems can perform strong accuracy, they are usually treated as a black-box model that lack the explainability. It would be difficult for clinicians to understand their ranked results, which make them doubt the effectiveness of these systems. Reasonable explanations are profitable for clinicians to make better decisions via appropriate treatment logic inference, thus further enhancing the transparency, fairness and trust of biomedical information retrieval systems. Furthermore, knowledge graph has drawn more and more attention which contains abundant real-world facts and entities. It is an effective way to provide accuracy and explainability for deep learning model and reduce the knowledge gap between experts and publics. However, it is usually simply employed as a query expansion strategy simply into biomedical information retrieval systems. It remains an open question how to extend explainable biomedical information retrieval systems to knowledge graph. Given the above, to alleviate the tradeoff between accuracy and explainability of the precision medicine, we propose to research on Biomedical Information Retrieval incorporating Knowledge Graph for Explainable Precision Medicine. In this work, we propose a neural-based biomedical information retrieval model to address the semantic gap problem and fully investigate the utility of KG for the explainable biomedical information retrieval systems. which can soft-matches the query and document with semantic information instead of ranking the model by exact matches. On the one hand, our model encodes semantic feature information of documents by using convolutional neural networks, which perform strong ability t
{"title":"Biomedical Information Retrieval incorporating Knowledge Graph for Explainable Precision Medicine","authors":"Zuoxi Yang","doi":"10.1145/3397271.3401458","DOIUrl":"https://doi.org/10.1145/3397271.3401458","url":null,"abstract":"As for many complex diseases, there is no \"one size fits all\" solutions for patients with a particular diagnosis in practice, which should be treated depends on patient's genetic, environmental, lifestyle choices and so on. Precision medicine can provide personalized treatment for a particular patient that has been drawn more and more attention. There are a large number of treatment options, which is overwhelming for clinicians to make best treatment for a particular patient. One of the effective ways to alleviate this problem is biomedical information retrieval system, which can automatically find out relevant information and proper treatment from mass of alternative treatments and cases. However, in the biomedical literature and clinical trials, there is a larger number of synonymous, polysemous and context terms, causing the semantic gap between query and document in traditional biomedical information retrieval systems. Recently, deep learning-based biomedical information retrieval systems have been adopted to address this problem, which has the potential improvements in the performance of BMIR. With these approaches, the semantic information of query and document would be encoded as low-dimensional feature vectors. Although most existing deep learning-based biomedical information retrieval systems can perform strong accuracy, they are usually treated as a black-box model that lack the explainability. It would be difficult for clinicians to understand their ranked results, which make them doubt the effectiveness of these systems. Reasonable explanations are profitable for clinicians to make better decisions via appropriate treatment logic inference, thus further enhancing the transparency, fairness and trust of biomedical information retrieval systems. Furthermore, knowledge graph has drawn more and more attention which contains abundant real-world facts and entities. It is an effective way to provide accuracy and explainability for deep learning model and reduce the knowledge gap between experts and publics. However, it is usually simply employed as a query expansion strategy simply into biomedical information retrieval systems. It remains an open question how to extend explainable biomedical information retrieval systems to knowledge graph. Given the above, to alleviate the tradeoff between accuracy and explainability of the precision medicine, we propose to research on Biomedical Information Retrieval incorporating Knowledge Graph for Explainable Precision Medicine. In this work, we propose a neural-based biomedical information retrieval model to address the semantic gap problem and fully investigate the utility of KG for the explainable biomedical information retrieval systems. which can soft-matches the query and document with semantic information instead of ranking the model by exact matches. On the one hand, our model encodes semantic feature information of documents by using convolutional neural networks, which perform strong ability t","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124947972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Guo, Can Zhang, Huifeng Guo, Ruiming Tang, Xiuqiang He
Factorization Machine (FM)-based models can only reveal the relationship between a pair of features. With all feature embeddings fed to a MLP, DNN-based factorization models which combine FM with multi-layer perceptron (MLP) can only reveal the relationship among some features implicitly. Some other DNN-based methods apply CNN to generate feature interactions. However, (1) they model feature interactions at the bit-wise (where only part of an embedding is utilized to generate feature interactions), which can not express the semantics of features comprehensively, (2) they can only model the interactions among the neighboring features. To deal with aforementioned problems, this paper proposes a Multi-Branch Convolutional Network (MBCN) which includes three branches: the standard convolutional layer, the dilated convolutional layer and the bias layer. MBCN is able to explicitly model feature interactions with arbitrary orders at the vector-wise, which fully express context-aware feature semantics. Extensive experiments on three public benchmark datasets are conducted to demonstrate the superiority of MBCN, compared to the state-of-the-art baselines for context-aware top-k recommendation.
{"title":"Multi-Branch Convolutional Network for Context-Aware Recommendation","authors":"Wei Guo, Can Zhang, Huifeng Guo, Ruiming Tang, Xiuqiang He","doi":"10.1145/3397271.3401218","DOIUrl":"https://doi.org/10.1145/3397271.3401218","url":null,"abstract":"Factorization Machine (FM)-based models can only reveal the relationship between a pair of features. With all feature embeddings fed to a MLP, DNN-based factorization models which combine FM with multi-layer perceptron (MLP) can only reveal the relationship among some features implicitly. Some other DNN-based methods apply CNN to generate feature interactions. However, (1) they model feature interactions at the bit-wise (where only part of an embedding is utilized to generate feature interactions), which can not express the semantics of features comprehensively, (2) they can only model the interactions among the neighboring features. To deal with aforementioned problems, this paper proposes a Multi-Branch Convolutional Network (MBCN) which includes three branches: the standard convolutional layer, the dilated convolutional layer and the bias layer. MBCN is able to explicitly model feature interactions with arbitrary orders at the vector-wise, which fully express context-aware feature semantics. Extensive experiments on three public benchmark datasets are conducted to demonstrate the superiority of MBCN, compared to the state-of-the-art baselines for context-aware top-k recommendation.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123070431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dating back from late December 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia, now known as lung inflammation caused by novel coronavirus (COVID-19). Cases have spread to other cities in China and more than 180 countries and regions internationally. World Health Organization (WHO) officially declares the coronavirus outbreak a pandemic and the public health emergency is perhaps one of the top concerns in the year of 2020 for governments all over the world. Till today, the coronavirus outbreak is still raging and has no sign of being under control in many countries. In this paper, we aim at drawing lessons from the COVID-19 outbreak process in China and using the experiences to help the interventions against the coronavirus wherever in need. To this end, we have built a system predicting hazard areas on the basis of confirmed infection cases with location information. The purpose is to warn people to avoid of such hot zones and reduce risks of disease transmission through droplets or contacts. We analyze the data from the daily official information release which are publicly accessible. Based on standard classification frameworks with reinforcements incrementally learned day after day, we manage to conduct thorough feature engineering from empirical studies, including geographical, demographic, temporal, statistical, and epidemiological features. Compared with heuristics baselines, our method has achieved promising overall performance in terms of precision, recall, accuracy, F1 score, and AUC. We expect that our efforts could be of help in the battle against the virus, the common opponent of human kind.
{"title":"Be Aware of the Hot Zone: A Warning System of Hazard Area Prediction to Intervene Novel Coronavirus COVID-19 Outbreak","authors":"Zhenxin Fu, Yuehua Wu, Hailei Zhang, Yichuan Hu, Dongyan Zhao, Rui Yan","doi":"10.1145/3397271.3401429","DOIUrl":"https://doi.org/10.1145/3397271.3401429","url":null,"abstract":"Dating back from late December 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia, now known as lung inflammation caused by novel coronavirus (COVID-19). Cases have spread to other cities in China and more than 180 countries and regions internationally. World Health Organization (WHO) officially declares the coronavirus outbreak a pandemic and the public health emergency is perhaps one of the top concerns in the year of 2020 for governments all over the world. Till today, the coronavirus outbreak is still raging and has no sign of being under control in many countries. In this paper, we aim at drawing lessons from the COVID-19 outbreak process in China and using the experiences to help the interventions against the coronavirus wherever in need. To this end, we have built a system predicting hazard areas on the basis of confirmed infection cases with location information. The purpose is to warn people to avoid of such hot zones and reduce risks of disease transmission through droplets or contacts. We analyze the data from the daily official information release which are publicly accessible. Based on standard classification frameworks with reinforcements incrementally learned day after day, we manage to conduct thorough feature engineering from empirical studies, including geographical, demographic, temporal, statistical, and epidemiological features. Compared with heuristics baselines, our method has achieved promising overall performance in terms of precision, recall, accuracy, F1 score, and AUC. We expect that our efforts could be of help in the battle against the virus, the common opponent of human kind.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126476627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Qiu, Yingwai Shiu, Pingping Lin, Ruihua Song, Yue Liu, Dongyan Zhao, Rui Yan
For social bots, smooth emotional transitions are essential for delivering a genuine conversation experience to users. Yet, the task is challenging because emotion is too implicit and complicated to understand. Among previous studies in the domain of retrieval-based conversational model, they only consider the factors of semantic and functional dependencies of utterances. In this paper, to implement a more empathetic retrieval-based conversation system, we incorporate emotional factors into context-response matching from two aspects: 1) On top of semantic matching, we propose an emotion-aware transition network to model the dynamic emotional flow and enhance context-response matching in retrieval-based dialogue systems with learnt intrinsic emotion features through a multi-task learning framework; 2) We design several flexible controlling mechanisms to customize social bots in terms of emotion. Extensive experiments on two benchmark datasets indicate that the proposed model can effectively track the flow of emotions throughout a human-machine conversation and significantly improve response selection in dialogues over the state-of-the-art baselines. We also empirically validate the emotion-control effects of our proposed model on three different emotional aspects. Finally, we apply such functionalities to a real IoT application.
{"title":"What If Bots Feel Moods?","authors":"L. Qiu, Yingwai Shiu, Pingping Lin, Ruihua Song, Yue Liu, Dongyan Zhao, Rui Yan","doi":"10.1145/3397271.3401108","DOIUrl":"https://doi.org/10.1145/3397271.3401108","url":null,"abstract":"For social bots, smooth emotional transitions are essential for delivering a genuine conversation experience to users. Yet, the task is challenging because emotion is too implicit and complicated to understand. Among previous studies in the domain of retrieval-based conversational model, they only consider the factors of semantic and functional dependencies of utterances. In this paper, to implement a more empathetic retrieval-based conversation system, we incorporate emotional factors into context-response matching from two aspects: 1) On top of semantic matching, we propose an emotion-aware transition network to model the dynamic emotional flow and enhance context-response matching in retrieval-based dialogue systems with learnt intrinsic emotion features through a multi-task learning framework; 2) We design several flexible controlling mechanisms to customize social bots in terms of emotion. Extensive experiments on two benchmark datasets indicate that the proposed model can effectively track the flow of emotions throughout a human-machine conversation and significantly improve response selection in dialogues over the state-of-the-art baselines. We also empirically validate the emotion-control effects of our proposed model on three different emotional aspects. Finally, we apply such functionalities to a real IoT application.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131855223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recommender systems based on collaborative filtering are highly vulnerable to data poisoning attacks, where a determined attacker injects fake users with false user-item feedback, with an objective to either corrupt the recommender system or promote/demote a target set of items. Recently, differential privacy was explored as a defense technique against data poisoning attacks in the typical machine learning setting. In this paper, we study the effectiveness of differential privacy against such attacks on matrix factorization based collaborative filtering systems. Concretely, we conduct extensive experiments for evaluating robustness to injection of malicious user profiles by simulating common types of shilling attacks on real-world data and comparing the predictions of typical matrix factorization with differentially private matrix factorization.
{"title":"Data Poisoning Attacks against Differentially Private Recommender Systems","authors":"Soumya Wadhwa, Saurabh Agrawal, Harsh Chaudhari, Deepthi Sharma, Kannan Achan","doi":"10.1145/3397271.3401301","DOIUrl":"https://doi.org/10.1145/3397271.3401301","url":null,"abstract":"Recommender systems based on collaborative filtering are highly vulnerable to data poisoning attacks, where a determined attacker injects fake users with false user-item feedback, with an objective to either corrupt the recommender system or promote/demote a target set of items. Recently, differential privacy was explored as a defense technique against data poisoning attacks in the typical machine learning setting. In this paper, we study the effectiveness of differential privacy against such attacks on matrix factorization based collaborative filtering systems. Concretely, we conduct extensive experiments for evaluating robustness to injection of malicious user profiles by simulating common types of shilling attacks on real-world data and comparing the predictions of typical matrix factorization with differentially private matrix factorization.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130611307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Octopus","authors":"Zheng Liu, Jianxun Lian, Junhan Yang, Defu Lian, Xing Xie","doi":"10.1145/511451.511454","DOIUrl":"https://doi.org/10.1145/511451.511454","url":null,"abstract":"","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116564197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jarana Manotumruksa, Jeffrey Dalton, E. Meij, Emine Yilmaz
Task-based Virtual Personal Assistants (VPAs) such as the Google Assistant, Alexa, and Siri are increasingly being adopted for a wide variety of tasks. These tasks are grounded in real-world entities and actions (e.g., book a hotel, organise a conference, or requesting funds). In this work we tackle the task of automatically constructing actionable knowledge graphs in response to a user query in order to support a wider variety of increasingly complex assistant tasks. We frame this as an entity property ranking task given a user query with annotated properties. We propose a new method for property ranking, CrossBERT. CrossBERT builds on the Bidirectional Encoder Representations from Transformers (BERT) and creates a new triplet network structure on cross query-property pairs that is used to rank properties. We also study the impact of using external evidence for query entities from textual entity descriptions. We perform experiments on two standard benchmark collections, the NTCIR-13 Actionable Knowledge Graph Generation (AKGG) task and Entity Property Identification (EPI) task. The results demonstrate that CrossBERT significantly outperforms the best performing runs from AKGG and EPI, as well as previous state-of-the-art BERT-based models. In particular, CrossBERT significantly improves Recall and NDCG by approximately 2-12% over the BERT models across the two used datasets.
{"title":"CrossBERT: A Triplet Neural Architecture for Ranking Entity Properties","authors":"Jarana Manotumruksa, Jeffrey Dalton, E. Meij, Emine Yilmaz","doi":"10.1145/3397271.3401265","DOIUrl":"https://doi.org/10.1145/3397271.3401265","url":null,"abstract":"Task-based Virtual Personal Assistants (VPAs) such as the Google Assistant, Alexa, and Siri are increasingly being adopted for a wide variety of tasks. These tasks are grounded in real-world entities and actions (e.g., book a hotel, organise a conference, or requesting funds). In this work we tackle the task of automatically constructing actionable knowledge graphs in response to a user query in order to support a wider variety of increasingly complex assistant tasks. We frame this as an entity property ranking task given a user query with annotated properties. We propose a new method for property ranking, CrossBERT. CrossBERT builds on the Bidirectional Encoder Representations from Transformers (BERT) and creates a new triplet network structure on cross query-property pairs that is used to rank properties. We also study the impact of using external evidence for query entities from textual entity descriptions. We perform experiments on two standard benchmark collections, the NTCIR-13 Actionable Knowledge Graph Generation (AKGG) task and Entity Property Identification (EPI) task. The results demonstrate that CrossBERT significantly outperforms the best performing runs from AKGG and EPI, as well as previous state-of-the-art BERT-based models. In particular, CrossBERT significantly improves Recall and NDCG by approximately 2-12% over the BERT models across the two used datasets.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132836581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}