首页 > 最新文献

2006 International Symposium on Evolving Fuzzy Systems最新文献

英文 中文
A Method for Predicting Quality of the Crude Oil Distillation 一种原油蒸馏质量预测方法
Pub Date : 2006-11-30 DOI: 10.1109/ISEFS.2006.251167
P. Angelov, Xiaowei Zhou
Prediction of the properties of the crude oil distillation sidestreams based on statistical methods and laboratory-based analysis has been around for decades. However, there are still many problems with the existing estimators that require a development of new techniques especially for an on-line analysis of the quality of the distillation process. The nature of non-linear characteristics of the refinery process, the variety of properties to measure and control and the narrow window that normally refinery processes operate in are only some of the problems that a prediction technique should deal with in order to be useful for a practical application. There are many successful application cases that refinery units use real plant data to calibrate models. They can be used to predict quality properties of the gas oil, naphtha, kerosene and other products of a crude oil distillation tower. Some of these are distillation end points and cold properties (freeze, cloud). However, it is difficult to identify, control or compensate the dynamic process behavior and the errors from instrumentation for an online model prediction. The objective of this paper is to report an application and a study of a novel technique for real-time modeling, namely extended evolving fuzzy Takagi-Sugeno models (exTS) for prediction and online monitoring of these properties of the refinery distillation process. The results illustrate the effectiveness of the proposed technique and it's potential. The limitations and future directions of research are also outlined
基于统计方法和实验室分析的原油蒸馏侧流性质预测已经有几十年的历史了。然而,现有的估计器仍然存在许多问题,需要开发新的技术,特别是在蒸馏过程质量的在线分析方面。炼油过程的非线性特性,测量和控制的各种特性以及通常炼油过程运行的窄窗口只是预测技术为了在实际应用中有用而应该处理的一些问题。炼油厂利用实际工厂数据对模型进行校正,有许多成功的应用案例。它们可用于预测原油精馏塔的汽油、石脑油、煤油和其他产品的质量特性。其中一些是蒸馏终点和冷特性(冻结、云)。然而,对于在线模型预测,很难识别、控制或补偿动态过程行为和仪表误差。本文的目的是报告一种新的实时建模技术的应用和研究,即扩展进化模糊Takagi-Sugeno模型(exTS),用于预测和在线监测炼油厂蒸馏过程的这些特性。实验结果表明了该方法的有效性和潜力。并对研究的局限性和未来的研究方向进行了概述
{"title":"A Method for Predicting Quality of the Crude Oil Distillation","authors":"P. Angelov, Xiaowei Zhou","doi":"10.1109/ISEFS.2006.251167","DOIUrl":"https://doi.org/10.1109/ISEFS.2006.251167","url":null,"abstract":"Prediction of the properties of the crude oil distillation sidestreams based on statistical methods and laboratory-based analysis has been around for decades. However, there are still many problems with the existing estimators that require a development of new techniques especially for an on-line analysis of the quality of the distillation process. The nature of non-linear characteristics of the refinery process, the variety of properties to measure and control and the narrow window that normally refinery processes operate in are only some of the problems that a prediction technique should deal with in order to be useful for a practical application. There are many successful application cases that refinery units use real plant data to calibrate models. They can be used to predict quality properties of the gas oil, naphtha, kerosene and other products of a crude oil distillation tower. Some of these are distillation end points and cold properties (freeze, cloud). However, it is difficult to identify, control or compensate the dynamic process behavior and the errors from instrumentation for an online model prediction. The objective of this paper is to report an application and a study of a novel technique for real-time modeling, namely extended evolving fuzzy Takagi-Sugeno models (exTS) for prediction and online monitoring of these properties of the refinery distillation process. The results illustrate the effectiveness of the proposed technique and it's potential. The limitations and future directions of research are also outlined","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128489644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Non-Parametric Model Structure Identification and Parametric Efficiency in Nonlinear State Dependent Parameter Models 非线性状态依赖参数模型的非参数模型结构辨识与参数效率
Pub Date : 2006-11-30 DOI: 10.1109/ISEFS.2006.251137
P. Young
Although neuro-fuzzy models provide a very useful general approach to the data-based modelling of nonlinear systems, their normal 'black box' nature is often a deterrent to their use in many of the natural sciences, where representation in terms of differential equations, or equivalent difference equations, is normally required and where the internal functioning and physical meaning of the model system is an important aspect of the modelling exercise. Moreover, identification of the model's internal structure can lead to considerable simplification of the model and the avoidance of over-parameterization, with important consequences as regards the statistical efficiency of the model parameter estimates. This paper introduces a non-parametric approach to model structure identification, based on recursive fixed interval smoothing, and shows how it can prove advantageous in the final parametric modelling of stochastic dynamic systems
尽管神经模糊模型为非线性系统的基于数据的建模提供了一种非常有用的通用方法,但它们正常的“黑箱”性质往往阻碍了它们在许多自然科学中的使用,在这些自然科学中,通常需要用微分方程或等效差分方程表示,并且模型系统的内部功能和物理意义是建模练习的一个重要方面。此外,模型内部结构的识别可以大大简化模型并避免过度参数化,这对模型参数估计的统计效率有重要影响。本文介绍了一种基于递归固定区间平滑的非参数模型结构识别方法,并说明了它如何在随机动态系统的最终参数化建模中发挥优势
{"title":"Non-Parametric Model Structure Identification and Parametric Efficiency in Nonlinear State Dependent Parameter Models","authors":"P. Young","doi":"10.1109/ISEFS.2006.251137","DOIUrl":"https://doi.org/10.1109/ISEFS.2006.251137","url":null,"abstract":"Although neuro-fuzzy models provide a very useful general approach to the data-based modelling of nonlinear systems, their normal 'black box' nature is often a deterrent to their use in many of the natural sciences, where representation in terms of differential equations, or equivalent difference equations, is normally required and where the internal functioning and physical meaning of the model system is an important aspect of the modelling exercise. Moreover, identification of the model's internal structure can lead to considerable simplification of the model and the avoidance of over-parameterization, with important consequences as regards the statistical efficiency of the model parameter estimates. This paper introduces a non-parametric approach to model structure identification, based on recursive fixed interval smoothing, and shows how it can prove advantageous in the final parametric modelling of stochastic dynamic systems","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"226 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126021944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Novelty Detection Based Machine Health Prognostics 基于机器健康预测的新颖性检测
Pub Date : 2006-11-30 DOI: 10.1109/ISEFS.2006.251161
Dimitar Filev, F. Tseng
In this paper we present a new novelty detection algorithm for continuous real time monitoring of machine health and prediction of potential machine faults. The kernel of the system is a generic evolving model that is not dependent on the specific measured parameters determining the health of a particular machine. Two alternative strategies are introduced in order to predict abrupt and gradually developing (incipient) changes. This algorithm is realized as an autonomous software agent that continuously updates its decision model implementing an unsupervisory recursive learning algorithm. Results of validation of the proposed algorithm by accelerated testing experiments are also discussed
本文提出了一种新的新颖性检测算法,用于机器健康状况的连续实时监测和潜在故障的预测。系统的核心是一个通用的进化模型,它不依赖于确定特定机器健康状况的特定测量参数。为了预测突然的和逐渐发展的(初期)变化,介绍了两种备选策略。该算法被实现为一个自主的软件代理,不断更新其决策模型,实现无监督递归学习算法。最后讨论了加速测试实验对算法的验证结果
{"title":"Novelty Detection Based Machine Health Prognostics","authors":"Dimitar Filev, F. Tseng","doi":"10.1109/ISEFS.2006.251161","DOIUrl":"https://doi.org/10.1109/ISEFS.2006.251161","url":null,"abstract":"In this paper we present a new novelty detection algorithm for continuous real time monitoring of machine health and prediction of potential machine faults. The kernel of the system is a generic evolving model that is not dependent on the specific measured parameters determining the health of a particular machine. Two alternative strategies are introduced in order to predict abrupt and gradually developing (incipient) changes. This algorithm is realized as an autonomous software agent that continuously updates its decision model implementing an unsupervisory recursive learning algorithm. Results of validation of the proposed algorithm by accelerated testing experiments are also discussed","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114933519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Evolving Fuzzy Systems from Data Streams in Real-Time 实时数据流演化模糊系统
Pub Date : 2006-09-07 DOI: 10.1109/ISEFS.2006.251157
P. Angelov, Xiaowei Zhou
An approach to real-time generation of fuzzy rule-base systems of extended Takagi-Sugeno (xTS) type from data streams is proposed in the paper. The xTS fuzzy system combines both zero and first order Takagi-Sugeno (TS) type systems. The fuzzy rule-base (system structure) evolves starting 'from scratch' based on the data distribution in the joint input/output data space. An incremental clustering procedure that takes into account the non-stationary nature of the data pattern and generates clusters that are used to form fuzzy rule based systems antecedent part in on-line mode is used as a first stage of the non-iterative learning process. This structure proved to be computationally efficient and powerful to represent in a transparent way complex non-linear relationships. The decoupling of the learning task into a non-iterative, recursive (thus computationally very efficient and applicable in real-time) clustering with a modified version of the well known recursive parameter estimation technique leads to a very powerful construct - evolving xTS (exTS). It is transparent and linguistically interpretable. The contributions of this paper are: i) introduction of an adaptive recursively updated radius of the clusters (zone of influence of the fuzzy rules) that learns the data distribution/variance/scatter in each cluster; ii) a new condition to replace clusters that excludes contradictory rules; iii) an extended formulation that includes both zero order TS and simplified Mamdani multi-input-multi-output (MIMO) systems; iv) new improved formulation of the membership functions, which closer resembles the normal Gaussian distribution; v) introduction of measures of clusters quality that are used to form the antecedent parts of respective fuzzy rules, namely their age and support; vi) experimental results with a well known benchmark problem as well as with real experimental data of concentration of exhaust gases (NOx) in on-line modeling of car engine test rigs
提出了一种从数据流中实时生成扩展Takagi-Sugeno (xTS)型模糊规则库系统的方法。xTS模糊系统结合了零阶和一阶Takagi-Sugeno (TS)型系统。模糊规则库(系统结构)基于联合输入/输出数据空间中的数据分布“从零开始”演化。考虑到数据模式的非平稳性质并生成用于在线模式先行部分形成模糊规则系统的聚类的增量聚类过程被用作非迭代学习过程的第一阶段。这种结构被证明是计算效率高的,并且能够以透明的方式表示复杂的非线性关系。将学习任务解耦为非迭代的递归聚类(因此计算效率很高,适用于实时),并使用众所周知的递归参数估计技术的改进版本,从而产生非常强大的结构-进化xTS (exTS)。它是透明的,在语言上是可解释的。本文的贡献是:i)引入了一个自适应递归更新的聚类半径(模糊规则的影响区),该半径学习每个聚类中的数据分布/方差/散点;Ii)一个新的条件来取代排除矛盾规则的集群;iii)包含零阶TS和简化Mamdani多输入-多输出(MIMO)系统的扩展公式;iv)新的改进的隶属函数公式,更接近正态高斯分布;V)引入用于形成各自模糊规则的先行部分的聚类质量度量,即它们的年龄和支持度;6)在汽车发动机试验台在线建模中,对一个著名的基准问题和尾气(NOx)浓度的真实实验数据进行了实验结果分析
{"title":"Evolving Fuzzy Systems from Data Streams in Real-Time","authors":"P. Angelov, Xiaowei Zhou","doi":"10.1109/ISEFS.2006.251157","DOIUrl":"https://doi.org/10.1109/ISEFS.2006.251157","url":null,"abstract":"An approach to real-time generation of fuzzy rule-base systems of extended Takagi-Sugeno (xTS) type from data streams is proposed in the paper. The xTS fuzzy system combines both zero and first order Takagi-Sugeno (TS) type systems. The fuzzy rule-base (system structure) evolves starting 'from scratch' based on the data distribution in the joint input/output data space. An incremental clustering procedure that takes into account the non-stationary nature of the data pattern and generates clusters that are used to form fuzzy rule based systems antecedent part in on-line mode is used as a first stage of the non-iterative learning process. This structure proved to be computationally efficient and powerful to represent in a transparent way complex non-linear relationships. The decoupling of the learning task into a non-iterative, recursive (thus computationally very efficient and applicable in real-time) clustering with a modified version of the well known recursive parameter estimation technique leads to a very powerful construct - evolving xTS (exTS). It is transparent and linguistically interpretable. The contributions of this paper are: i) introduction of an adaptive recursively updated radius of the clusters (zone of influence of the fuzzy rules) that learns the data distribution/variance/scatter in each cluster; ii) a new condition to replace clusters that excludes contradictory rules; iii) an extended formulation that includes both zero order TS and simplified Mamdani multi-input-multi-output (MIMO) systems; iv) new improved formulation of the membership functions, which closer resembles the normal Gaussian distribution; v) introduction of measures of clusters quality that are used to form the antecedent parts of respective fuzzy rules, namely their age and support; vi) experimental results with a well known benchmark problem as well as with real experimental data of concentration of exhaust gases (NOx) in on-line modeling of car engine test rigs","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124192699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 243
期刊
2006 International Symposium on Evolving Fuzzy Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1