首页 > 最新文献

Day 2 Mon, October 14, 2019最新文献

英文 中文
Carbon Capture & Storage Management for Kuwait Oil Company, Kuwait 科威特石油公司碳捕集与封存管理
Pub Date : 2019-10-13 DOI: 10.2118/198079-ms
Z. Hussain, Fatima Owayed, P. Rao
Kuwait Oil Company (KOC) has commissioned a study to determine the potential contribution that Carbon Capture and Storage alone (CCS), Carbon Capture and Storage with Enhanced Oil Recovery (CCS-EOR) or other identified measures could make to reducing Kuwait's / KOC's Greenhouse Gas (GHG) emissions, by implementation of recommendations. This study was examined various methods to reduce GHG emissions, including CCS, and will provide a strategy for the implementation of various GHG emission reduction technologies for KOC of international and national requirements to address the global challenge of climate change, with particular focus on the Middle East and the Oil and Gas industry. A cost effective GHG emission reduction target for KOC is proposed to limit GHG emissions as Business as Usual in 2030. Achieving this target requires implementing the Prioritized GHG Emissions Reduction Plan with specific Key Performance Measures (KPMs) for KOC. This Plan is based on a package of GHG emission reduction measures that would be cost neutral to KOC. Adopting a similar approach across the whole of Kuwait is expected to reduce emissions by 2030 projections. CCS and CCS-EOR would accrue costs but have the potential to make the greatest contribution to reducing GHG emissions. This Study recommends CCS and CCS-EOR are suitable for longer-term consideration. Furthermore, the top management KPMs has been identified that will help the management to monitor and control the GHGs emissions to address the global challenge of climate change.
科威特石油公司(KOC)委托进行了一项研究,以确定单独的碳捕集与封存(CCS)、提高采收率的碳捕集与封存(CCS- eor)或其他确定的措施可以通过实施建议来减少科威特/ KOC的温室气体(GHG)排放的潜在贡献。本研究考察了各种减少温室气体排放的方法,包括CCS,并将为科威特石油公司提供实施各种温室气体减排技术的战略,以满足国际和国家的要求,以应对气候变化的全球挑战,特别关注中东和石油和天然气行业。为科威特石油公司提出了一个具有成本效益的温室气体减排目标,以在2030年将温室气体排放限制在“一切照常”的水平。要实现这一目标,就需要为KOC实施温室气体减排优先计划,其中包括具体的关键绩效指标(KPMs)。该计划以一揽子温室气体减排措施为基础,这些措施对科威特石油公司的成本是中性的。在整个科威特采用类似的方法,预计到2030年将减少排放。CCS和CCS- eor将增加成本,但有可能对减少温室气体排放做出最大贡献。本研究建议CCS和CCS- eor适合长期考虑。此外,还确定了最高管理kpi,这将有助于管理层监测和控制温室气体排放,以应对气候变化的全球挑战。
{"title":"Carbon Capture & Storage Management for Kuwait Oil Company, Kuwait","authors":"Z. Hussain, Fatima Owayed, P. Rao","doi":"10.2118/198079-ms","DOIUrl":"https://doi.org/10.2118/198079-ms","url":null,"abstract":"\u0000 Kuwait Oil Company (KOC) has commissioned a study to determine the potential contribution that Carbon Capture and Storage alone (CCS), Carbon Capture and Storage with Enhanced Oil Recovery (CCS-EOR) or other identified measures could make to reducing Kuwait's / KOC's Greenhouse Gas (GHG) emissions, by implementation of recommendations. This study was examined various methods to reduce GHG emissions, including CCS, and will provide a strategy for the implementation of various GHG emission reduction technologies for KOC of international and national requirements to address the global challenge of climate change, with particular focus on the Middle East and the Oil and Gas industry.\u0000 A cost effective GHG emission reduction target for KOC is proposed to limit GHG emissions as Business as Usual in 2030. Achieving this target requires implementing the Prioritized GHG Emissions Reduction Plan with specific Key Performance Measures (KPMs) for KOC. This Plan is based on a package of GHG emission reduction measures that would be cost neutral to KOC. Adopting a similar approach across the whole of Kuwait is expected to reduce emissions by 2030 projections. CCS and CCS-EOR would accrue costs but have the potential to make the greatest contribution to reducing GHG emissions. This Study recommends CCS and CCS-EOR are suitable for longer-term consideration. Furthermore, the top management KPMs has been identified that will help the management to monitor and control the GHGs emissions to address the global challenge of climate change.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129759454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated High Resolution 3D Model Update in Challenging Mauddud Carbonates, Raudhatain Field, North Kuwait 科威特北部Raudhatain油田挑战性Mauddud碳酸盐岩集成高分辨率3D模型更新
Pub Date : 2019-10-13 DOI: 10.2118/197988-ms
David Nelson Jesudian, J. Coronado, Nour Esam Al-Abboud
Mauddud Formation is a major oil-producing reservoir in Raudhatain Field of North Kuwait. The Mauddud Formation is an early Albian in age and it was generated an environment of the shallow-water carbonate and consists of Grainstones, Wackestones and Mudstones deposited in ramp settings. In Raudhatain field (RAMA) is undertaking massive development efforts with planned enhancement in Oil production. Reservoir description and distribution of rock properties in 3D space are challenging due to inherent reservoir heterogeneity, in this case primarily driven by depositional and diagenetic patterns. KOC North Kuwait Reservoir Studies Team (NK RST) has been challenged to increase the production from several key NK oil fields. To achieve this goal, KOC has partnered with Schlumberger to rebuild integrated model with Petrophysics, Geophysics, and Geology and Reservoir data of the Mauddud Reservoir. The original model was required to minimize challenges in new infill locations, increase Oil recovery factor and detect water breakthrough to minimize water production. One of the key issues in creating RAMA reservoir model is integration of all available data in identifying the horizontal permeability, reservoir heterogeneity and identification of thief zones. A fine Geological grid model with 35M cells, 10 Geological horizons has been built to characterize the Mauddud reservoirs of the RAMA field including the permeability from PLT logs combined with petrophysical and lithological / facies data to add more understanding of the distribution of reservoir properties. Log response group methodology and the undeveloped area in the Saddle (structurally low area) has been modelled for the first time in Raudhatain NK Field. This combined study utilizes the available data and cutting-edge technology using Geo2Flow which resulted in fluid compartmentalization and free water level identification. STOOIP has been upgraded and unlocking potential in new segments of the developed field. The original model was built based on vertical/Deviation wells (345) which lead to discrepancies in the structural interpretation. The new update has been carried out including all horizontal wells to minimize the uncertainty in the structure framework.
Mauddud地层是北科威特Raudhatain油田的一个主要产油层。Mauddud组为早Albian时期,形成于浅水碳酸盐岩环境,由斜坡沉积的颗粒岩、碎屑岩和泥岩组成。Raudhatain油田(RAMA)正在进行大规模的开发工作,计划提高石油产量。由于储层固有的非均质性,在这种情况下,主要受沉积和成岩模式的影响,因此在三维空间中描述储层和岩石属性分布具有挑战性。KOC北科威特油藏研究小组(NK RST)面临着提高几个关键NK油田产量的挑战。为了实现这一目标,KOC与斯伦贝谢合作,利用Mauddud油藏的岩石物理、地球物理、地质和油藏数据重建了集成模型。最初的模型需要最大限度地减少新填充位置的挑战,提高采收率,并检测水突破,以最大限度地减少产水。建立RAMA储层模型的关键问题之一是整合所有可用数据,以识别水平渗透率、储层非均质性和识别盗窃层。建立了一个包含35M单元、10个地质层的精细地质网格模型来描述RAMA油田的Mauddud储层,包括PLT测井的渗透率,结合岩石物理和岩性/相数据,以增加对储层性质分布的了解。在Raudhatain NK油田,首次对测井响应组方法和鞍区未开发区域(低构造区)进行了建模。这项综合研究利用现有数据和Geo2Flow的尖端技术,实现了流体分区和自由水位识别。STOOIP已经升级,并在已开发油田的新领域释放潜力。最初的模型是基于直井/斜井(345口)建立的,这导致了构造解释的差异。新的更新包括所有水平井,以最大限度地减少结构框架的不确定性。
{"title":"Integrated High Resolution 3D Model Update in Challenging Mauddud Carbonates, Raudhatain Field, North Kuwait","authors":"David Nelson Jesudian, J. Coronado, Nour Esam Al-Abboud","doi":"10.2118/197988-ms","DOIUrl":"https://doi.org/10.2118/197988-ms","url":null,"abstract":"\u0000 Mauddud Formation is a major oil-producing reservoir in Raudhatain Field of North Kuwait. The Mauddud Formation is an early Albian in age and it was generated an environment of the shallow-water carbonate and consists of Grainstones, Wackestones and Mudstones deposited in ramp settings. In Raudhatain field (RAMA) is undertaking massive development efforts with planned enhancement in Oil production. Reservoir description and distribution of rock properties in 3D space are challenging due to inherent reservoir heterogeneity, in this case primarily driven by depositional and diagenetic patterns.\u0000 KOC North Kuwait Reservoir Studies Team (NK RST) has been challenged to increase the production from several key NK oil fields. To achieve this goal, KOC has partnered with Schlumberger to rebuild integrated model with Petrophysics, Geophysics, and Geology and Reservoir data of the Mauddud Reservoir. The original model was required to minimize challenges in new infill locations, increase Oil recovery factor and detect water breakthrough to minimize water production. One of the key issues in creating RAMA reservoir model is integration of all available data in identifying the horizontal permeability, reservoir heterogeneity and identification of thief zones.\u0000 A fine Geological grid model with 35M cells, 10 Geological horizons has been built to characterize the Mauddud reservoirs of the RAMA field including the permeability from PLT logs combined with petrophysical and lithological / facies data to add more understanding of the distribution of reservoir properties. Log response group methodology and the undeveloped area in the Saddle (structurally low area) has been modelled for the first time in Raudhatain NK Field. This combined study utilizes the available data and cutting-edge technology using Geo2Flow which resulted in fluid compartmentalization and free water level identification. STOOIP has been upgraded and unlocking potential in new segments of the developed field. The original model was built based on vertical/Deviation wells (345) which lead to discrepancies in the structural interpretation. The new update has been carried out including all horizontal wells to minimize the uncertainty in the structure framework.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125426388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case Study: Sand Control Technology During CSS in Liaohe and Xinjiang Heavy Oil Reservoirs 以辽河、新疆稠油储层CSS防砂技术为例
Pub Date : 2019-10-13 DOI: 10.2118/197990-ms
Xuan Du, Haijiang Zheng, Xiaochun Wang, X. Hua, Wenlong Guan, Fang Zhao, Jiacheng Xu
Heavy oil reservoirs are generally unconsolidated and easy to produce sand during production1. In the late stage of Cyclic Steam Stimulation (CSS), high temperature steam and hot water destroy clay minerals, further aggravate sand production problems, resulting in sand jam, sand burial, pump jam and casing damage, and frequent operations seriously affect the effective production of oil wells. PetroChina has been carrying out steam stimulation for more than 40 years, and has formed a series of sand control technologies in the field of heavy oil thermal recovery. This paper introduces several sand control techniques used in Liaohe and Xinjiang Oilfield and their successful cases. Liaohe and Xinjiang Oilfield is rich in heavy oil resources. The oil types include ordinary heavy oil, extra heavy oil and super heavy oil2. In Liaohe Oilfield, they have medium and deep heavy oil with a depth of 600-900m and super deep heavy oil with a depth of 1300-1700m. As the main development method, CSS has entered the late stage of production, more than 9 cycles, and encountered various sanding problems during the production. By using mechanical sand control and chemical sand control measures, the sand path was controlled, and an artificial wellbore was formed in the near-wellbore zone to control the fine silt. Through the discussion in this paper, we can provide a variety of solutions for sanding problems encountered in heavy oil steam handling.
稠油油藏一般疏松,在生产过程中容易出砂1。在循环蒸汽增产后期,高温蒸汽和热水破坏粘土矿物,进一步加剧出砂问题,造成堵砂、埋砂、泵卡、套管损坏,频繁作业严重影响油井的有效生产。中石油开展蒸汽增产已有40多年的历史,在稠油热采领域形成了一系列防砂技术。本文介绍了辽河、新疆油田几种防砂技术及其成功案例。辽河、新疆油田稠油资源丰富。油的种类包括普通重油、超稠油和超稠油。辽河油田有600 ~ 900米深的中深层稠油和1300 ~ 1700米深的超深层稠油。CSS作为主要的开发方式,已经进入生产后期,超过9个周期,在生产过程中遇到了各种出砂问题。通过机械防砂和化学防砂措施,控制出砂路径,并在近井段形成人工井眼,控制细粉砂。通过本文的探讨,可以为稠油蒸汽处理中遇到的出砂问题提供多种解决方案。
{"title":"Case Study: Sand Control Technology During CSS in Liaohe and Xinjiang Heavy Oil Reservoirs","authors":"Xuan Du, Haijiang Zheng, Xiaochun Wang, X. Hua, Wenlong Guan, Fang Zhao, Jiacheng Xu","doi":"10.2118/197990-ms","DOIUrl":"https://doi.org/10.2118/197990-ms","url":null,"abstract":"\u0000 Heavy oil reservoirs are generally unconsolidated and easy to produce sand during production1. In the late stage of Cyclic Steam Stimulation (CSS), high temperature steam and hot water destroy clay minerals, further aggravate sand production problems, resulting in sand jam, sand burial, pump jam and casing damage, and frequent operations seriously affect the effective production of oil wells. PetroChina has been carrying out steam stimulation for more than 40 years, and has formed a series of sand control technologies in the field of heavy oil thermal recovery. This paper introduces several sand control techniques used in Liaohe and Xinjiang Oilfield and their successful cases. Liaohe and Xinjiang Oilfield is rich in heavy oil resources. The oil types include ordinary heavy oil, extra heavy oil and super heavy oil2. In Liaohe Oilfield, they have medium and deep heavy oil with a depth of 600-900m and super deep heavy oil with a depth of 1300-1700m. As the main development method, CSS has entered the late stage of production, more than 9 cycles, and encountered various sanding problems during the production. By using mechanical sand control and chemical sand control measures, the sand path was controlled, and an artificial wellbore was formed in the near-wellbore zone to control the fine silt. Through the discussion in this paper, we can provide a variety of solutions for sanding problems encountered in heavy oil steam handling.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"116 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117232198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Do the Right Thing at Right Time KOC Way of Integrating Process Safety into Process Related Facility Projects 在正确的时间做正确的事情KOC如何将过程安全集成到过程相关设施项目中
Pub Date : 2019-10-13 DOI: 10.2118/198135-ms
Mazharuddin Shaikh, Majed Al-Mutairi, Anwar Al-Wehaib, S. Al-Enezi
Several major incidents that involved newly commissioned projects with a range of inherent weaknesses bear testimony to the need for building process safety systematically into future engineering projects. The proper integration of hazard and risk studies into a project is key to achieving full potential for safety. One of the main objectives of successfully integrating process safety into a project is to reduce this residual safety risk. This paper describes the best practice developed by Kuwait Oil Company for integrating process safety activities, especially performing PHA studies through out the life cycle of process related facility projects. This paper outlines types of projects at KOC, phases of projects, brief on project requirement at each phase, details on PHA, PHSER and PSSR reviews at each stage of process to adequately assess & manage the risk. The failure to integrate all of these means that processes and project may not achieve their full safe and efficient performance.
几起涉及新委托项目的重大事故都存在一系列固有的弱点,这证明了在未来的工程项目中系统地建立过程安全的必要性。将危害和风险研究适当纳入项目是充分发挥安全潜力的关键。成功地将过程安全集成到项目中的主要目标之一是减少剩余的安全风险。本文介绍了科威特石油公司为整合过程安全活动而开发的最佳实践,特别是在过程相关设施项目的整个生命周期中进行PHA研究。本文概述了KOC的项目类型,项目的阶段,每个阶段的项目要求简述,每个阶段的PHA, PHSER和PSSR审查的详细信息,以充分评估和管理风险。未能整合所有这些意味着过程和项目可能无法实现其充分安全和有效的性能。
{"title":"Do the Right Thing at Right Time KOC Way of Integrating Process Safety into Process Related Facility Projects","authors":"Mazharuddin Shaikh, Majed Al-Mutairi, Anwar Al-Wehaib, S. Al-Enezi","doi":"10.2118/198135-ms","DOIUrl":"https://doi.org/10.2118/198135-ms","url":null,"abstract":"\u0000 Several major incidents that involved newly commissioned projects with a range of inherent weaknesses bear testimony to the need for building process safety systematically into future engineering projects. The proper integration of hazard and risk studies into a project is key to achieving full potential for safety. One of the main objectives of successfully integrating process safety into a project is to reduce this residual safety risk. This paper describes the best practice developed by Kuwait Oil Company for integrating process safety activities, especially performing PHA studies through out the life cycle of process related facility projects. This paper outlines types of projects at KOC, phases of projects, brief on project requirement at each phase, details on PHA, PHSER and PSSR reviews at each stage of process to adequately assess & manage the risk. The failure to integrate all of these means that processes and project may not achieve their full safe and efficient performance.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"943 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116215977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tight Carbonate Reservoir Characterization and Complition Optimization Using Magnetic Resonance in Horizontal Well, Umm-Gudair Field, West Kuwait 科威特西部Umm-Gudair油田致密碳酸盐岩储层水平井磁共振表征及完井优化
Pub Date : 2019-10-13 DOI: 10.2118/198110-ms
Mahmoud FawzyFahmy, D. SinghaRay, Mohamed Zekraoui, M. Ghioca, Riyad Qutainah
Middle Marrat resrervoir of Jurrasic age is a tight carbonate reservoir with vertical and horizontal heterogeneous properities. The well placement over deep elonogted anticline with steep dips, geosteering and lowering of production liner are challenging, therefore the field is being developed using horizontal wells cutting across multiple reservoir layers to maximize reservoir contact and driange The low clay content in Marrat reservoirs gives low gamma ray counts, which makes the identification of reservoir layers identification difficult. In addition, the high-resistivity responses from hydrocarbon-bearing pay-zones and from the tight layers make the identification of the reservoir sweet spots difficult as well. Slim-hole magnetic resonance (NMR) logging was deployed in wash-down mode for identifying reservoir sweet-spots as a lithology-independent porosity and formation fluid characterization tool. Magnetic resonance was acquired with dual wait time enabled T2 polarization to differentiate between moveable water and hydrocarbons. After acquisition, the standard deliverables were porosity, the effective porosity ratio, and the permeability index to evaluate the rock qualities. Porosity was divided into clay-bound water (CBW), bulk-volume irreducible (BVI) and bulk-volume moveable (BVM). Rock quality was interpreted and classified based on efftective porosity and permeability index ratios. The ratio where a steeper gradient was interpreted as high flow zones, a gentle gradient as low flow zones, and a flat gradient was considered as tight baffle zones. Based on the MR flow units and fluid types (CBW, BVI and BVM), the drilled interval was classified into six compartments of high flow, one compartment of low flow, and five tight baffle zones. Accordingly, the perforation plan was optimized to fit the high flow units only. Comparing to the conventional log analysis, NMR excluded approximately 1000 ft of non-productive reservoirs, leading to a significant cost savings (250,000 USD) in perforationand production optimization. The well was drilled with a distance-to-bed boundary tool; however, enormous potential exists to use this slim MR tool as a non-radioactive sourceless solution for geosteering through reservoir sweet spots while delivering wells that are more productive safely.
侏罗系中马拉储层为致密碳酸盐岩储层,具有纵向和横向非均质性。由于在大倾角、地质导向和下放生产尾管的深细长背斜上的井位具有挑战性,因此该油田的开发采用水平井穿过多个储层,以最大限度地扩大储层接触和井深。Marrat储层粘土含量低,伽马射线数量少,这给储层识别带来了困难。此外,含油气产层和致密层的高电阻率响应也使储层甜点的识别变得困难。小井眼磁共振(NMR)测井作为一种与岩性无关的孔隙度和地层流体表征工具,采用冲洗模式识别储层甜点。通过双重等待时间激活T2极化获得磁共振,以区分可移动的水和碳氢化合物。采集后的标准交付物是孔隙度、有效孔隙度比和渗透率指数,用于评价岩石质量。孔隙度分为粘土结合水(CBW)、体积不可还原(BVI)和体积可移动(BVM)。根据有效孔隙度和渗透率指数比值对岩石质量进行了解释和分类。陡梯度被解释为高流量区,缓梯度被解释为低流量区,平缓梯度被认为是紧挡板区。根据MR流动单元和流体类型(CBW、BVI和BVM),将钻井段划分为6个高流量区、1个低流量区和5个致密挡板区。相应地,射孔方案进行了优化,以适应高流量单元。与常规测井分析相比,NMR排除了约1000英尺的非生产性储层,从而在射孔和生产优化方面节省了25万美元的成本。该井的钻井使用了距离至地层边界工具;然而,将这种纤细的MR工具作为一种无辐射源的地质导向解决方案存在巨大的潜力,可以通过储层甜点进行地质导向,同时提供更安全的生产井。
{"title":"Tight Carbonate Reservoir Characterization and Complition Optimization Using Magnetic Resonance in Horizontal Well, Umm-Gudair Field, West Kuwait","authors":"Mahmoud FawzyFahmy, D. SinghaRay, Mohamed Zekraoui, M. Ghioca, Riyad Qutainah","doi":"10.2118/198110-ms","DOIUrl":"https://doi.org/10.2118/198110-ms","url":null,"abstract":"\u0000 Middle Marrat resrervoir of Jurrasic age is a tight carbonate reservoir with vertical and horizontal heterogeneous properities. The well placement over deep elonogted anticline with steep dips, geosteering and lowering of production liner are challenging, therefore the field is being developed using horizontal wells cutting across multiple reservoir layers to maximize reservoir contact and driange\u0000 The low clay content in Marrat reservoirs gives low gamma ray counts, which makes the identification of reservoir layers identification difficult. In addition, the high-resistivity responses from hydrocarbon-bearing pay-zones and from the tight layers make the identification of the reservoir sweet spots difficult as well. Slim-hole magnetic resonance (NMR) logging was deployed in wash-down mode for identifying reservoir sweet-spots as a lithology-independent porosity and formation fluid characterization tool.\u0000 Magnetic resonance was acquired with dual wait time enabled T2 polarization to differentiate between moveable water and hydrocarbons. After acquisition, the standard deliverables were porosity, the effective porosity ratio, and the permeability index to evaluate the rock qualities. Porosity was divided into clay-bound water (CBW), bulk-volume irreducible (BVI) and bulk-volume moveable (BVM). Rock quality was interpreted and classified based on efftective porosity and permeability index ratios. The ratio where a steeper gradient was interpreted as high flow zones, a gentle gradient as low flow zones, and a flat gradient was considered as tight baffle zones.\u0000 Based on the MR flow units and fluid types (CBW, BVI and BVM), the drilled interval was classified into six compartments of high flow, one compartment of low flow, and five tight baffle zones. Accordingly, the perforation plan was optimized to fit the high flow units only. Comparing to the conventional log analysis, NMR excluded approximately 1000 ft of non-productive reservoirs, leading to a significant cost savings (250,000 USD) in perforationand production optimization.\u0000 The well was drilled with a distance-to-bed boundary tool; however, enormous potential exists to use this slim MR tool as a non-radioactive sourceless solution for geosteering through reservoir sweet spots while delivering wells that are more productive safely.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122411825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkali-Surfactant Adsorption and Polymer Injectivity Measurements Using Reservoir Core from a Giant High Temperature and High Salinity Clastic Reservoir to Design an ASP Pilot 大型高温高盐度碎屑岩储层岩心对碱表面活性剂吸附和聚合物注入能力的测量
Pub Date : 2019-10-13 DOI: 10.2118/198174-ms
M. T. Al-Murayri, H. Al-Mayyan, Narjes Al-Mahmeed, A. Muthuswamy, G. Shahin, S. Shukla
This paper discusses static and dynamic adsorption experiments to evaluate surfactant and alkali consumption as well as polymer injectivity to guide well perforation design for an Alkaline Surfactant Polymer (ASP) pilot in a giant clastic reservoir in Kuwait. Alkali and surfactant consumption in the reservoir and polymer mechanical degradation near the wellbore have a significant impact on the effectiveness of the injected ASP slug to recover additional oil from the reservoir post water flooding. Aqueous solutions consisting of alkali, surfactant and co-solvent with and without hydrolyzed polyacrylamide polymer were injected into outcrop (Bentheimer) and cleaned reservoir cores at a reservoir temperature of 90°C. The concentration of surfactant and alkali in the effluent stream was measured using potentiometric titration and the retardation of the chemical waves in comparison to the salinity tracer wave was used to estimate chemical adsorption. For the injectivity tests, ASP and polymer drive solutions were injected at various rates into cleaned reservoir core to determine threshold onset rates for screen factor and apparent viscosity loss at room temperature and at 40°C. This laboratory study shows that surfactant adsorption can be higher when the experiments are conducted using reservoir core at the reservoir temperature of 90°C compared to literature reported adsorption values for internal olefin sulfonates (IOS) on Berea rock in the absence of alkali and polymer at room temperature. Both the static and dynamic adsorption experiments revealed that surfactant adsorption and alkali consumption was reduced in the presence of polymer. This is likely due to a competition between surfactant and polymer molecules for the adsorption sites on the rock surface. The polymer injectivity tests showed that screen factor declined above a Darcy velocity of 83 ft/day and apparent viscosity peaked at a Darcy velocity of 166 ft/day. Based on these results, it was recommended that well perforations for injection wells be designed such that flow rate does not exceed 100 - 150 ft/day to preserve the benefits of mobility control through ASP and polymer injection.
本文讨论了静态和动态吸附实验,以评估表面活性剂和碱的消耗以及聚合物的注入能力,以指导科威特巨型碎屑储层中碱性表面活性剂聚合物(ASP)的射孔设计。储层中碱和表面活性剂的消耗以及井筒附近聚合物的机械降解对注水后ASP段塞段塞从储层中开采额外石油的有效性有重大影响。将碱、表面活性剂和共溶剂组成的水溶液(含或不含水解聚丙烯酰胺聚合物)注入露头(Bentheimer),并在90℃的储层温度下清洗储层岩心。用电位滴定法测定了出水中表面活性剂和碱的浓度,并利用化学波与盐度示踪波的延迟来估计化学吸附。在注入性测试中,将ASP和聚合物驱液以不同的速率注入清洗后的油藏岩心,以确定室温和40℃下筛分因子和表观粘度损失的阈值起始速率。本实验室研究表明,在储层温度为90°C时,与文献报道的室温下无碱和无聚合物条件下Berea岩石内部烯烃磺酸盐(IOS)的吸附值相比,表面活性剂在储层岩心上的吸附值更高。静态和动态吸附实验表明,聚合物的存在降低了表面活性剂的吸附量和耗碱量。这可能是由于表面活性剂和聚合物分子争夺岩石表面的吸附位置。聚合物注入性测试表明,筛分系数在达西速度为83英尺/天以上下降,表观粘度在达西速度为166英尺/天时达到峰值。基于这些结果,建议对注水井进行射孔设计,使流量不超过100 - 150英尺/天,以保持通过三元复合材料和聚合物注入控制流动性的优势。
{"title":"Alkali-Surfactant Adsorption and Polymer Injectivity Measurements Using Reservoir Core from a Giant High Temperature and High Salinity Clastic Reservoir to Design an ASP Pilot","authors":"M. T. Al-Murayri, H. Al-Mayyan, Narjes Al-Mahmeed, A. Muthuswamy, G. Shahin, S. Shukla","doi":"10.2118/198174-ms","DOIUrl":"https://doi.org/10.2118/198174-ms","url":null,"abstract":"\u0000 This paper discusses static and dynamic adsorption experiments to evaluate surfactant and alkali consumption as well as polymer injectivity to guide well perforation design for an Alkaline Surfactant Polymer (ASP) pilot in a giant clastic reservoir in Kuwait. Alkali and surfactant consumption in the reservoir and polymer mechanical degradation near the wellbore have a significant impact on the effectiveness of the injected ASP slug to recover additional oil from the reservoir post water flooding. Aqueous solutions consisting of alkali, surfactant and co-solvent with and without hydrolyzed polyacrylamide polymer were injected into outcrop (Bentheimer) and cleaned reservoir cores at a reservoir temperature of 90°C. The concentration of surfactant and alkali in the effluent stream was measured using potentiometric titration and the retardation of the chemical waves in comparison to the salinity tracer wave was used to estimate chemical adsorption. For the injectivity tests, ASP and polymer drive solutions were injected at various rates into cleaned reservoir core to determine threshold onset rates for screen factor and apparent viscosity loss at room temperature and at 40°C.\u0000 This laboratory study shows that surfactant adsorption can be higher when the experiments are conducted using reservoir core at the reservoir temperature of 90°C compared to literature reported adsorption values for internal olefin sulfonates (IOS) on Berea rock in the absence of alkali and polymer at room temperature. Both the static and dynamic adsorption experiments revealed that surfactant adsorption and alkali consumption was reduced in the presence of polymer. This is likely due to a competition between surfactant and polymer molecules for the adsorption sites on the rock surface. The polymer injectivity tests showed that screen factor declined above a Darcy velocity of 83 ft/day and apparent viscosity peaked at a Darcy velocity of 166 ft/day. Based on these results, it was recommended that well perforations for injection wells be designed such that flow rate does not exceed 100 - 150 ft/day to preserve the benefits of mobility control through ASP and polymer injection.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128829853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Collaborative Approach in Horizontal Drilling for Well Cost Optimization and Optimum Drainage, Minagish Field, West Kuwait 科威特西部Minagish油田水平井钻井成本优化与排液优化协同方法
Pub Date : 2019-10-13 DOI: 10.2118/198182-ms
Taher El Gezeery, Y. Halawa, Mohamed Al Rashidi, S. Matter, Z. Ramadan, S. Osman, A. Ahmed, N. Al-Hamad, D. Kumar, M. Siam, S. Abdelbaset
The Cenomanian Wara Formation in Minagish Field is composed mainly of coastal plain deposits, observed at field scale along with shallow marine shales and carbonate bioclastic sandy beds. They are locally disrupted by embedded channelized sandy bodies from fluvio-tidal origin. The reservoir units are represented by different channel geometries with limited areal extension. The placement and completion of horizontal and highly deviated wells in such reservoir is a challenge necessitating a collaborative approach to avoid major well bore instability issues. These issues have a significant impact on the well cost and time line. In addition, having the right placement and completion is important for optimizing the drainage contact. To address such challenges during the different stages of the drilling operation, different technologies were used. For example, while the well was drilling through the unstable Wara and Ahmadi shaley formations, a Logging While Drilling (LWD) sonic and gamma ray (GR) tools were used to update in realtime a predrill geomechanical model with the formation acoustic and GR properties. Having such measurements allowed calculating the right mud weight density which resulted in drilling a stable borehole. This was confirmed by the absence of cavings and tight spots thought out the whole operation. On the other hand, the drain section was drilled in Wara channel sands which are known to be composed of a thinly bedded faulted sand-silt sequence with the sand layers being relatively radioactive. To help steering in such complex environment, a combination of LWD tools were chosen to place the well in the sweet spot of the target. These tools involved using the advanced deep azimuthal resistivity (geosteering) and the Multi-Function LWD (advanced petrophysics) tools. As a result of this, the horizontal section was proactively geosteered in the reservoir in which 1049 ft MD were steered in the high-quality sand layers.
Minagish油田的Cenomanian Wara组主要由海岸平原沉积组成,并伴有浅海页岩和碳酸盐岩生物碎屑砂层。它们局部被河潮成因的内嵌河道化砂体破坏。储层单元由不同的河道几何形状表示,其面积扩展有限。在这样的油藏中,水平井和大斜度井的布置和完井是一个挑战,需要采用协作方法来避免主要的井筒不稳定问题。这些问题对钻井成本和作业时间都有重大影响。此外,正确的位置和完井对于优化排液接触也很重要。为了在钻井作业的不同阶段解决这些挑战,使用了不同的技术。例如,当该井在不稳定的Wara和Ahmadi页岩地层中钻井时,使用随钻测井(LWD)声波和伽马射线(GR)工具实时更新钻前地质力学模型,其中包含地层声波和GR特性。有了这样的测量,就可以计算出正确的泥浆重量密度,从而钻出一个稳定的井眼。这一点得到了证实,因为在整个作业过程中没有出现塌方和死角。另一方面,排水段是在Wara水道砂中钻探的,该砂层由薄层状断裂砂-粉砂层序组成,砂层具有相对的放射性。为了在如此复杂的环境中帮助定向,选择了LWD工具组合,将井定位在目标的最佳位置。这些工具包括先进的深部方位电阻率(地质导向)和多功能LWD(先进岩石物理)工具。因此,在高质量砂层中进行了1049 ft MD导向的水平段主动地质导向。
{"title":"A Collaborative Approach in Horizontal Drilling for Well Cost Optimization and Optimum Drainage, Minagish Field, West Kuwait","authors":"Taher El Gezeery, Y. Halawa, Mohamed Al Rashidi, S. Matter, Z. Ramadan, S. Osman, A. Ahmed, N. Al-Hamad, D. Kumar, M. Siam, S. Abdelbaset","doi":"10.2118/198182-ms","DOIUrl":"https://doi.org/10.2118/198182-ms","url":null,"abstract":"\u0000 The Cenomanian Wara Formation in Minagish Field is composed mainly of coastal plain deposits, observed at field scale along with shallow marine shales and carbonate bioclastic sandy beds. They are locally disrupted by embedded channelized sandy bodies from fluvio-tidal origin. The reservoir units are represented by different channel geometries with limited areal extension. The placement and completion of horizontal and highly deviated wells in such reservoir is a challenge necessitating a collaborative approach to avoid major well bore instability issues. These issues have a significant impact on the well cost and time line. In addition, having the right placement and completion is important for optimizing the drainage contact. To address such challenges during the different stages of the drilling operation, different technologies were used. For example, while the well was drilling through the unstable Wara and Ahmadi shaley formations, a Logging While Drilling (LWD) sonic and gamma ray (GR) tools were used to update in realtime a predrill geomechanical model with the formation acoustic and GR properties. Having such measurements allowed calculating the right mud weight density which resulted in drilling a stable borehole. This was confirmed by the absence of cavings and tight spots thought out the whole operation. On the other hand, the drain section was drilled in Wara channel sands which are known to be composed of a thinly bedded faulted sand-silt sequence with the sand layers being relatively radioactive. To help steering in such complex environment, a combination of LWD tools were chosen to place the well in the sweet spot of the target. These tools involved using the advanced deep azimuthal resistivity (geosteering) and the Multi-Function LWD (advanced petrophysics) tools. As a result of this, the horizontal section was proactively geosteered in the reservoir in which 1049 ft MD were steered in the high-quality sand layers.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116875491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of Multi-Phase Flow in an Annulus Using Electric Resistance Tomography 利用电阻层析成像技术研究环空多相流
Pub Date : 2019-10-13 DOI: 10.2118/198011-ms
M. Qureshi, M. Ali, M. A. Rahman, Ibrahim Hassan, G. Rasul, Rashid Hassan
The hole cleaning is considered a key element of drilling operation as it impacts the economics of drilling operations, operational time of operations and the safety of operations. Inadequate hole cleaning can lead to blockages resulting in loss of circulation and premature wear out of the drill pipe. The transport of solids cuttings as a multiphase flow offers a solution to the hole cleaning issue, as it can aid to lower operational cost, reduce operation time, and enhance the quality of overall drilling operations. Electrical resistance tomography (ERT) is a promising technology to visualize the 3D flow conditions involved in the hole cleaning process. ERT system is utilized to study and analyze the multiphase flow behavior and to provide in situ volume fraction distribution quantitatively through the drilling annulus. The motive of this work is to investigate the effect of different eccentricities (0-50 %), inner pipe rotation speed (0-120 RPM) and liquid flow rates (160-190 Kg/min) on the secondary phase (solids + air) transport across the annulus using the ERT system. The three-phase flow conditions (water, air, and solids) experiments were conducted in the horizontal flow loop with annulus at Texas A&M University at Qatar (TAMUQ) using ERT system. The flow loop annulus line consists of 6.16 m horizontal/inclined line. The inner diameter of the outer acrylic pipe and the outer diameter of the inner stainless steel pipe were 114.3 mm (4.5 in) and 63.5 mm (2.5 in), respectively. The glass beads (2-3 mm) were injected at a concentration of 5 wt%. The experimental results indicate that the ERT sensors have the capability of providing real-time quantitative images of annular multiphase flow regimes and it can be utilized effectively to observe the secondary phase (solids + air) transport across the opaque region of the annulus. It was also observed that the concentration of secondary phase (solids + air) tends to increase with an increase in the eccentricity of the inner pipe and the inner pipe rotation does not have a significant effect on the concentration of secondary phase (solids + air) at selected experimental conditions.
井眼清洗是钻井作业的关键环节,它直接影响钻井作业的经济性、作业时间和作业安全性。不充分的井眼清洗会导致堵塞,导致循环损失和钻杆过早磨损。固体岩屑以多相流的形式运移,为井眼清洁问题提供了一个解决方案,因为它有助于降低作业成本,缩短作业时间,提高整体钻井作业的质量。电阻层析成像技术(ERT)是一种很有前途的技术,可以将井眼清洗过程中的三维流动状况可视化。利用ERT系统对钻井环空多相流动特性进行研究和分析,定量提供钻井环空原位体积分数分布。这项工作的动机是研究不同偏心率(0- 50%)、内管转速(0-120 RPM)和液体流速(160-190 Kg/min)对ERT系统环空二次相(固体+空气)输送的影响。在卡塔尔德克萨斯A&M大学(TAMUQ),利用ERT系统在带环空的水平流动回路中进行了三相流动条件(水、空气和固体)实验。流环环空线由6.16 m水平/倾斜线组成。外亚克力管的内径和内不锈钢管的外径分别为114.3毫米(4.5英寸)和63.5毫米(2.5英寸)。以5wt %的浓度注射玻璃珠(2-3 mm)。实验结果表明,ERT传感器能够提供环空多相流流态的实时定量图像,可以有效地用于观察环空不透明区域的二次相(固体+空气)输运。在一定的实验条件下,二次相(固体+空气)浓度随管内偏心距的增大而增大,管内旋转对二次相(固体+空气)浓度的影响不显著。
{"title":"Experimental Investigation of Multi-Phase Flow in an Annulus Using Electric Resistance Tomography","authors":"M. Qureshi, M. Ali, M. A. Rahman, Ibrahim Hassan, G. Rasul, Rashid Hassan","doi":"10.2118/198011-ms","DOIUrl":"https://doi.org/10.2118/198011-ms","url":null,"abstract":"\u0000 The hole cleaning is considered a key element of drilling operation as it impacts the economics of drilling operations, operational time of operations and the safety of operations. Inadequate hole cleaning can lead to blockages resulting in loss of circulation and premature wear out of the drill pipe. The transport of solids cuttings as a multiphase flow offers a solution to the hole cleaning issue, as it can aid to lower operational cost, reduce operation time, and enhance the quality of overall drilling operations.\u0000 Electrical resistance tomography (ERT) is a promising technology to visualize the 3D flow conditions involved in the hole cleaning process. ERT system is utilized to study and analyze the multiphase flow behavior and to provide in situ volume fraction distribution quantitatively through the drilling annulus. The motive of this work is to investigate the effect of different eccentricities (0-50 %), inner pipe rotation speed (0-120 RPM) and liquid flow rates (160-190 Kg/min) on the secondary phase (solids + air) transport across the annulus using the ERT system. The three-phase flow conditions (water, air, and solids) experiments were conducted in the horizontal flow loop with annulus at Texas A&M University at Qatar (TAMUQ) using ERT system. The flow loop annulus line consists of 6.16 m horizontal/inclined line. The inner diameter of the outer acrylic pipe and the outer diameter of the inner stainless steel pipe were 114.3 mm (4.5 in) and 63.5 mm (2.5 in), respectively. The glass beads (2-3 mm) were injected at a concentration of 5 wt%. The experimental results indicate that the ERT sensors have the capability of providing real-time quantitative images of annular multiphase flow regimes and it can be utilized effectively to observe the secondary phase (solids + air) transport across the opaque region of the annulus. It was also observed that the concentration of secondary phase (solids + air) tends to increase with an increase in the eccentricity of the inner pipe and the inner pipe rotation does not have a significant effect on the concentration of secondary phase (solids + air) at selected experimental conditions.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131725480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Holistic Approach to Estimate Water Breakthrough; A Case Study 水侵评价的整体方法研究案例研究
Pub Date : 2019-10-13 DOI: 10.2118/198143-ms
D. Opoku, D. A. Shehri, Stephen Adjei
Historically, it has been a challenge to analyze and predict water cut or water production. While predicting water production may seem less relevant as compared to oil production, produced water poses many challenges. The difficulty rises when surface facilities cannot handle the water produced and reservoir pressure declines sharply as a result of excess water production. Multiphase flowmeters (MPFMs) have in the past few decades gradually replaced the conventional approach of metering multiphase flow streams using test separators. However, MPFMs have been faced with several challenges including flow assurance problems and high bottomhole temperatures and pressures. In addition, they have a threshold below which the accuracy of the measurement of water production will be highly questionable due to design and technology limitations. As a matter of economic decisions, it is necessary to detect and estimate early and post water breakthrough trends respectively. Several models to forecast water breakthrough have been developed. Among them is the famous water cut (WC) versus cumulative production (Np) plot. This paper presents two empirical models to address the inability of MPFM to detect early water breakthrough below a threshold and to provide an alternative technique for modeling post water breakthrough. The models developed in this work predict water breakthrough using fluid volumes, bottomhole pressure and temperature. The first technique predicts early water breakthrough when the plotted function shows a deviation from a straight-line trend. In the second model, the water cut equation is modified for post water breakthrough prediction. Previous studies of water cut (WC) have focused on the production of water above the MPFMs threshold. The models derived in this paper provide accurate water cut estimates below MPMFs threshold and reliable post water breakthrough analysis.
从历史上看,分析和预测含水或产水量一直是一个挑战。虽然与石油产量相比,预测产油量似乎不那么重要,但采出水带来了许多挑战。当地表设施无法处理产出的水,并且由于产出过多的水而导致油藏压力急剧下降时,难度就会增加。在过去的几十年里,多相流量计(MPFMs)逐渐取代了使用测试分离器测量多相流的传统方法。然而,MPFMs面临着一些挑战,包括流动保障问题和高井底温度和压力。此外,由于设计和技术的限制,它们有一个阈值,低于该阈值,测量产水量的准确性将非常值得怀疑。作为经济决策问题,有必要分别检测和估计早期和后期的水突破趋势。开发了几种预测突水的模型。其中有著名的含水率(WC)与累积产量(Np)图。本文提出了两个经验模型来解决MPFM无法探测到低于阈值的早期水突破的问题,并为水突破后的建模提供了一种替代技术。本工作中开发的模型使用流体体积、井底压力和温度来预测水侵。第一种方法是在绘制的函数偏离直线趋势时预测早期的见水。在第二个模型中,对含水率方程进行了修正,用于突水后的预测。以前对含水率的研究主要集中在MPFMs阈值以上的水产量上。本文推导的模型提供了MPMFs阈值以下的准确含水估算和可靠的突水后分析。
{"title":"Holistic Approach to Estimate Water Breakthrough; A Case Study","authors":"D. Opoku, D. A. Shehri, Stephen Adjei","doi":"10.2118/198143-ms","DOIUrl":"https://doi.org/10.2118/198143-ms","url":null,"abstract":"\u0000 Historically, it has been a challenge to analyze and predict water cut or water production. While predicting water production may seem less relevant as compared to oil production, produced water poses many challenges. The difficulty rises when surface facilities cannot handle the water produced and reservoir pressure declines sharply as a result of excess water production.\u0000 Multiphase flowmeters (MPFMs) have in the past few decades gradually replaced the conventional approach of metering multiphase flow streams using test separators. However, MPFMs have been faced with several challenges including flow assurance problems and high bottomhole temperatures and pressures. In addition, they have a threshold below which the accuracy of the measurement of water production will be highly questionable due to design and technology limitations. As a matter of economic decisions, it is necessary to detect and estimate early and post water breakthrough trends respectively. Several models to forecast water breakthrough have been developed. Among them is the famous water cut (WC) versus cumulative production (Np) plot.\u0000 This paper presents two empirical models to address the inability of MPFM to detect early water breakthrough below a threshold and to provide an alternative technique for modeling post water breakthrough. The models developed in this work predict water breakthrough using fluid volumes, bottomhole pressure and temperature. The first technique predicts early water breakthrough when the plotted function shows a deviation from a straight-line trend. In the second model, the water cut equation is modified for post water breakthrough prediction.\u0000 Previous studies of water cut (WC) have focused on the production of water above the MPFMs threshold. The models derived in this paper provide accurate water cut estimates below MPMFs threshold and reliable post water breakthrough analysis.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116310932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best Surfactant for EOR Polymer Injectivity 提高EOR聚合物注入能力的最佳表面活性剂
Pub Date : 2019-10-13 DOI: 10.2118/198097-ms
B. Gerlach, Fatima Dugonjić‐Bilić, M. Neuber, Ahmad Alkouh
Synthetic polymers in the emulsion form have been exploited for enhanced oil recovery applications especially in harsh environments for instance offshore or remote onshore locations. Polymer solutions can be prepared on-the-fly using saline make-up water like formation water or sea water. Use of an inverter surfactant accelerates the inversion of the polymer emulsion. For this study two highly efficient inverter surfactants at different price level were selected and their impact on the performance of an acrylamide-based emulsion copolymer was investigated. Polymer solutions prepared with the inverter surfactants S1 and S2 at different concentrations and conditioned by defined shear treatment were characterized by rheology, filter tests and injectivity behavior in sand packs. Significant impact of inverter surfactant on rheological properties and especially on injectivity performance is demonstrated. Viscosities of polymer solutions prepared with surfactant S1 are slightly higher (than viscosities with surfactant S2) and decrease with increasing surfactant concentration at constant polymer content. Besides, RRF values as a measure for injectivity behavior strongly decrease at ascending surfactant content. More intense conditioning leads to favorable injectivity of an otherwise plugging polymer solution. At lower concentrations surfactant S1 seems to adversely interact with the polymer and form polymer-surfactant complexes which are retained in the sand pack during injection. For surfactant S2 viscosities of polymer solutions are independent of surfactant concentration and RRF values are low even at low surfactant concentration. This surfactant ensures good injectivities over a broad range of conditions. Being the economically more favorable surfactant it adds value to polymer flooding projects.
乳化形式的合成聚合物已被用于提高石油采收率的应用,特别是在恶劣的环境中,例如海上或偏远的陆上地区。聚合物溶液可以使用含盐的补充水(如地层水或海水)即时制备。使用反相表面活性剂可加速聚合物乳液的反相。本研究选取了两种不同价格的高效反相表面活性剂,考察了它们对丙烯酰胺基乳液共聚物性能的影响。用不同浓度的反相表面活性剂S1和S2制备聚合物溶液,并通过规定的剪切处理对其进行了流变学、过滤测试和注入行为的表征。证明了逆变表面活性剂对流变性能,特别是对注入性能的显著影响。在聚合物含量不变的情况下,表面活性剂S1制备的聚合物溶液粘度略高于表面活性剂S2制备的聚合物溶液粘度,随表面活性剂浓度的增加而降低。此外,随着表面活性剂含量的增加,RRF值作为注入性行为的指标显著降低。更强的调节作用可以使原本堵塞的聚合物溶液具有良好的注入性。在较低浓度下,表面活性剂S1似乎会与聚合物产生不利的相互作用,形成聚合物-表面活性剂复合物,并在注入过程中保留在填砂层中。对于表面活性剂S2,聚合物溶液的粘度与表面活性剂浓度无关,即使在低表面活性剂浓度下,RRF值也很低。这种表面活性剂可在各种条件下确保良好的注入性。它是一种经济上较好的表面活性剂,为聚合物驱项目增加了价值。
{"title":"Best Surfactant for EOR Polymer Injectivity","authors":"B. Gerlach, Fatima Dugonjić‐Bilić, M. Neuber, Ahmad Alkouh","doi":"10.2118/198097-ms","DOIUrl":"https://doi.org/10.2118/198097-ms","url":null,"abstract":"\u0000 Synthetic polymers in the emulsion form have been exploited for enhanced oil recovery applications especially in harsh environments for instance offshore or remote onshore locations. Polymer solutions can be prepared on-the-fly using saline make-up water like formation water or sea water. Use of an inverter surfactant accelerates the inversion of the polymer emulsion. For this study two highly efficient inverter surfactants at different price level were selected and their impact on the performance of an acrylamide-based emulsion copolymer was investigated.\u0000 Polymer solutions prepared with the inverter surfactants S1 and S2 at different concentrations and conditioned by defined shear treatment were characterized by rheology, filter tests and injectivity behavior in sand packs.\u0000 Significant impact of inverter surfactant on rheological properties and especially on injectivity performance is demonstrated. Viscosities of polymer solutions prepared with surfactant S1 are slightly higher (than viscosities with surfactant S2) and decrease with increasing surfactant concentration at constant polymer content. Besides, RRF values as a measure for injectivity behavior strongly decrease at ascending surfactant content. More intense conditioning leads to favorable injectivity of an otherwise plugging polymer solution. At lower concentrations surfactant S1 seems to adversely interact with the polymer and form polymer-surfactant complexes which are retained in the sand pack during injection.\u0000 For surfactant S2 viscosities of polymer solutions are independent of surfactant concentration and RRF values are low even at low surfactant concentration. This surfactant ensures good injectivities over a broad range of conditions. Being the economically more favorable surfactant it adds value to polymer flooding projects.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130358353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Day 2 Mon, October 14, 2019
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1