首页 > 最新文献

Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)最新文献

英文 中文
Leaf Segmentation of Rosette Plants using Rough K-Means in CIELab Color Space 基于CIELab颜色空间粗糙k均值的莲座植物叶片分割
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.5
Arunita Das, Daipayan Ghosal, Krishna Gopal Dhal
Segmentation of Plant Images plays an important role in modern agriculture where it can provide accurate analysis of a plant’s growth and possi-ble anomalies. In this paper, rough set based partitional clustering technique called Rough K-Means has been utilized in CIELab color space for the proper leaf segmentation of rosette plants. The eÿcacy of the proposed technique have been analysed by comparing it with the results of tra-ditional K-Means and Fuzzy C-Means clustering algorithms. The visual and numerical results re-veal that the RKM in CIELab provides the near-est result to the ideal ground truth, hence the most eÿcient one.
植物图像的分割在现代农业中起着重要的作用,它可以提供对植物生长和可能的异常的准确分析。本文在CIELab色彩空间中,利用粗糙集分割聚类技术rough K-Means对玫瑰植物叶片进行适当分割。通过与传统的K-Means和模糊C-Means聚类算法的结果进行比较,分析了所提出技术的eÿcacy。视觉和数值结果表明,CIELab的RKM提供了最接近理想地面真值的结果,因此是最eÿcient的。
{"title":"Leaf Segmentation of Rosette Plants using Rough K-Means in CIELab Color Space","authors":"Arunita Das, Daipayan Ghosal, Krishna Gopal Dhal","doi":"10.18690/978-961-286-516-0.5","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.5","url":null,"abstract":"Segmentation of Plant Images plays an important role in modern agriculture where it can provide accurate analysis of a plant’s growth and possi-ble anomalies. In this paper, rough set based partitional clustering technique called Rough K-Means has been utilized in CIELab color space for the proper leaf segmentation of rosette plants. The eÿcacy of the proposed technique have been analysed by comparing it with the results of tra-ditional K-Means and Fuzzy C-Means clustering algorithms. The visual and numerical results re-veal that the RKM in CIELab provides the near-est result to the ideal ground truth, hence the most eÿcient one.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114089713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Časovni razporejevalniki in brezstrežniško okolje
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.16
Uroš Zagoranski
V prispevku smo se osredotočili na časovne razpo-rejevalnike (ang. cron job schedulers) v brezstre-žniškem (ang. serverless) okolju in njihovo zane-sljivo uporabo. Primerjali smo razporejevalnike, implementirane s pomočjo zabojnikov s tistimi, ki so gostovani v oblaku z uporabo pristopa funk-cije kot storitve. Ugotavljali smo, katere so po-sebnosti časovnih razporejevalnikov v brezstrežni-škem okolju in kdaj je le-te sploh smiselno upo-rabiti. Na praktičnem primeru smo predstavili, kako jih lahko vključimo v večji sistem in na ka-kšen način najlažje rešimo morebitne težave, ki jih ob izbiri brezstrežniškega okolja zavestno pre-vzamemo. Ugotovili smo, da so razporejevalniki v FaaS (ang. Function as a Service) okolju naj-primernejši zaradi enostavnega in hitrega razvoja ter nizkih stroškov obratovanja.
本文重点讨论无服务器环境中的 cron 作业调度程序及其可靠使用。我们比较了使用容器实现的调度程序和使用功能即服务方法托管在云中的调度程序。我们确定了无服务器环境中调度程序的特点,以及何时使用它们才有意义。我们用一个实际例子来说明如何将它们集成到更大的系统中,以及解决在选择无服务器环境时可能有意识假设的任何问题的最佳方法。我们发现,FaaS(功能即服务)环境中的调度器最合适,因为它们易于开发,速度快,运营成本低。
{"title":"Časovni razporejevalniki in brezstrežniško okolje","authors":"Uroš Zagoranski","doi":"10.18690/978-961-286-516-0.16","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.16","url":null,"abstract":"V prispevku smo se osredotočili na časovne razpo-rejevalnike (ang. cron job schedulers) v brezstre-žniškem (ang. serverless) okolju in njihovo zane-sljivo uporabo. Primerjali smo razporejevalnike, implementirane s pomočjo zabojnikov s tistimi, ki so gostovani v oblaku z uporabo pristopa funk-cije kot storitve. Ugotavljali smo, katere so po-sebnosti časovnih razporejevalnikov v brezstrežni-škem okolju in kdaj je le-te sploh smiselno upo-rabiti. Na praktičnem primeru smo predstavili, kako jih lahko vključimo v večji sistem in na ka-kšen način najlažje rešimo morebitne težave, ki jih ob izbiri brezstrežniškega okolja zavestno pre-vzamemo. Ugotovili smo, da so razporejevalniki v FaaS (ang. Function as a Service) okolju naj-primernejši zaradi enostavnega in hitrega razvoja ter nizkih stroškov obratovanja.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"vmr-4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127931055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformer-based Sarcasm Detection in English and Slovene Language 基于变压器的英语和斯洛文尼亚语讽刺检测
Pub Date : 2021-09-13 DOI: 10.18690/978-961-286-516-0.10
Matic Rašl, Mitja Zalik, Vid Keršič
Sarcasm detection is an important problem in the field of natural language processing. In this pa-per, we compare performances of the three neural networks for sarcasm detection on English and Slovene datasets. Each network is based on a di˙erent transformer model: RoBERTa, Distil-Bert, and DistilBert – multilingual. In addition to the existing Twitter-based English dataset, we also created the Slovene dataset using the same approach. An F1 score of 0.72 and 0.88 was achieved in the English and Slovene dataset, re-spectively.
讽刺检测是自然语言处理领域的一个重要问题。在本文中,我们比较了三种神经网络在英语和斯洛文尼亚语数据集上的讽刺检测性能。每个网络都基于一个异变模型:RoBERTa、蒸馏器-伯特和蒸馏器-多语言。除了现有的基于twitter的英语数据集之外,我们还使用相同的方法创建了斯洛文尼亚语数据集。英语和斯洛文尼亚语数据集的F1得分分别为0.72和0.88。
{"title":"Transformer-based Sarcasm Detection in English and Slovene Language","authors":"Matic Rašl, Mitja Zalik, Vid Keršič","doi":"10.18690/978-961-286-516-0.10","DOIUrl":"https://doi.org/10.18690/978-961-286-516-0.10","url":null,"abstract":"Sarcasm detection is an important problem in the field of natural language processing. In this pa-per, we compare performances of the three neural networks for sarcasm detection on English and Slovene datasets. Each network is based on a di˙erent transformer model: RoBERTa, Distil-Bert, and DistilBert – multilingual. In addition to the existing Twitter-based English dataset, we also created the Slovene dataset using the same approach. An F1 score of 0.72 and 0.88 was achieved in the English and Slovene dataset, re-spectively.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129785418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1