首页 > 最新文献

2020 2nd Symposium on Signal Processing Systems最新文献

英文 中文
WASSKIL: An Oversampling Method for Fault Detection of Industrial Plants 一种用于工业装置故障检测的过采样方法
Pub Date : 2020-07-11 DOI: 10.1145/3421515.3421535
Jiawen Yan, Weiwen Zhang, Yuxiang Peng
Class imbalance is a major issue when adopting machine learning algorithms to build a predictive model for fault detection of industrial plants in smart factories. In this paper, we propose a data oversampling method termed WASSKIL. WASSKIL is developed based on MAHAKIL that simulates the genetic breeding process, where Wasserstein distance is leveraged rather than Mahalanobis distance when partitioning two sets of data for oversampling. We evaluate the performance of WASSKIL over 5 industrial plants of PHM 2015 dataset, using raw features of sensors and statistical features of the dataset in time series. The results show that WASSKIL can outperform MAHAKIL under both raw features and statistical features. Consequently, our proposed oversampling method has the potential to tame class imbalance, which can be used for prognostics and health management in smart factories.
在智能工厂中,采用机器学习算法构建工业厂房故障检测预测模型时,类不平衡是一个主要问题。在本文中,我们提出了一种称为WASSKIL的数据过采样方法。WASSKIL是在模拟遗传育种过程的MAHAKIL的基础上发展起来的,在划分两组数据进行过采样时,利用的是沃瑟斯坦距离而不是马氏距离。我们利用传感器的原始特征和数据集的时间序列统计特征,对PHM 2015数据集的5个工业工厂的WASSKIL性能进行了评估。结果表明,无论在原始特征还是统计特征下,WASSKIL都优于mahagil。因此,我们提出的过采样方法具有驯服类不平衡的潜力,可用于智能工厂的预测和健康管理。
{"title":"WASSKIL: An Oversampling Method for Fault Detection of Industrial Plants","authors":"Jiawen Yan, Weiwen Zhang, Yuxiang Peng","doi":"10.1145/3421515.3421535","DOIUrl":"https://doi.org/10.1145/3421515.3421535","url":null,"abstract":"Class imbalance is a major issue when adopting machine learning algorithms to build a predictive model for fault detection of industrial plants in smart factories. In this paper, we propose a data oversampling method termed WASSKIL. WASSKIL is developed based on MAHAKIL that simulates the genetic breeding process, where Wasserstein distance is leveraged rather than Mahalanobis distance when partitioning two sets of data for oversampling. We evaluate the performance of WASSKIL over 5 industrial plants of PHM 2015 dataset, using raw features of sensors and statistical features of the dataset in time series. The results show that WASSKIL can outperform MAHAKIL under both raw features and statistical features. Consequently, our proposed oversampling method has the potential to tame class imbalance, which can be used for prognostics and health management in smart factories.","PeriodicalId":294293,"journal":{"name":"2020 2nd Symposium on Signal Processing Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121543593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2020 2nd Symposium on Signal Processing Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1