Bio-based foams are growing and promising materials to replace petroleum-based foams because of their beneficial qualities including their affordability, outstanding fire resistance, high thermal insulation performance, eco-friendliness and the bio-sourced origin of the feedstock components. This study produced rigid bio-based foams using chemicals derived from plants, primarily from furfuryl alcohol and polyol derived from lignin. Lignin-based polyol and furfuryl alcohol were used to produce furan-lignin foams, which are free of formaldehyde and ozone damaging substances. Seven different furan-lignin foams were produced by substituting the toxic formaldehyde with a more eco-friendly glyoxal as a hardener while using diethyl ether and bentonite as blowing agent and filler respectively. Effects of these reagents on the quality of foams produced were assessed by varying their contents in the formulations. The properties of the produced bio-based foams such as compressive resistance, water absorption capacity, density and moisture content were evaluated. Further product characterizations: elemental composition, thermo-gravimetric analysis, Fourier transforms infrared spectroscopy and Scanning electron microscopy were carried out on the foams. The reaction leading to foam production was spontaneous at room temperature with an acid catalyst. Results showed that the concentrations of the blowing agent, hardener and filler, all had effects on the quality of the bio-based foams produced. Scanning electron microscopy results showed that the foams possessed closed cell morphologies, a rigid foam characteristic for good thermal and acoustic performance but modest water absorption, with cell widths of 10–200 μm, having high densities and strong compressive strengths as inherent characteristics. The results of the characterization indicated that the foams may be used as a thermal barrier or a support in construction and packaging applications because they had strong thermal stability, high compressive strengths, and a modest capacity to absorb water.
In this study, extracts obtained from ginger rhizomes (Zingiber officinale) and chewing sponge-"Sawere" (Acacia kamerunensis) by cold maceration were used in the production of mouthwash solutions at the following concentrations: 10 mg/mL, 20 mg/mL, 50 mg/mL, and 75 mg/mL for ginger extract and 10 mg/mL only for "Sawere" extract. The solutions were tested for antimicrobial activity among seven candidates on three consecutive days. Results indicated that ginger mouthwash solution of 75 mg/mL concentration had the highest antimicrobial activity of 83.3 ± 2.5%, swiftly followed by ginger mouthwash solution of concentrations 50 mg/mL, 20 mg/mL and 10 mg/mL at 75.0 ± 2.5%, 47.9 ± 1.7% and 39.2 ± 2.0% respectively. This appeared to indicate that concentration and percentage inhibition in the ginger extract has a linear relationship. The 10 mg/mL concentration of Sawere extract solution exhibited very minimal antimicrobial activity at 0.2 ± 7.5%. GC-MS and FTIR analysis showed the presence of antimicrobial and anti-inflammatory compounds such as gingerol, neric acid, and squalene as well as other compounds such as 7- epi-cis-sesquiabinene present in both extracts. Gingerol was observed to demonstrate the highest peak in the ginger extract at a retention time of 17.484 whereas squalene exhibited the highest peak in sawere extract at a retention time of 17.811 in the GC-MS analysis. The FTIR analysis identified some functional groups in both the ginger and the sawere extracts including phenolics, alcohols, carboxylic acids, and alkane functional groups. This research successfully demonstrated the possibility of using ginger extracts and sawere extracts as safer active ingredient alternatives in the making of mouthwash.
The discharge of effluents from dye industries into water streams poses a significant environmental and public health risk. In response, eco-friendly adsorbents derived from agricultural waste, such as Fava Bean Peels (R–FBP), have been investigated as potential materials for the removal of such pollutants. In this study, R–FBP and their corresponding physical and chemically activated carbon (P-RFB-AC and C-FBP-AC) were synthesized using H3PO4 acid and characterized using FT-IR, and SEM analyses. An optimization process was conducted to determine the optimum conditions for achieving high Methyl Orange (M. Orange) removal efficiencies using the prepared materials, namely R–FBP, P-RFB-AC, and C-FBP-AC. The adsorption mechanism was examined by analyzing the isotherm and kinetics. The results revealed that the physical raw-activated carbon exhibited the highest removal efficiency of 96.8% compared to other materials. This outcome was achieved through the use of ANN combined with Moth Search Algorithm (MSA), which was found to be the most effective model for achieving the highest M. Orange removal efficiency from Physical raw fava bean activated carbon. Under parameters of 1000 mg/l M. Orange concentration, 2 g/l dose, 15 min contact time, and 120 rpm shaking, the best experimental and predicted removal efficiencies for physical-activated carbon fava bean rind were 96.8 RE%, 96.01 indicated RSM RE%, and 95.75 predicted ANN RE%. The highest experimental and predicted removal efficiencies for the H3PO4 chemical activated carbon fava bean peel were 94%RE. This study aimed to develop an economical solution for treating industrial wastewater contaminated with anionic M. Orange dye using raw fava bean peel and their generated activated carbon, in both physical and chemical forms. The Temkin and Langmuir isotherm models were found to best fit the data for raw fava bean peel, while Temkin agreed well with the data from physical-activated carbon. Temkin and Freundlich's models were fitted with the H3PO4 chemical activated carbon. Pseudo-second-order kinetics was identified as the most suitable model for both physically and chemically activated carbons. Future research may explore the capacity of the produced activated carbon-based algae to extract a wider range of contaminants from contaminated wastewater. In summary, this work contributes to the development of eco-friendly and cost-effective methods for removing dyes, specifically M. Orange, from industrial effluents. By synthesizing and characterizing R–FBP and their relative activated carbon, the adsorption mechanism was studied, and the optimum conditions for achieving high M. Orange removal efficiencies were determined. The results showed that physical raw-activated carbon exhibited the highest removal efficiency, and pseudo-second-order kinetics was the most suitable model for both physically and chemically activated carbon.
The present study aims to explore the eco-friendly dyeing of cotton fabric using extracts from used tea bags, without the need for any metal mordant. Additionally, this research delves into the intricate relationship between pH levels and fabric cationisation, exploring their combined impact on the functional properties of naturally dyed cotton samples. Preceding the dyeing process, the cotton fabric underwent cationisation through the application of 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) at varying percentages. Subsequently, the fabric was dyed with tea liquor at different concentrations and pH levels. The ensuing investigation encompassed an assessment of color fastness and colorimetric attributes (CIELab, CIELch, ΔE, and K/S) of the dyed cotton fabrics. Furthermore, FTIR analysis was employed to augment our understanding of the dyeing process, while UV-Vis spectroscopy facilitated the quantification of exhaustion and fixation percentages. The results indicate that the highest exhaustion percentage of 88.6% was achieved at pH 13 for cationised fabric with a cationiser concentration of 55 g/L. In comparison, the non-cationised fabric exhibited an exhaustion percentage of 0.75%, while the mordanted (KAI(SO₄)₂.12H₂O) fabric showed 3.6%. Furthermore, the cationised fabric displayed excellent colour fastness to washing, rubbing, and perspiration (rated 4–5) compared to the non-cationised fabric. The stronger interaction calculated with density functional theory (DFT) between theaflavins, one of the primary colour components of tea dye, and cationised cellulose monomers explains the enhanced washing and rubbing fastness observed. The findings emphasize the significant influence of pH and fabric cationisation on dyeing and the functional properties of the dyed fabric.
The state of the world urgently calls for a transition toward production and consumption partners that can support a carbon-neutral, circular and sustainable economy. Green and sustainable chemicals, especially, biodegradable and bio-based plastics, are key components of this transition. However, significant financial investments are required for the implementation of green and sustainable chemistry principles and the broader promotion of sustainability. In this regard, the financial sector needs sound approaches to assess the sustainability of investments. With this paper, we show an approach to assess the environmental performance of investments through key performance indicators calculated based on life cycle assessment. The approach is applied for the assessment of a fictitious investment aimed at financing bio-based and biodegradable plastic mulch films. The performance is assessed by comparing changes induced by the investment, compared with what would have happened without the investment (i.e., using fossil-based plastic mulch films). The application of the approach shows that the investment could be in general favourable from an environmental point of view, in particular for the promotion of a more circular and low-carbon economy. The approach could be easily adapted to reflect the specificities of a wide range of investments. However, it should be noted that other environmental, economic, and social aspects may need to be integrated to depict the sustainability performance of investments in a more comprehensive manner.
We established a green approach for the radical synthesis of tetrahydrobenzo[b]pyran scaffolds by using Knoevenagel-Michael tandem cyclocondensation of aldehyde derivatives, malononitrile, and dimedone. Using visible light as a renewable energy source, a photo-induced electron transfer (PET) photocatalyst was exploited in an aqueous solution. A low-cost, readily available non-metal dye is the goal of this research. The photochemically catalyzed acridine yellow G (AYG) exhibits high yields, energy efficiency, and environmental friendliness, as well as speed-saving characteristics and ease of use. This allows for tracking of environmental and chemical variables over time. In this study, turnover number (TON) and turnover frequency (TOF) of tetrahydrobenzo[b]pyran scaffolds were determined. It is remarkable that gram-scale cyclization is feasible, indicating that it can be applied to industry.
CO2 capture techniques are being developed faster by developing models that predict the solubility of CO2 in various solvents. Artificial neural network (ANN) model is developed in the current study to predict the solubility of CO2 in CH3OH + H2O system. Correlations can predict CO2 solubility in liquids (in different mole fractions) for the temperatures of 258–390.0 K and pressure of 0–10 MPa, respectively. In this study, prediction data for the pressure essential to dissolve CO2 in methanol solution are reported for temperature of 258–395.0 K. Multi-layer perceptron (MLP) and radial basis functions (RBF) were applied in this study. The predictions of solubility of carbon dioxide in mixtures of water and methanol are more accurate with MLP-ANN (artificial neural network) than RBF-ANN. The proposed models and reports of experimental data on CO2 partial pressure are found to be in good agreement. It has been found that the ANN technique provides high accuracy and good prediction. As a result, the correlation coefficient R2 = 0.99 was highly accurate and the mean square error (MSE) was less than 0.1. Levenberg-Marquardt (trainlm) with the lowest MSE measured at 0.00072863 with the strongest regression coefficient (R2). The best MSE validation performance of MLP and RBF networks was 0.0066566 and 0.2166952 at 30 epochs and 50 epochs, respectively. This study showed that the MLP and RBF model explained in this study are suitable to predicting CO2 solubility in methanol solution.
In this work, Cerastoderma Glaucum (CG) as a bio-sorbent, a low-cost, and nontoxic material, was investigated for CO2 capture. The analysis of CaO from CG was carried out using X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), a scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) and N2 adsorption-desorption isotherm. The total pore volume was 0.0055 cm3/g, and the specific surface area (SBET) was 1.9312 m2/g (BET: Brunauer–Emmett–Teller). The maximum CO2 adsorption capacity reached 0.48 mmol/g at 25 °C and 4.5 bar. The CO2 adsorption capacity was examined as a function of pressure. In the experiments, it was discovered that adsorption capacity increased with increasing pressure. As a second step, the isotherm models were used to determine how the adsorbent behaves. Hill, Freundlich, Koble–Corrigan, and Sips isotherm models are well correlated with the adsorption data experiments.
A biosynthesis of zinc oxide nanoparticles (ZnONPs) is investigated by using Punica granatum (PG) fruit peels as cellulose nanocrystals (CNC). As a first step, the phytochemical properties of (PG) were evaluated as reducing agents and as control agents for nanocomposites. The second step involved biosynthesizing PG–CNC–ZnONPs using a simple and rapid method, which was then confirmed by spectroscopy and microscopy. In addition, the antibacterial activity of PG–CNC–ZnONPs was tested against S. aureus, E.coli, S. typhi, and S.flexneri in vitro. E. coli and S. flexneri had zones of inhibition (mean values) of 14.19 mm and 14.16 mm, respectively, for PG–CNC–ZnONPs. For PG–CNC–ZnONPs, the minimum inhibitory concentration (MICs) that completely inhibited the growth of S. aureus was 250 μg/mL, while for E. coli, S. flexneri, and S. typhi the minimum inhibitory concentration (MICs) was achieved at 125 μg/mL, 31.2 μg/mL, and 15.6 μg/mL respectively. Moreover, the results of minimum bactericidal concentration (MBC) also showed that S. typhi had the lowest MBC (31.2 μg/mL) of all tested strains. The current work has the advantages of simplicity, a low particle size, a high concentration of Zn, and maximum inhibition zones.