Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846749
P. Misra, W. Hu, Yuzhe Jin, Jie Liu, Amanda Souza de Paula, Niklas Wirström, T. Voigt
Following rising demands in positioning with GPS, low-cost receivers are becoming widely available; but their energy demands are still too high. For energy efficient GPS sensing in delay-tolerant applications, the possibility of offloading a few milliseconds of raw signal samples and leveraging the greater processing power of the cloud for obtaining a position fix is being actively investigated. In an attempt to reduce the energy cost of this data offloading operation, we propose Sparse-GPS: a new computing framework for GPS acquisition via sparse approximation. Within the framework, GPS signals can be efficiently compressed by random ensembles. The sparse acquisition information, pertaining to the visible satellites that are embedded within these limited measurements, can subsequently be recovered by our proposed representation dictionary. By extensive empirical evaluations, we demonstrate the acquisition quality and energy gains of Sparse-GPS. We show that it is twice as energy efficient than offloading uncompressed data, and has 5-10 times lower energy costs than standalone GPS; with a median positioning accuracy of 40 m.
{"title":"Energy efficient GPS acquisition with Sparse-GPS","authors":"P. Misra, W. Hu, Yuzhe Jin, Jie Liu, Amanda Souza de Paula, Niklas Wirström, T. Voigt","doi":"10.1109/IPSN.2014.6846749","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846749","url":null,"abstract":"Following rising demands in positioning with GPS, low-cost receivers are becoming widely available; but their energy demands are still too high. For energy efficient GPS sensing in delay-tolerant applications, the possibility of offloading a few milliseconds of raw signal samples and leveraging the greater processing power of the cloud for obtaining a position fix is being actively investigated. In an attempt to reduce the energy cost of this data offloading operation, we propose Sparse-GPS: a new computing framework for GPS acquisition via sparse approximation. Within the framework, GPS signals can be efficiently compressed by random ensembles. The sparse acquisition information, pertaining to the visible satellites that are embedded within these limited measurements, can subsequently be recovered by our proposed representation dictionary. By extensive empirical evaluations, we demonstrate the acquisition quality and energy gains of Sparse-GPS. We show that it is twice as energy efficient than offloading uncompressed data, and has 5-10 times lower energy costs than standalone GPS; with a median positioning accuracy of 40 m.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133362866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846753
Manjunath Doddavenkatappa, M. Chan
While high throughput is the key for a number of important applications of sensor networks, performance of the state-of-the-art approach is often poor in practice. This is because if even one of the channels used in its pipeline is bad, the pipeline stalls and throughput degrades significantly. In this paper, we propose a new protocol called P3 (Practical Packet Pipeline) that keeps its packet pipeline flowing despite the quality differences among channels. P3 exploits sender and receiver diversities through synchronous transmissions (constructive interference), involving concurrent transmissions from multiple senders to multiple receivers at every stage of its packet pipeline. To optimize throughput further, P3 uses node grouping to enable the source to transmit in every pipeline cycle, thus fully utilizing the transmission capacity of an underlying radio. Our evaluation results on a 139-node testbed show that P3 achieves an average goodput of 178.5 Kbps while goodput of the state-of-the-art high throughput protocol PIP (Packets In Pipeline) is only 31 Kbps. More interestingly, P3 achieves a minimum goodput of about 149 Kbps, while PIP's goodput reduces to zero in 65% of the cases.
{"title":"P3: A Practical Packet Pipeline using synchronous transmissions for wireless sensor networks","authors":"Manjunath Doddavenkatappa, M. Chan","doi":"10.1109/IPSN.2014.6846753","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846753","url":null,"abstract":"While high throughput is the key for a number of important applications of sensor networks, performance of the state-of-the-art approach is often poor in practice. This is because if even one of the channels used in its pipeline is bad, the pipeline stalls and throughput degrades significantly. In this paper, we propose a new protocol called P3 (Practical Packet Pipeline) that keeps its packet pipeline flowing despite the quality differences among channels. P3 exploits sender and receiver diversities through synchronous transmissions (constructive interference), involving concurrent transmissions from multiple senders to multiple receivers at every stage of its packet pipeline. To optimize throughput further, P3 uses node grouping to enable the source to transmit in every pipeline cycle, thus fully utilizing the transmission capacity of an underlying radio. Our evaluation results on a 139-node testbed show that P3 achieves an average goodput of 178.5 Kbps while goodput of the state-of-the-art high throughput protocol PIP (Packets In Pipeline) is only 31 Kbps. More interestingly, P3 achieves a minimum goodput of about 149 Kbps, while PIP's goodput reduces to zero in 65% of the cases.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130971219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This poster is aimed at solving the problem of maximizing the energy margin of a solar-powered sensor network at a fixed time horizon, to maximize the network performance during an event to monitor. Using a game theoretic approach, the optimal routing maximizing the energy margin of the network at a given time under solar power forcing can be computed in a decentralized way and solved exactly through dynamic programming with a low overall complexity. We also show that this decentralized algorithm is simple enough to be implemented on practical sensor nodes. Such an algorithm would be very useful whenever the energy margin of a solar-powered sensor network has to be maximized at a specific time.
{"title":"Poster abstract: A decentralized routing scheme based on a zero-sum game to optimize energy in solar powered sensor networks","authors":"Ahmad H. Dehwah, H. Tembine, C. Claudel","doi":"10.5555/2602339.2602376","DOIUrl":"https://doi.org/10.5555/2602339.2602376","url":null,"abstract":"This poster is aimed at solving the problem of maximizing the energy margin of a solar-powered sensor network at a fixed time horizon, to maximize the network performance during an event to monitor. Using a game theoretic approach, the optimal routing maximizing the energy margin of the network at a given time under solar power forcing can be computed in a decentralized way and solved exactly through dynamic programming with a low overall complexity. We also show that this decentralized algorithm is simple enough to be implemented on practical sensor nodes. Such an algorithm would be very useful whenever the energy margin of a solar-powered sensor network has to be maximized at a specific time.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122401106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846767
Frederik Hermans, L. McNamara, T. Voigt, C. Rohner, E. Ngai, P. Gunningberg
Visible light communication over LCD/camera links offers a potential complement to traditional RF communication technology such as WiFi or cellular networks. However, the heterogeneity in receivers (e.g., mobile phone cameras) presents a challenge because the receivers differ widely in resolution, distance to the transmitter (LCD), and other factors, and therefore they differ in channel quality. We are researching a communication scheme in which each receiver can decode as much data from an LCD's transmission as the receiver's channel supports. The core idea is to encode the payload into an image's frequency representation rather than directly into pixels. We have successfully transmitted data using a prototype implementation and are currently investigating appropriate channel models.
{"title":"Poster abstract: Supporting heterogeneous LCD/camera links","authors":"Frederik Hermans, L. McNamara, T. Voigt, C. Rohner, E. Ngai, P. Gunningberg","doi":"10.1109/IPSN.2014.6846767","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846767","url":null,"abstract":"Visible light communication over LCD/camera links offers a potential complement to traditional RF communication technology such as WiFi or cellular networks. However, the heterogeneity in receivers (e.g., mobile phone cameras) presents a challenge because the receivers differ widely in resolution, distance to the transmitter (LCD), and other factors, and therefore they differ in channel quality. We are researching a communication scheme in which each receiver can decode as much data from an LCD's transmission as the receiver's channel supports. The core idea is to encode the payload into an image's frequency representation rather than directly into pixels. We have successfully transmitted data using a prototype implementation and are currently investigating appropriate channel models.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127816978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846760
Chi Zhang, Jun Luo, Jianxin Wu
We present MaWi - a smart phone based scalable indoor localization system. Central to MaWi is a novel framework combining two self-contained but complementary localization techniques: Wi-Fi and Ambient Magnetic Field. Combining the two techniques, MaWi not only achieves a high localization accuracy, but also effectively reduces human labor in building fingerprint databases: to avoid war-driving, MaWi is designed to work with low quality fingerprint databases that can be efficiently built by only one person. Our experiments demonstrate that MaWi, with a fingerprint database as scarce as one data sample at each spot, outperforms the state-of-the-art proposals working on a richer fingerprint database.
{"title":"Poster abstract: MaWi: A hybrid Magnetic and Wi-Fi system for scalable indoor localization","authors":"Chi Zhang, Jun Luo, Jianxin Wu","doi":"10.1109/IPSN.2014.6846760","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846760","url":null,"abstract":"We present MaWi - a smart phone based scalable indoor localization system. Central to MaWi is a novel framework combining two self-contained but complementary localization techniques: Wi-Fi and Ambient Magnetic Field. Combining the two techniques, MaWi not only achieves a high localization accuracy, but also effectively reduces human labor in building fingerprint databases: to avoid war-driving, MaWi is designed to work with low quality fingerprint databases that can be efficiently built by only one person. Our experiments demonstrate that MaWi, with a fingerprint database as scarce as one data sample at each spot, outperforms the state-of-the-art proposals working on a richer fingerprint database.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127036537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846739
Dong Wang, Md. Tanvir Al Amin, Shen Li, T. Abdelzaher, Lance M. Kaplan, Siyu Gu, Chenji Pan, Hengchang Liu, C. Aggarwal, R. Ganti, Xinlei Wang, P. Mohapatra, B. Szymanski, H. Le
The explosive growth in social network content suggests that the largest “sensor network” yet might be human. Extending the participatory sensing model, this paper explores the prospect of utilizing social networks as sensor networks, which gives rise to an interesting reliable sensing problem. In this problem, individuals are represented by sensors (data sources) who occasionally make observations about the physical world. These observations may be true or false, and hence are viewed as binary claims. The reliable sensing problem is to determine the correctness of reported observations. From a networked sensing standpoint, what makes this sensing problem formulation different is that, in the case of human participants, not only is the reliability of sources usually unknown but also the original data provenance may be uncertain. Individuals may report observations made by others as their own. The contribution of this paper lies in developing a model that considers the impact of such information sharing on the analytical foundations of reliable sensing, and embed it into a tool called Apollo that uses Twitter as a “sensor network” for observing events in the physical world. Evaluation, using Twitter-based case-studies, shows good correspondence between observations deemed correct by Apollo and ground truth.
{"title":"Using humans as sensors: An estimation-theoretic perspective","authors":"Dong Wang, Md. Tanvir Al Amin, Shen Li, T. Abdelzaher, Lance M. Kaplan, Siyu Gu, Chenji Pan, Hengchang Liu, C. Aggarwal, R. Ganti, Xinlei Wang, P. Mohapatra, B. Szymanski, H. Le","doi":"10.1109/IPSN.2014.6846739","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846739","url":null,"abstract":"The explosive growth in social network content suggests that the largest “sensor network” yet might be human. Extending the participatory sensing model, this paper explores the prospect of utilizing social networks as sensor networks, which gives rise to an interesting reliable sensing problem. In this problem, individuals are represented by sensors (data sources) who occasionally make observations about the physical world. These observations may be true or false, and hence are viewed as binary claims. The reliable sensing problem is to determine the correctness of reported observations. From a networked sensing standpoint, what makes this sensing problem formulation different is that, in the case of human participants, not only is the reliability of sources usually unknown but also the original data provenance may be uncertain. Individuals may report observations made by others as their own. The contribution of this paper lies in developing a model that considers the impact of such information sharing on the analytical foundations of reliable sensing, and embed it into a tool called Apollo that uses Twitter as a “sensor network” for observing events in the physical world. Evaluation, using Twitter-based case-studies, shows good correspondence between observations deemed correct by Apollo and ground truth.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130668056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846755
S. Achleitner, Ankur Kamthe, Tao Liu, Alberto Cerpa
There is high interest in up-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in power output is a major concern and forecasting is, therefore, a top priority. Advancements in forecasting can potentially limit the impact of fluctuations in solar power generation, specifically in cloudy days when the variability and dynamics are the largest. We propose SIPS, Solar Irradiance Prediction System, a novel sensing infrastructure using wireless sensor networks (WSNs) to enable sensing of solar irradiance for solar power generation forecasting. In this paper, we report the findings of a deployment of a hierarchical WSN system consisting of 19 TelosB nodes equipped with solar irradiance sensors, and 5 MicaZ nodes equipped with GPS boards, deployed in the vicinity of a 1 MW solar array. We evaluate different irradiance sensor types and the performance of different novel prediction methods using SIPS' data and show that the spatial-temporal cross-correlations between sensor node readings and solar array output power exists and can be exploited to improve prediction accuracy. Using this data for short-term solar forecasting for cloudy days with very high dynamics in solar output power generation - the worst case scenario for prediction-, we get an average of 97.24% accuracy in our prediction for short time horizon forecasting and 240% reduction of predicted normalized root mean square error (NRMSE) compared to state-of-the-art methods that do not use SIPS data.
{"title":"SIPS: Solar Irradiance Prediction System","authors":"S. Achleitner, Ankur Kamthe, Tao Liu, Alberto Cerpa","doi":"10.1109/IPSN.2014.6846755","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846755","url":null,"abstract":"There is high interest in up-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in power output is a major concern and forecasting is, therefore, a top priority. Advancements in forecasting can potentially limit the impact of fluctuations in solar power generation, specifically in cloudy days when the variability and dynamics are the largest. We propose SIPS, Solar Irradiance Prediction System, a novel sensing infrastructure using wireless sensor networks (WSNs) to enable sensing of solar irradiance for solar power generation forecasting. In this paper, we report the findings of a deployment of a hierarchical WSN system consisting of 19 TelosB nodes equipped with solar irradiance sensors, and 5 MicaZ nodes equipped with GPS boards, deployed in the vicinity of a 1 MW solar array. We evaluate different irradiance sensor types and the performance of different novel prediction methods using SIPS' data and show that the spatial-temporal cross-correlations between sensor node readings and solar array output power exists and can be exploited to improve prediction accuracy. Using this data for short-term solar forecasting for cloudy days with very high dynamics in solar output power generation - the worst case scenario for prediction-, we get an average of 97.24% accuracy in our prediction for short time horizon forecasting and 240% reduction of predicted normalized root mean square error (NRMSE) compared to state-of-the-art methods that do not use SIPS data.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125896739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846743
Matthias Schäfer, Martin Strohmeier, Vincent Lenders, I. Martinovic, M. Wilhelm
Automatic Dependent Surveillance-Broadcast (ADS-B) is one of the key components of the next generation air transportation system. Since ADS-B will become mandatory by 2020 for most airspaces, it is important that aspects such as capacity, applications, and security are investigated by an independent research community. However, large-scale real-world data was previously only accessible to a few closed industrial and governmental groups because it required specialized and expensive equipment. To enable researchers to conduct experimental studies based on real data, we developed OpenSky, a sensor network based on low-cost hardware connected over the Internet. OpenSky is based on off-the-shelf ADS-B sensors distributed to volunteers throughout Central Europe. It covers 720,000 km2, is able to capture more than 30% of the commercial air traffic in Europe, and enables researchers to analyze billions of ADS-B messages. In this paper, we report on the challenges we faced during the development and deployment of this participatory network and the insights we gained over the last two years of operations as a service to academic research groups. We go on to provide real-world insights about the possibilities and limitations of such low-cost sensor networks concerning air traffic surveillance and further applications such as multilateration.
{"title":"Bringing up OpenSky: A large-scale ADS-B sensor network for research","authors":"Matthias Schäfer, Martin Strohmeier, Vincent Lenders, I. Martinovic, M. Wilhelm","doi":"10.1109/IPSN.2014.6846743","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846743","url":null,"abstract":"Automatic Dependent Surveillance-Broadcast (ADS-B) is one of the key components of the next generation air transportation system. Since ADS-B will become mandatory by 2020 for most airspaces, it is important that aspects such as capacity, applications, and security are investigated by an independent research community. However, large-scale real-world data was previously only accessible to a few closed industrial and governmental groups because it required specialized and expensive equipment. To enable researchers to conduct experimental studies based on real data, we developed OpenSky, a sensor network based on low-cost hardware connected over the Internet. OpenSky is based on off-the-shelf ADS-B sensors distributed to volunteers throughout Central Europe. It covers 720,000 km2, is able to capture more than 30% of the commercial air traffic in Europe, and enables researchers to analyze billions of ADS-B messages. In this paper, we report on the challenges we faced during the development and deployment of this participatory network and the insights we gained over the last two years of operations as a service to academic research groups. We go on to provide real-world insights about the possibilities and limitations of such low-cost sensor networks concerning air traffic surveillance and further applications such as multilateration.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121571390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846766
W. Dargie, Jianjun Wen
We propose a MAC protocol that supports the mobility of some nodes. An adaptive filter inside the protocol continuously evaluates the RSSI values of received acknowledgment packets and decides whether a mobile node should transfer a communication to a nearby relay node. This paper presents the design, implementation and evaluation of the MAC protocol.
{"title":"Poster abstract: A MAC protocol for medical applications","authors":"W. Dargie, Jianjun Wen","doi":"10.1109/IPSN.2014.6846766","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846766","url":null,"abstract":"We propose a MAC protocol that supports the mobility of some nodes. An adaptive filter inside the protocol continuously evaluates the RSSI values of received acknowledgment packets and decides whether a mobile node should transfer a communication to a nearby relay node. This paper presents the design, implementation and evaluation of the MAC protocol.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122485850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-15DOI: 10.1109/IPSN.2014.6846748
Chengwen Luo, H. Hong, M. Chan
While location is one of the most important context information in mobile and ubiquitous computing, large-scale deployment of indoor localization system remains elusive. In this work, we propose PiLoc, an indoor localization system that utilizes opportunistically sensed data contributed by users. Our system does not require manual calibration, prior knowledge and infrastructure support. The key novelty of PiLoc is that it merges walking segments annotated with displacement and signal strength information from users to derive a map of walking paths annotated with radio signal strengths. We evaluate PiLoc over 4 different indoor areas. Evaluation shows that our system can achieve an average localization error of 1.5m.
{"title":"PiLoc: A self-calibrating participatory indoor localization system","authors":"Chengwen Luo, H. Hong, M. Chan","doi":"10.1109/IPSN.2014.6846748","DOIUrl":"https://doi.org/10.1109/IPSN.2014.6846748","url":null,"abstract":"While location is one of the most important context information in mobile and ubiquitous computing, large-scale deployment of indoor localization system remains elusive. In this work, we propose PiLoc, an indoor localization system that utilizes opportunistically sensed data contributed by users. Our system does not require manual calibration, prior knowledge and infrastructure support. The key novelty of PiLoc is that it merges walking segments annotated with displacement and signal strength information from users to derive a map of walking paths annotated with radio signal strengths. We evaluate PiLoc over 4 different indoor areas. Evaluation shows that our system can achieve an average localization error of 1.5m.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125272882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}