首页 > 最新文献

ACM Transactions on Internet of Things最新文献

英文 中文
Enabling Service Cache in Edge Clouds 启用边缘云服务缓存
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-07-01 DOI: 10.1145/3456564
Chih-Kai Huang, Shan-Hsiang Shen
The next-generation 5G cellular networks are designed to support the internet of things (IoT) networks; network components and services are virtualized and run either in virtual machines (VMs) or containers. Moreover, edge clouds (which are closer to end users) are leveraged to reduce end-to-end latency especially for some IoT applications, which require short response time. However, the computational resources are limited in edge clouds. To minimize overall service latency, it is crucial to determine carefully which services should be provided in edge clouds and serve more mobile or IoT devices locally. In this article, we propose a novel service cache framework called S-Cache, which automatically caches popular services in edge clouds. In addition, we design a new cache replacement policy to maximize the cache hit rates. Our evaluations use real log files from Google to form two datasets to evaluate the performance. The proposed cache replacement policy is compared with other policies such as greedy-dual-size-frequency (GDSF) and least-frequently-used (LFU). The experimental results show that the cache hit rates are improved by 39% on average, and the average latency of our cache replacement policy decreases 41% and 38% on average in these two datasets. This indicates that our approach is superior to other existing cache policies and is more suitable in multi-access edge computing environments. In the implementation, S-Cache relies on OpenStack to clone services to edge clouds and direct the network traffic. We also evaluate the cost of cloning the service to an edge cloud. The cloning cost of various real applications is studied by experiments under the presented framework and different environments.
下一代5G蜂窝网络旨在支持物联网(IoT)网络;网络组件和服务是虚拟化的,可以在虚拟机或容器中运行。此外,利用边缘云(更接近最终用户)来减少端到端延迟,特别是对于一些需要短响应时间的物联网应用程序。然而,边缘云的计算资源是有限的。为了最大限度地减少整体服务延迟,必须仔细确定应该在边缘云中提供哪些服务,并在本地为更多的移动或物联网设备提供服务。在本文中,我们提出了一个名为S-Cache的新型服务缓存框架,它可以自动缓存边缘云中流行的服务。此外,我们还设计了一种新的缓存替换策略来最大化缓存命中率。我们的评估使用来自Google的真实日志文件来形成两个数据集来评估性能。将提出的缓存替换策略与其他策略(如贪心双大小频率(GDSF)和最少使用频率(LFU))进行了比较。实验结果表明,在这两个数据集上,我们的缓存替换策略的缓存命中率平均提高了39%,缓存替换策略的平均延迟平均降低了41%和38%。这表明我们的方法优于其他现有的缓存策略,更适合于多访问边缘计算环境。在实现过程中,S-Cache依靠OpenStack将服务克隆到边缘云,引导网络流量。我们还评估了将服务克隆到边缘云的成本。在提出的框架和不同的环境下,通过实验研究了各种实际应用的克隆成本。
{"title":"Enabling Service Cache in Edge Clouds","authors":"Chih-Kai Huang, Shan-Hsiang Shen","doi":"10.1145/3456564","DOIUrl":"https://doi.org/10.1145/3456564","url":null,"abstract":"The next-generation 5G cellular networks are designed to support the internet of things (IoT) networks; network components and services are virtualized and run either in virtual machines (VMs) or containers. Moreover, edge clouds (which are closer to end users) are leveraged to reduce end-to-end latency especially for some IoT applications, which require short response time. However, the computational resources are limited in edge clouds. To minimize overall service latency, it is crucial to determine carefully which services should be provided in edge clouds and serve more mobile or IoT devices locally. In this article, we propose a novel service cache framework called S-Cache, which automatically caches popular services in edge clouds. In addition, we design a new cache replacement policy to maximize the cache hit rates. Our evaluations use real log files from Google to form two datasets to evaluate the performance. The proposed cache replacement policy is compared with other policies such as greedy-dual-size-frequency (GDSF) and least-frequently-used (LFU). The experimental results show that the cache hit rates are improved by 39% on average, and the average latency of our cache replacement policy decreases 41% and 38% on average in these two datasets. This indicates that our approach is superior to other existing cache policies and is more suitable in multi-access edge computing environments. In the implementation, S-Cache relies on OpenStack to clone services to edge clouds and direct the network traffic. We also evaluate the cost of cloning the service to an edge cloud. The cloning cost of various real applications is studied by experiments under the presented framework and different environments.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"53 1","pages":"1 - 24"},"PeriodicalIF":2.7,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86776943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Living on the Edge 生活在边缘
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-07-01 DOI: 10.1145/3450767
Thilina Buddhika, Matthew Malensek, S. Pallickara, S. Pallickara
Voluminous time-series data streams produced in continuous sensing environments impose challenges pertaining to ingestion, storage, and analytics. In this study, we present a holistic approach based on data sketching to address these issues. We propose a hyper-sketching algorithm that combines discretization and frequency-based sketching to produce compact representations of the multi-feature, time-series data streams. We generate an ensemble of data sketches to make effective use of capabilities at the resource-constrained edge devices, the links over which data are transmitted, and the server pool where this data must be stored. The data sketches can be queried to construct datasets that are amenable to processing using popular analytical engines. We include several performance benchmarks using real-world data from different domains to profile the suitability of our design decisions. The proposed methodology can achieve up to ∼ 13 × and ∼ 2, 207 × reduction in data transfer and energy consumption at edge devices. We observe up to a ∼ 50% improvement in analytical job completion times in addition to the significant improvements in disk and network I/O.
在连续传感环境中产生的大量时间序列数据流对摄取、存储和分析提出了挑战。在本研究中,我们提出了一种基于数据草图的整体方法来解决这些问题。我们提出了一种结合离散化和基于频率的素描的超素描算法,以产生多特征时间序列数据流的紧凑表示。我们生成一组数据草图,以便有效地利用资源受限的边缘设备上的功能、传输数据的链接以及必须存储数据的服务器池。可以查询数据草图以构建适合使用流行的分析引擎处理的数据集。我们使用来自不同领域的真实数据包括了几个性能基准,以分析我们的设计决策的适用性。所提出的方法可以在边缘设备上实现高达~ 13 ×和~ 2,207 ×的数据传输和能量消耗减少。除了磁盘和网络I/O方面的显著改进外,我们还观察到分析作业完成时间提高了50%。
{"title":"Living on the Edge","authors":"Thilina Buddhika, Matthew Malensek, S. Pallickara, S. Pallickara","doi":"10.1145/3450767","DOIUrl":"https://doi.org/10.1145/3450767","url":null,"abstract":"Voluminous time-series data streams produced in continuous sensing environments impose challenges pertaining to ingestion, storage, and analytics. In this study, we present a holistic approach based on data sketching to address these issues. We propose a hyper-sketching algorithm that combines discretization and frequency-based sketching to produce compact representations of the multi-feature, time-series data streams. We generate an ensemble of data sketches to make effective use of capabilities at the resource-constrained edge devices, the links over which data are transmitted, and the server pool where this data must be stored. The data sketches can be queried to construct datasets that are amenable to processing using popular analytical engines. We include several performance benchmarks using real-world data from different domains to profile the suitability of our design decisions. The proposed methodology can achieve up to ∼ 13 × and ∼ 2, 207 × reduction in data transfer and energy consumption at edge devices. We observe up to a ∼ 50% improvement in analytical job completion times in addition to the significant improvements in disk and network I/O.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"15 1","pages":"1 - 31"},"PeriodicalIF":2.7,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74694599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Exploiting Multi-modal Contextual Sensing for City-bus’s Stay Location Characterization: Towards Sub-60 Seconds Accurate Arrival Time Prediction 基于多模态上下文感知的城市公交停留位置表征:迈向60秒以下准确到达时间预测
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-05-24 DOI: 10.1145/3549548
Ratna Mandal, Prasenjit Karmakar, S. Chatterjee, Debaleen Das Spandan, S. Pradhan, Sujoy Saha, Sandip Chakraborty, S. Nandi
Intelligent city transportation systems are one of the core infrastructures of a smart city. The true ingenuity of such an infrastructure lies in providing the commuters with real-time information about citywide transport like public buses, allowing them to pre-plan their travel. However, providing prior information for transportation systems like public buses in real-time is inherently challenging because of the diverse nature of different stay-locations where a public bus stops. Although straightforward factors like stay duration extracted from unimodal sources like GPS at these locations look erratic, a thorough analysis of public bus GPS trails for 1,335.365 km at the city of Durgapur, a semi-urban city in India, reveals that several other fine-grained contextual features can characterize these locations accurately. Accordingly, we develop BuStop, a system for extracting and characterizing the stay-locations from multi-modal sensing using commuters’ smartphones. Using this multi-modal information BuStop extracts a set of granular contextual features that allows the system to differentiate among the different stay-location types. A thorough analysis of BuStop using the collected in-house dataset indicates that the system works with high accuracy in identifying different stay-locations such as regular bus stops, random ad hoc stops, stops due to traffic congestion, stops at traffic signals, and stops at sharp turns. Additionally, we develop a proof-of-concept setup on top of BuStop to analyze the potential of the framework in predicting expected arrival time, a critical piece of information required to pre-plan travel at any given bus stop. Subsequent analysis of the PoC framework, through simulation over the test dataset, shows that characterizing the stay-locations indeed helps make more accurate arrival time predictions with deviations less than 60 seconds from the ground-truth arrival time.
智慧城市交通系统是智慧城市的核心基础设施之一。这种基础设施的真正独创性在于为通勤者提供全市交通(如公交车)的实时信息,使他们能够提前计划自己的出行。然而,为公交等交通系统提供实时的先验信息本身就具有挑战性,因为公交停站的不同停留位置具有多样性。尽管从这些地点的GPS等单一模式来源提取的停留时间等直接因素看起来不稳定,但对印度杜尔加普尔市1335.365公里公共汽车GPS轨迹的全面分析显示,其他几个细粒度的背景特征可以准确地描述这些地点。因此,我们开发了BuStop,这是一个使用通勤者智能手机从多模态传感中提取和表征停留位置的系统。利用这些多模态信息,BuStop提取了一组细粒度的上下文特征,使系统能够区分不同的停留位置类型。利用收集的内部数据对BuStop进行深入分析,结果表明,该系统在识别常规公交车站、随机临时车站、交通拥堵停车、交通信号停车、急转弯停车等不同停车地点方面具有很高的准确性。此外,我们在BuStop之上开发了一个概念验证设置,以分析该框架在预测预期到达时间方面的潜力,这是在任何给定的公共汽车站预先计划旅行所需的关键信息。通过对测试数据集的模拟,对PoC框架的后续分析表明,描述停留位置确实有助于更准确地预测到达时间,与地面真实到达时间的偏差小于60秒。
{"title":"Exploiting Multi-modal Contextual Sensing for City-bus’s Stay Location Characterization: Towards Sub-60 Seconds Accurate Arrival Time Prediction","authors":"Ratna Mandal, Prasenjit Karmakar, S. Chatterjee, Debaleen Das Spandan, S. Pradhan, Sujoy Saha, Sandip Chakraborty, S. Nandi","doi":"10.1145/3549548","DOIUrl":"https://doi.org/10.1145/3549548","url":null,"abstract":"Intelligent city transportation systems are one of the core infrastructures of a smart city. The true ingenuity of such an infrastructure lies in providing the commuters with real-time information about citywide transport like public buses, allowing them to pre-plan their travel. However, providing prior information for transportation systems like public buses in real-time is inherently challenging because of the diverse nature of different stay-locations where a public bus stops. Although straightforward factors like stay duration extracted from unimodal sources like GPS at these locations look erratic, a thorough analysis of public bus GPS trails for 1,335.365 km at the city of Durgapur, a semi-urban city in India, reveals that several other fine-grained contextual features can characterize these locations accurately. Accordingly, we develop BuStop, a system for extracting and characterizing the stay-locations from multi-modal sensing using commuters’ smartphones. Using this multi-modal information BuStop extracts a set of granular contextual features that allows the system to differentiate among the different stay-location types. A thorough analysis of BuStop using the collected in-house dataset indicates that the system works with high accuracy in identifying different stay-locations such as regular bus stops, random ad hoc stops, stops due to traffic congestion, stops at traffic signals, and stops at sharp turns. Additionally, we develop a proof-of-concept setup on top of BuStop to analyze the potential of the framework in predicting expected arrival time, a critical piece of information required to pre-plan travel at any given bus stop. Subsequent analysis of the PoC framework, through simulation over the test dataset, shows that characterizing the stay-locations indeed helps make more accurate arrival time predictions with deviations less than 60 seconds from the ground-truth arrival time.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"12 1","pages":"1 - 24"},"PeriodicalIF":2.7,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78516044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
WiFi-Enabled User Authentication through Deep Learning in Daily Activities 通过深度学习在日常活动中支持wifi的用户认证
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-05-04 DOI: 10.1145/3448738
Cong Shi, Jian Liu, Hongbo Liu, Yingying Chen
User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities.
由于日益增长的安全和隐私问题,用户身份验证在企业和家庭环境中都是一个关键过程。随着智慧城市和家庭环境的发展,用户认证的概念不断发展,不仅可以防止未经授权的用户访问机密信息,还可以为特定用户提供相应的定制服务。传统的用户认证方法要么需要安装专门的设备,要么不方便安装可穿戴传感器。本文通过利用物联网设备(如智能冰箱、智能电视和智能恒温器等)提供的流行WiFi信号,通过无设备方法支持用户身份验证的扩展概念。该系统利用WiFi信号捕捉从日常活动中继承的独特的人类生理和行为特征,包括步行和静止的活动。特别是,我们从WiFi信号的信道状态信息(CSI)测量中提取代表性特征,并开发了基于深度学习的用户认证方案,以准确识别每个用户。为了减轻由周围人的运动引起的信号失真,我们的深度学习模型利用了基于cnn的架构,该架构建设性地结合了来自多个接收天线的特征,并派生出更可靠的特征抽象。此外,开发了一种基于迁移学习的机制,以降低新用户和新环境的培训成本。在各种室内环境中进行了大量实验,以证明所提出的认证系统的有效性。特别是,我们的系统可以通过11个主体通过不同的活动实现94%以上的认证准确率。
{"title":"WiFi-Enabled User Authentication through Deep Learning in Daily Activities","authors":"Cong Shi, Jian Liu, Hongbo Liu, Yingying Chen","doi":"10.1145/3448738","DOIUrl":"https://doi.org/10.1145/3448738","url":null,"abstract":"User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"8 1","pages":"1 - 25"},"PeriodicalIF":2.7,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86790696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Environment-driven Communication in Battery-free Smart Buildings 无电池智能建筑中的环境驱动通信
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-04-22 DOI: 10.1145/3448739
Mauro Piva, Andrea Coletta, G. Maselli, J. Stankovic
Recent years have witnessed the design and development of several smart devices that are wireless and battery-less. These devices exploit RFID backscattering-based computation and transmissions. Although singular devices can operate efficiently, their coexistence needs to be controlled, as they have widely varying communication requirements, depending on their interaction with the environment. The design of efficient communication protocols able to dynamically adapt to current device operation is quite a new problem that the existing work cannot solve well. In this article, we propose a new communication protocol, called ReLEDF, that dynamically discovers devices in smart buildings and their active and nonactive status and when active their current communication behavior (through a learning-based mechanism) and schedules transmission slots (through an Earliest Deadline First-- (EDF) based mechanism) adapt to different data transmission requirements. Combining learning and scheduling introduces a tag starvation problem, so we also propose a new mode-change scheduling approach. Extensive simulations clearly show the benefits of using ReLEDF, which successfully delivers over 95% of new data samples in a typical smart home scenario with up to 150 heterogeneous smart devices, outperforming related solutions. Real experiments are also conducted to demonstrate the applicability of ReLEDF and to validate the simulations.
近年来,人们设计和开发了几种无线和无电池的智能设备。这些设备利用基于RFID反向散射的计算和传输。尽管单个设备可以高效运行,但它们的共存需要控制,因为它们根据与环境的交互而具有广泛不同的通信需求。设计能够动态适应当前设备运行的高效通信协议是一个现有工作无法很好解决的新问题。在本文中,我们提出了一种新的通信协议,称为ReLEDF,它动态地发现智能建筑中的设备及其活动和非活动状态,以及激活时它们当前的通信行为(通过基于学习的机制)和调度传输插槽(通过基于最早截止日期优先(EDF)的机制)以适应不同的数据传输需求。结合学习和调度引入了标签饥饿问题,因此我们也提出了一种新的模式改变调度方法。广泛的模拟清楚地显示了使用ReLEDF的好处,它在典型的智能家居场景中成功地提供了超过95%的新数据样本,其中多达150个异构智能设备,优于相关解决方案。通过实际实验验证了该方法的适用性和仿真结果的正确性。
{"title":"Environment-driven Communication in Battery-free Smart Buildings","authors":"Mauro Piva, Andrea Coletta, G. Maselli, J. Stankovic","doi":"10.1145/3448739","DOIUrl":"https://doi.org/10.1145/3448739","url":null,"abstract":"Recent years have witnessed the design and development of several smart devices that are wireless and battery-less. These devices exploit RFID backscattering-based computation and transmissions. Although singular devices can operate efficiently, their coexistence needs to be controlled, as they have widely varying communication requirements, depending on their interaction with the environment. The design of efficient communication protocols able to dynamically adapt to current device operation is quite a new problem that the existing work cannot solve well. In this article, we propose a new communication protocol, called ReLEDF, that dynamically discovers devices in smart buildings and their active and nonactive status and when active their current communication behavior (through a learning-based mechanism) and schedules transmission slots (through an Earliest Deadline First-- (EDF) based mechanism) adapt to different data transmission requirements. Combining learning and scheduling introduces a tag starvation problem, so we also propose a new mode-change scheduling approach. Extensive simulations clearly show the benefits of using ReLEDF, which successfully delivers over 95% of new data samples in a typical smart home scenario with up to 150 heterogeneous smart devices, outperforming related solutions. Real experiments are also conducted to demonstrate the applicability of ReLEDF and to validate the simulations.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"43 1","pages":"1 - 30"},"PeriodicalIF":2.7,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73556809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elk Audio OS
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-03-01 DOI: 10.1145/3446393
L. Turchet, C. Fischione
As the Internet of Musical Things (IoMusT) emerges, audio-specific operating systems (OSs) are required on embedded hardware to ease development and portability of IoMusT applications. Despite the increasing importance of IoMusT applications, in this article, we show that there is no OS able to fulfill the diverse requirements of IoMusT systems. To address such a gap, we propose the Elk Audio OS as a novel and open source OS in this space. It is a Linux-based OS optimized for ultra-low-latency and high-performance audio and sensor processing on embedded hardware, as well as for handling wireless connectivity to local and remote networks. Elk Audio OS uses the Xenomai real-time kernel extension, which makes it suitable for the most demanding of low-latency audio tasks. We provide the first comprehensive overview of Elk Audio OS, describing its architecture and the key components of interest to potential developers and users. We explain operational aspects like the configuration of the architecture and the control mechanisms of the internal sound engine, as well as the tools that enable an easier and faster development of connected musical devices. Finally, we discuss the implications of Elk Audio OS, including the development of an open source community around it.
随着音乐物联网(IoMusT)的出现,嵌入式硬件需要音频专用操作系统(os)来简化IoMusT应用程序的开发和可移植性。尽管IoMusT应用程序的重要性日益增加,但在本文中,我们表明没有一种操作系统能够满足IoMusT系统的各种需求。为了解决这样的差距,我们提出Elk Audio OS作为这个领域的一个新颖的开源操作系统。它是一个基于linux的操作系统,针对嵌入式硬件上的超低延迟和高性能音频和传感器处理,以及处理本地和远程网络的无线连接进行了优化。Elk Audio OS使用Xenomai实时内核扩展,这使得它适合最苛刻的低延迟音频任务。我们提供了Elk Audio OS的第一个全面概述,描述了它的架构和潜在开发人员和用户感兴趣的关键组件。我们解释了操作方面,如架构的配置和内部声音引擎的控制机制,以及工具,使连接的音乐设备更容易和更快的发展。最后,我们讨论了Elk Audio OS的含义,包括围绕它开发的开源社区。
{"title":"Elk Audio OS","authors":"L. Turchet, C. Fischione","doi":"10.1145/3446393","DOIUrl":"https://doi.org/10.1145/3446393","url":null,"abstract":"As the Internet of Musical Things (IoMusT) emerges, audio-specific operating systems (OSs) are required on embedded hardware to ease development and portability of IoMusT applications. Despite the increasing importance of IoMusT applications, in this article, we show that there is no OS able to fulfill the diverse requirements of IoMusT systems. To address such a gap, we propose the Elk Audio OS as a novel and open source OS in this space. It is a Linux-based OS optimized for ultra-low-latency and high-performance audio and sensor processing on embedded hardware, as well as for handling wireless connectivity to local and remote networks. Elk Audio OS uses the Xenomai real-time kernel extension, which makes it suitable for the most demanding of low-latency audio tasks. We provide the first comprehensive overview of Elk Audio OS, describing its architecture and the key components of interest to potential developers and users. We explain operational aspects like the configuration of the architecture and the control mechanisms of the internal sound engine, as well as the tools that enable an easier and faster development of connected musical devices. Finally, we discuss the implications of Elk Audio OS, including the development of an open source community around it.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"2 1","pages":"1 - 18"},"PeriodicalIF":2.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82595066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Continual Activity Recognition with Generative Adversarial Networks 基于生成对抗网络的持续活动识别
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-03-01 DOI: 10.1145/3440036
Juan Ye, Pakawat Nakwijit, Martin Schiemer, Saurav Jha, F. Zambonelli
Continual learning is an emerging research challenge in human activity recognition (HAR). As an increasing number of HAR applications are deployed in real-world environments, it is important and essential to extend the activity model to adapt to the change in people’s activity routine. Otherwise, HAR applications can become obsolete and fail to deliver activity-aware services. The existing research in HAR has focused on detecting abnormal sensor events or new activities, however, extending the activity model is currently under-explored. To directly tackle this challenge, we build on the recent advance in the area of lifelong machine learning and design a continual activity recognition system, called HAR-GAN, to grow the activity model over time. HAR-GAN does not require a prior knowledge on what new activity classes might be and it does not require to store historical data by leveraging the use of Generative Adversarial Networks (GAN) to generate sensor data on the previously learned activities. We have evaluated HAR-GAN on four third-party, public datasets collected on binary sensors and accelerometers. Our extensive empirical results demonstrate the effectiveness of HAR-GAN in continual activity recognition and shed insight on the future challenges.
持续学习是人类活动识别(HAR)领域一个新兴的研究挑战。随着越来越多的HAR应用部署在现实环境中,扩展活动模型以适应人们活动常规的变化是非常重要和必要的。否则,HAR应用程序可能会过时,无法交付活动感知服务。HAR的现有研究主要集中在检测异常传感器事件或新活动,然而,扩展活动模型目前尚未得到充分探索。为了直接应对这一挑战,我们基于终身机器学习领域的最新进展,设计了一个持续的活动识别系统,称为HAR-GAN,以随着时间的推移发展活动模型。HAR-GAN不需要预先了解新的活动类别,也不需要通过使用生成对抗网络(GAN)来存储历史数据,以生成先前学习过的活动的传感器数据。我们在二进制传感器和加速度计上收集的四个第三方公开数据集上评估了HAR-GAN。我们广泛的实证结果证明了HAR-GAN在持续活动识别中的有效性,并对未来的挑战提供了见解。
{"title":"Continual Activity Recognition with Generative Adversarial Networks","authors":"Juan Ye, Pakawat Nakwijit, Martin Schiemer, Saurav Jha, F. Zambonelli","doi":"10.1145/3440036","DOIUrl":"https://doi.org/10.1145/3440036","url":null,"abstract":"Continual learning is an emerging research challenge in human activity recognition (HAR). As an increasing number of HAR applications are deployed in real-world environments, it is important and essential to extend the activity model to adapt to the change in people’s activity routine. Otherwise, HAR applications can become obsolete and fail to deliver activity-aware services. The existing research in HAR has focused on detecting abnormal sensor events or new activities, however, extending the activity model is currently under-explored. To directly tackle this challenge, we build on the recent advance in the area of lifelong machine learning and design a continual activity recognition system, called HAR-GAN, to grow the activity model over time. HAR-GAN does not require a prior knowledge on what new activity classes might be and it does not require to store historical data by leveraging the use of Generative Adversarial Networks (GAN) to generate sensor data on the previously learned activities. We have evaluated HAR-GAN on four third-party, public datasets collected on binary sensors and accelerometers. Our extensive empirical results demonstrate the effectiveness of HAR-GAN in continual activity recognition and shed insight on the future challenges.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"3 1","pages":"1 - 25"},"PeriodicalIF":2.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87077087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Tale of Two Entities 《两个实体的故事
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-03-01 DOI: 10.1145/3437258
Hossam ElHussini, C. Assi, Bassam Moussa, Ribal Atallah, A. Ghrayeb
With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.
随着电动汽车市场的不断发展,充电基础设施的采购对电动汽车的普及起着至关重要的作用。在物联网革命中,随着智能电动汽车充电站(EVCS)、无数通信协议和不同实体的引入,电动汽车充电基础设施也在不断发展。我们将在本文中概述该基础设施,详细介绍参与的实体和通信协议。此外,我们通过使用可用的公共数据将evcs的当前部署置于背景中。根据这项调查,我们确定了两个关键问题,即缺乏标准化和多点故障,这使得目前部署的电动汽车充电基础设施容易受到一系列不同的攻击。此外,我们提出了一种新的攻击方案,利用evcs及其协议的独特特性(如高功率瓦数和支持反向潮流)对电网造成干扰。我们研究了三种不同的攻击变化;电力需求突然激增,电力供应突然激增,以及开关攻击。为了支持我们的说法,我们使用一个现实世界的例子来展示攻击者如何通过篡改电动汽车的充电计划来破坏EVCS并造成流量瓶颈。此外,我们对我们提出的攻击变化对WSCC 9总线系统的影响进行了基于模拟的研究。我们的模拟表明,对手可以对电网造成破坏性影响,通过组成少量evcs可能导致停电和级联故障。
{"title":"A Tale of Two Entities","authors":"Hossam ElHussini, C. Assi, Bassam Moussa, Ribal Atallah, A. Ghrayeb","doi":"10.1145/3437258","DOIUrl":"https://doi.org/10.1145/3437258","url":null,"abstract":"With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"57 1","pages":"1 - 21"},"PeriodicalIF":2.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82548225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
A Spatial Source Location Privacy-aware Duty Cycle for Internet of Things Sensor Networks 物联网传感器网络空间源位置隐私感知占空比
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-02-01 DOI: 10.1145/3430379
M. Bradbury, A. Jhumka, C. Maple
Source Location Privacy (SLP) is an important property for monitoring assets in privacy-critical sensor network and Internet of Things applications. Many SLP-aware routing techniques exist, with most striking a tradeoff between SLP and other key metrics such as energy (due to battery power). Typically, the number of messages sent has been used as a proxy for the energy consumed. Existing work (for SLP against a local attacker) does not consider the impact of sleeping via duty cycling to reduce the energy cost of an SLP-aware routing protocol. Therefore, two main challenges exist: (i) how to achieve a low duty cycle without loss of control messages that configure the SLP protocol and (ii) how to achieve high SLP without requiring a long time spent awake. In this article, we present a novel formalisation of a duty cycling protocol as a transformation process. Using derived transformation rules, we present the first duty cycling protocol for an SLP-aware routing protocol for a local eavesdropping attacker. Simulation results on grids demonstrate a duty cycle of 10%, while only increasing the capture ratio of the source by 3 percentage points, and testbed experiments on FlockLab demonstrate an 80% reduction in the average current draw.
在隐私关键型传感器网络和物联网应用中,源位置隐私(SLP)是监控资产的重要属性。存在许多感知SLP的路由技术,其中最引人注目的是在SLP和其他关键指标(如能量(由于电池电量))之间进行权衡。通常,发送的消息数量被用作能耗的代理。现有的工作(针对本地攻击者的SLP)没有考虑通过占空比来降低SLP感知路由协议的能量成本的睡眠影响。因此,存在两个主要挑战:(i)如何在不丢失配置SLP协议的控制消息的情况下实现低占空比;(ii)如何在不需要长时间清醒的情况下实现高SLP。在这篇文章中,我们提出了一个新的形式化的占空比协议作为一个转换过程。利用派生的转换规则,我们提出了针对本地窃听攻击者的slp感知路由协议的第一个占空比协议。在网格上的仿真结果表明占空比为10%,而源捕获率仅提高了3个百分点,并且在FlockLab上的测试平台实验表明平均电流消耗减少了80%。
{"title":"A Spatial Source Location Privacy-aware Duty Cycle for Internet of Things Sensor Networks","authors":"M. Bradbury, A. Jhumka, C. Maple","doi":"10.1145/3430379","DOIUrl":"https://doi.org/10.1145/3430379","url":null,"abstract":"Source Location Privacy (SLP) is an important property for monitoring assets in privacy-critical sensor network and Internet of Things applications. Many SLP-aware routing techniques exist, with most striking a tradeoff between SLP and other key metrics such as energy (due to battery power). Typically, the number of messages sent has been used as a proxy for the energy consumed. Existing work (for SLP against a local attacker) does not consider the impact of sleeping via duty cycling to reduce the energy cost of an SLP-aware routing protocol. Therefore, two main challenges exist: (i) how to achieve a low duty cycle without loss of control messages that configure the SLP protocol and (ii) how to achieve high SLP without requiring a long time spent awake. In this article, we present a novel formalisation of a duty cycling protocol as a transformation process. Using derived transformation rules, we present the first duty cycling protocol for an SLP-aware routing protocol for a local eavesdropping attacker. Simulation results on grids demonstrate a duty cycle of 10%, while only increasing the capture ratio of the source by 3 percentage points, and testbed experiments on FlockLab demonstrate an 80% reduction in the average current draw.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"56 1","pages":"1 - 32"},"PeriodicalIF":2.7,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75074523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Velocity Optimization of Pure Electric Vehicles with Traffic Dynamics and Driving Safety Considerations 考虑交通动力学和驾驶安全的纯电动汽车速度优化
IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-02-01 DOI: 10.1145/3433678
Liuwang Kang, Ankur Sarker, Haiying Shen
As Electric Vehicles (EVs) become increasingly popular, their battery-related problems (e.g., short driving range and heavy battery weight) must be resolved as soon as possible. Velocity optimization of EVs to minimize energy consumption in driving is an effective alternative to handle these problems. However, previous velocity optimization methods assume that vehicles will pass through traffic lights immediately at green traffic signals. Actually, a vehicle may still experience a delay to pass a green traffic light due to a vehicle waiting queue in front of the traffic light. Also, as velocity optimization is for individual vehicles, previous methods cannot avoid rear-end collisions. That is, a vehicle following its optimal velocity profile may experience rear-end collisions with its frontal vehicle on the road. In this article, for the first time, we propose a velocity optimization system that enables EVs to immediately pass green traffic lights without delay and to avoid rear-end collisions to ensure driving safety when EVs follow optimal velocity profiles on the road. We collected real driving data on road sections of US-25 highway (with two driving lanes in each direction and relatively low traffic volume) to conduct extensive trace-driven simulation studies. Results show that our velocity optimization system reduces energy consumption by up to 17.5% compared with real driving patterns without increasing trip time. Also, it helps EVs to avoid possible collisions compared with existing collision avoidance methods.
随着电动汽车(ev)的日益普及,其电池相关问题(如行驶里程短、电池重量大)必须尽快解决。对电动汽车进行速度优化以实现行驶能耗最小化是解决这些问题的有效途径。然而,以往的速度优化方法假设车辆在绿灯处立即通过交通信号灯。实际上,车辆通过绿灯时仍然可能会遇到延误,因为有车辆在红绿灯前排队等候。此外,由于速度优化是针对单个车辆的,以往的方法无法避免追尾碰撞。也就是说,遵循最佳速度剖面的车辆可能会与道路上的前方车辆发生追尾碰撞。在本文中,我们首次提出了一种速度优化系统,使电动汽车在道路上按照最优速度曲线行驶时,能够立即无延迟地通过绿灯,避免追尾,确保驾驶安全。我们收集了US-25高速公路(每个方向有两条车道,车流量相对较低)路段的真实驾驶数据,进行了广泛的轨迹驱动模拟研究。结果表明,该速度优化系统在不增加行驶时间的情况下,与实际驾驶模式相比,能耗降低了17.5%。此外,与现有的避碰方法相比,它可以帮助电动汽车避免可能发生的碰撞。
{"title":"Velocity Optimization of Pure Electric Vehicles with Traffic Dynamics and Driving Safety Considerations","authors":"Liuwang Kang, Ankur Sarker, Haiying Shen","doi":"10.1145/3433678","DOIUrl":"https://doi.org/10.1145/3433678","url":null,"abstract":"As Electric Vehicles (EVs) become increasingly popular, their battery-related problems (e.g., short driving range and heavy battery weight) must be resolved as soon as possible. Velocity optimization of EVs to minimize energy consumption in driving is an effective alternative to handle these problems. However, previous velocity optimization methods assume that vehicles will pass through traffic lights immediately at green traffic signals. Actually, a vehicle may still experience a delay to pass a green traffic light due to a vehicle waiting queue in front of the traffic light. Also, as velocity optimization is for individual vehicles, previous methods cannot avoid rear-end collisions. That is, a vehicle following its optimal velocity profile may experience rear-end collisions with its frontal vehicle on the road. In this article, for the first time, we propose a velocity optimization system that enables EVs to immediately pass green traffic lights without delay and to avoid rear-end collisions to ensure driving safety when EVs follow optimal velocity profiles on the road. We collected real driving data on road sections of US-25 highway (with two driving lanes in each direction and relatively low traffic volume) to conduct extensive trace-driven simulation studies. Results show that our velocity optimization system reduces energy consumption by up to 17.5% compared with real driving patterns without increasing trip time. Also, it helps EVs to avoid possible collisions compared with existing collision avoidance methods.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"109 1","pages":"1 - 24"},"PeriodicalIF":2.7,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82491871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
ACM Transactions on Internet of Things
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1