The next-generation 5G cellular networks are designed to support the internet of things (IoT) networks; network components and services are virtualized and run either in virtual machines (VMs) or containers. Moreover, edge clouds (which are closer to end users) are leveraged to reduce end-to-end latency especially for some IoT applications, which require short response time. However, the computational resources are limited in edge clouds. To minimize overall service latency, it is crucial to determine carefully which services should be provided in edge clouds and serve more mobile or IoT devices locally. In this article, we propose a novel service cache framework called S-Cache, which automatically caches popular services in edge clouds. In addition, we design a new cache replacement policy to maximize the cache hit rates. Our evaluations use real log files from Google to form two datasets to evaluate the performance. The proposed cache replacement policy is compared with other policies such as greedy-dual-size-frequency (GDSF) and least-frequently-used (LFU). The experimental results show that the cache hit rates are improved by 39% on average, and the average latency of our cache replacement policy decreases 41% and 38% on average in these two datasets. This indicates that our approach is superior to other existing cache policies and is more suitable in multi-access edge computing environments. In the implementation, S-Cache relies on OpenStack to clone services to edge clouds and direct the network traffic. We also evaluate the cost of cloning the service to an edge cloud. The cloning cost of various real applications is studied by experiments under the presented framework and different environments.
{"title":"Enabling Service Cache in Edge Clouds","authors":"Chih-Kai Huang, Shan-Hsiang Shen","doi":"10.1145/3456564","DOIUrl":"https://doi.org/10.1145/3456564","url":null,"abstract":"The next-generation 5G cellular networks are designed to support the internet of things (IoT) networks; network components and services are virtualized and run either in virtual machines (VMs) or containers. Moreover, edge clouds (which are closer to end users) are leveraged to reduce end-to-end latency especially for some IoT applications, which require short response time. However, the computational resources are limited in edge clouds. To minimize overall service latency, it is crucial to determine carefully which services should be provided in edge clouds and serve more mobile or IoT devices locally. In this article, we propose a novel service cache framework called S-Cache, which automatically caches popular services in edge clouds. In addition, we design a new cache replacement policy to maximize the cache hit rates. Our evaluations use real log files from Google to form two datasets to evaluate the performance. The proposed cache replacement policy is compared with other policies such as greedy-dual-size-frequency (GDSF) and least-frequently-used (LFU). The experimental results show that the cache hit rates are improved by 39% on average, and the average latency of our cache replacement policy decreases 41% and 38% on average in these two datasets. This indicates that our approach is superior to other existing cache policies and is more suitable in multi-access edge computing environments. In the implementation, S-Cache relies on OpenStack to clone services to edge clouds and direct the network traffic. We also evaluate the cost of cloning the service to an edge cloud. The cloning cost of various real applications is studied by experiments under the presented framework and different environments.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"53 1","pages":"1 - 24"},"PeriodicalIF":2.7,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86776943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thilina Buddhika, Matthew Malensek, S. Pallickara, S. Pallickara
Voluminous time-series data streams produced in continuous sensing environments impose challenges pertaining to ingestion, storage, and analytics. In this study, we present a holistic approach based on data sketching to address these issues. We propose a hyper-sketching algorithm that combines discretization and frequency-based sketching to produce compact representations of the multi-feature, time-series data streams. We generate an ensemble of data sketches to make effective use of capabilities at the resource-constrained edge devices, the links over which data are transmitted, and the server pool where this data must be stored. The data sketches can be queried to construct datasets that are amenable to processing using popular analytical engines. We include several performance benchmarks using real-world data from different domains to profile the suitability of our design decisions. The proposed methodology can achieve up to ∼ 13 × and ∼ 2, 207 × reduction in data transfer and energy consumption at edge devices. We observe up to a ∼ 50% improvement in analytical job completion times in addition to the significant improvements in disk and network I/O.
{"title":"Living on the Edge","authors":"Thilina Buddhika, Matthew Malensek, S. Pallickara, S. Pallickara","doi":"10.1145/3450767","DOIUrl":"https://doi.org/10.1145/3450767","url":null,"abstract":"Voluminous time-series data streams produced in continuous sensing environments impose challenges pertaining to ingestion, storage, and analytics. In this study, we present a holistic approach based on data sketching to address these issues. We propose a hyper-sketching algorithm that combines discretization and frequency-based sketching to produce compact representations of the multi-feature, time-series data streams. We generate an ensemble of data sketches to make effective use of capabilities at the resource-constrained edge devices, the links over which data are transmitted, and the server pool where this data must be stored. The data sketches can be queried to construct datasets that are amenable to processing using popular analytical engines. We include several performance benchmarks using real-world data from different domains to profile the suitability of our design decisions. The proposed methodology can achieve up to ∼ 13 × and ∼ 2, 207 × reduction in data transfer and energy consumption at edge devices. We observe up to a ∼ 50% improvement in analytical job completion times in addition to the significant improvements in disk and network I/O.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"15 1","pages":"1 - 31"},"PeriodicalIF":2.7,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74694599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ratna Mandal, Prasenjit Karmakar, S. Chatterjee, Debaleen Das Spandan, S. Pradhan, Sujoy Saha, Sandip Chakraborty, S. Nandi
Intelligent city transportation systems are one of the core infrastructures of a smart city. The true ingenuity of such an infrastructure lies in providing the commuters with real-time information about citywide transport like public buses, allowing them to pre-plan their travel. However, providing prior information for transportation systems like public buses in real-time is inherently challenging because of the diverse nature of different stay-locations where a public bus stops. Although straightforward factors like stay duration extracted from unimodal sources like GPS at these locations look erratic, a thorough analysis of public bus GPS trails for 1,335.365 km at the city of Durgapur, a semi-urban city in India, reveals that several other fine-grained contextual features can characterize these locations accurately. Accordingly, we develop BuStop, a system for extracting and characterizing the stay-locations from multi-modal sensing using commuters’ smartphones. Using this multi-modal information BuStop extracts a set of granular contextual features that allows the system to differentiate among the different stay-location types. A thorough analysis of BuStop using the collected in-house dataset indicates that the system works with high accuracy in identifying different stay-locations such as regular bus stops, random ad hoc stops, stops due to traffic congestion, stops at traffic signals, and stops at sharp turns. Additionally, we develop a proof-of-concept setup on top of BuStop to analyze the potential of the framework in predicting expected arrival time, a critical piece of information required to pre-plan travel at any given bus stop. Subsequent analysis of the PoC framework, through simulation over the test dataset, shows that characterizing the stay-locations indeed helps make more accurate arrival time predictions with deviations less than 60 seconds from the ground-truth arrival time.
{"title":"Exploiting Multi-modal Contextual Sensing for City-bus’s Stay Location Characterization: Towards Sub-60 Seconds Accurate Arrival Time Prediction","authors":"Ratna Mandal, Prasenjit Karmakar, S. Chatterjee, Debaleen Das Spandan, S. Pradhan, Sujoy Saha, Sandip Chakraborty, S. Nandi","doi":"10.1145/3549548","DOIUrl":"https://doi.org/10.1145/3549548","url":null,"abstract":"Intelligent city transportation systems are one of the core infrastructures of a smart city. The true ingenuity of such an infrastructure lies in providing the commuters with real-time information about citywide transport like public buses, allowing them to pre-plan their travel. However, providing prior information for transportation systems like public buses in real-time is inherently challenging because of the diverse nature of different stay-locations where a public bus stops. Although straightforward factors like stay duration extracted from unimodal sources like GPS at these locations look erratic, a thorough analysis of public bus GPS trails for 1,335.365 km at the city of Durgapur, a semi-urban city in India, reveals that several other fine-grained contextual features can characterize these locations accurately. Accordingly, we develop BuStop, a system for extracting and characterizing the stay-locations from multi-modal sensing using commuters’ smartphones. Using this multi-modal information BuStop extracts a set of granular contextual features that allows the system to differentiate among the different stay-location types. A thorough analysis of BuStop using the collected in-house dataset indicates that the system works with high accuracy in identifying different stay-locations such as regular bus stops, random ad hoc stops, stops due to traffic congestion, stops at traffic signals, and stops at sharp turns. Additionally, we develop a proof-of-concept setup on top of BuStop to analyze the potential of the framework in predicting expected arrival time, a critical piece of information required to pre-plan travel at any given bus stop. Subsequent analysis of the PoC framework, through simulation over the test dataset, shows that characterizing the stay-locations indeed helps make more accurate arrival time predictions with deviations less than 60 seconds from the ground-truth arrival time.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"12 1","pages":"1 - 24"},"PeriodicalIF":2.7,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78516044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities.
{"title":"WiFi-Enabled User Authentication through Deep Learning in Daily Activities","authors":"Cong Shi, Jian Liu, Hongbo Liu, Yingying Chen","doi":"10.1145/3448738","DOIUrl":"https://doi.org/10.1145/3448738","url":null,"abstract":"User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"8 1","pages":"1 - 25"},"PeriodicalIF":2.7,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86790696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mauro Piva, Andrea Coletta, G. Maselli, J. Stankovic
Recent years have witnessed the design and development of several smart devices that are wireless and battery-less. These devices exploit RFID backscattering-based computation and transmissions. Although singular devices can operate efficiently, their coexistence needs to be controlled, as they have widely varying communication requirements, depending on their interaction with the environment. The design of efficient communication protocols able to dynamically adapt to current device operation is quite a new problem that the existing work cannot solve well. In this article, we propose a new communication protocol, called ReLEDF, that dynamically discovers devices in smart buildings and their active and nonactive status and when active their current communication behavior (through a learning-based mechanism) and schedules transmission slots (through an Earliest Deadline First-- (EDF) based mechanism) adapt to different data transmission requirements. Combining learning and scheduling introduces a tag starvation problem, so we also propose a new mode-change scheduling approach. Extensive simulations clearly show the benefits of using ReLEDF, which successfully delivers over 95% of new data samples in a typical smart home scenario with up to 150 heterogeneous smart devices, outperforming related solutions. Real experiments are also conducted to demonstrate the applicability of ReLEDF and to validate the simulations.
{"title":"Environment-driven Communication in Battery-free Smart Buildings","authors":"Mauro Piva, Andrea Coletta, G. Maselli, J. Stankovic","doi":"10.1145/3448739","DOIUrl":"https://doi.org/10.1145/3448739","url":null,"abstract":"Recent years have witnessed the design and development of several smart devices that are wireless and battery-less. These devices exploit RFID backscattering-based computation and transmissions. Although singular devices can operate efficiently, their coexistence needs to be controlled, as they have widely varying communication requirements, depending on their interaction with the environment. The design of efficient communication protocols able to dynamically adapt to current device operation is quite a new problem that the existing work cannot solve well. In this article, we propose a new communication protocol, called ReLEDF, that dynamically discovers devices in smart buildings and their active and nonactive status and when active their current communication behavior (through a learning-based mechanism) and schedules transmission slots (through an Earliest Deadline First-- (EDF) based mechanism) adapt to different data transmission requirements. Combining learning and scheduling introduces a tag starvation problem, so we also propose a new mode-change scheduling approach. Extensive simulations clearly show the benefits of using ReLEDF, which successfully delivers over 95% of new data samples in a typical smart home scenario with up to 150 heterogeneous smart devices, outperforming related solutions. Real experiments are also conducted to demonstrate the applicability of ReLEDF and to validate the simulations.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"43 1","pages":"1 - 30"},"PeriodicalIF":2.7,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73556809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the Internet of Musical Things (IoMusT) emerges, audio-specific operating systems (OSs) are required on embedded hardware to ease development and portability of IoMusT applications. Despite the increasing importance of IoMusT applications, in this article, we show that there is no OS able to fulfill the diverse requirements of IoMusT systems. To address such a gap, we propose the Elk Audio OS as a novel and open source OS in this space. It is a Linux-based OS optimized for ultra-low-latency and high-performance audio and sensor processing on embedded hardware, as well as for handling wireless connectivity to local and remote networks. Elk Audio OS uses the Xenomai real-time kernel extension, which makes it suitable for the most demanding of low-latency audio tasks. We provide the first comprehensive overview of Elk Audio OS, describing its architecture and the key components of interest to potential developers and users. We explain operational aspects like the configuration of the architecture and the control mechanisms of the internal sound engine, as well as the tools that enable an easier and faster development of connected musical devices. Finally, we discuss the implications of Elk Audio OS, including the development of an open source community around it.
{"title":"Elk Audio OS","authors":"L. Turchet, C. Fischione","doi":"10.1145/3446393","DOIUrl":"https://doi.org/10.1145/3446393","url":null,"abstract":"As the Internet of Musical Things (IoMusT) emerges, audio-specific operating systems (OSs) are required on embedded hardware to ease development and portability of IoMusT applications. Despite the increasing importance of IoMusT applications, in this article, we show that there is no OS able to fulfill the diverse requirements of IoMusT systems. To address such a gap, we propose the Elk Audio OS as a novel and open source OS in this space. It is a Linux-based OS optimized for ultra-low-latency and high-performance audio and sensor processing on embedded hardware, as well as for handling wireless connectivity to local and remote networks. Elk Audio OS uses the Xenomai real-time kernel extension, which makes it suitable for the most demanding of low-latency audio tasks. We provide the first comprehensive overview of Elk Audio OS, describing its architecture and the key components of interest to potential developers and users. We explain operational aspects like the configuration of the architecture and the control mechanisms of the internal sound engine, as well as the tools that enable an easier and faster development of connected musical devices. Finally, we discuss the implications of Elk Audio OS, including the development of an open source community around it.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"2 1","pages":"1 - 18"},"PeriodicalIF":2.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82595066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Ye, Pakawat Nakwijit, Martin Schiemer, Saurav Jha, F. Zambonelli
Continual learning is an emerging research challenge in human activity recognition (HAR). As an increasing number of HAR applications are deployed in real-world environments, it is important and essential to extend the activity model to adapt to the change in people’s activity routine. Otherwise, HAR applications can become obsolete and fail to deliver activity-aware services. The existing research in HAR has focused on detecting abnormal sensor events or new activities, however, extending the activity model is currently under-explored. To directly tackle this challenge, we build on the recent advance in the area of lifelong machine learning and design a continual activity recognition system, called HAR-GAN, to grow the activity model over time. HAR-GAN does not require a prior knowledge on what new activity classes might be and it does not require to store historical data by leveraging the use of Generative Adversarial Networks (GAN) to generate sensor data on the previously learned activities. We have evaluated HAR-GAN on four third-party, public datasets collected on binary sensors and accelerometers. Our extensive empirical results demonstrate the effectiveness of HAR-GAN in continual activity recognition and shed insight on the future challenges.
{"title":"Continual Activity Recognition with Generative Adversarial Networks","authors":"Juan Ye, Pakawat Nakwijit, Martin Schiemer, Saurav Jha, F. Zambonelli","doi":"10.1145/3440036","DOIUrl":"https://doi.org/10.1145/3440036","url":null,"abstract":"Continual learning is an emerging research challenge in human activity recognition (HAR). As an increasing number of HAR applications are deployed in real-world environments, it is important and essential to extend the activity model to adapt to the change in people’s activity routine. Otherwise, HAR applications can become obsolete and fail to deliver activity-aware services. The existing research in HAR has focused on detecting abnormal sensor events or new activities, however, extending the activity model is currently under-explored. To directly tackle this challenge, we build on the recent advance in the area of lifelong machine learning and design a continual activity recognition system, called HAR-GAN, to grow the activity model over time. HAR-GAN does not require a prior knowledge on what new activity classes might be and it does not require to store historical data by leveraging the use of Generative Adversarial Networks (GAN) to generate sensor data on the previously learned activities. We have evaluated HAR-GAN on four third-party, public datasets collected on binary sensors and accelerometers. Our extensive empirical results demonstrate the effectiveness of HAR-GAN in continual activity recognition and shed insight on the future challenges.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"3 1","pages":"1 - 25"},"PeriodicalIF":2.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87077087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossam ElHussini, C. Assi, Bassam Moussa, Ribal Atallah, A. Ghrayeb
With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.
{"title":"A Tale of Two Entities","authors":"Hossam ElHussini, C. Assi, Bassam Moussa, Ribal Atallah, A. Ghrayeb","doi":"10.1145/3437258","DOIUrl":"https://doi.org/10.1145/3437258","url":null,"abstract":"With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"57 1","pages":"1 - 21"},"PeriodicalIF":2.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82548225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Source Location Privacy (SLP) is an important property for monitoring assets in privacy-critical sensor network and Internet of Things applications. Many SLP-aware routing techniques exist, with most striking a tradeoff between SLP and other key metrics such as energy (due to battery power). Typically, the number of messages sent has been used as a proxy for the energy consumed. Existing work (for SLP against a local attacker) does not consider the impact of sleeping via duty cycling to reduce the energy cost of an SLP-aware routing protocol. Therefore, two main challenges exist: (i) how to achieve a low duty cycle without loss of control messages that configure the SLP protocol and (ii) how to achieve high SLP without requiring a long time spent awake. In this article, we present a novel formalisation of a duty cycling protocol as a transformation process. Using derived transformation rules, we present the first duty cycling protocol for an SLP-aware routing protocol for a local eavesdropping attacker. Simulation results on grids demonstrate a duty cycle of 10%, while only increasing the capture ratio of the source by 3 percentage points, and testbed experiments on FlockLab demonstrate an 80% reduction in the average current draw.
{"title":"A Spatial Source Location Privacy-aware Duty Cycle for Internet of Things Sensor Networks","authors":"M. Bradbury, A. Jhumka, C. Maple","doi":"10.1145/3430379","DOIUrl":"https://doi.org/10.1145/3430379","url":null,"abstract":"Source Location Privacy (SLP) is an important property for monitoring assets in privacy-critical sensor network and Internet of Things applications. Many SLP-aware routing techniques exist, with most striking a tradeoff between SLP and other key metrics such as energy (due to battery power). Typically, the number of messages sent has been used as a proxy for the energy consumed. Existing work (for SLP against a local attacker) does not consider the impact of sleeping via duty cycling to reduce the energy cost of an SLP-aware routing protocol. Therefore, two main challenges exist: (i) how to achieve a low duty cycle without loss of control messages that configure the SLP protocol and (ii) how to achieve high SLP without requiring a long time spent awake. In this article, we present a novel formalisation of a duty cycling protocol as a transformation process. Using derived transformation rules, we present the first duty cycling protocol for an SLP-aware routing protocol for a local eavesdropping attacker. Simulation results on grids demonstrate a duty cycle of 10%, while only increasing the capture ratio of the source by 3 percentage points, and testbed experiments on FlockLab demonstrate an 80% reduction in the average current draw.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"56 1","pages":"1 - 32"},"PeriodicalIF":2.7,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75074523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As Electric Vehicles (EVs) become increasingly popular, their battery-related problems (e.g., short driving range and heavy battery weight) must be resolved as soon as possible. Velocity optimization of EVs to minimize energy consumption in driving is an effective alternative to handle these problems. However, previous velocity optimization methods assume that vehicles will pass through traffic lights immediately at green traffic signals. Actually, a vehicle may still experience a delay to pass a green traffic light due to a vehicle waiting queue in front of the traffic light. Also, as velocity optimization is for individual vehicles, previous methods cannot avoid rear-end collisions. That is, a vehicle following its optimal velocity profile may experience rear-end collisions with its frontal vehicle on the road. In this article, for the first time, we propose a velocity optimization system that enables EVs to immediately pass green traffic lights without delay and to avoid rear-end collisions to ensure driving safety when EVs follow optimal velocity profiles on the road. We collected real driving data on road sections of US-25 highway (with two driving lanes in each direction and relatively low traffic volume) to conduct extensive trace-driven simulation studies. Results show that our velocity optimization system reduces energy consumption by up to 17.5% compared with real driving patterns without increasing trip time. Also, it helps EVs to avoid possible collisions compared with existing collision avoidance methods.
{"title":"Velocity Optimization of Pure Electric Vehicles with Traffic Dynamics and Driving Safety Considerations","authors":"Liuwang Kang, Ankur Sarker, Haiying Shen","doi":"10.1145/3433678","DOIUrl":"https://doi.org/10.1145/3433678","url":null,"abstract":"As Electric Vehicles (EVs) become increasingly popular, their battery-related problems (e.g., short driving range and heavy battery weight) must be resolved as soon as possible. Velocity optimization of EVs to minimize energy consumption in driving is an effective alternative to handle these problems. However, previous velocity optimization methods assume that vehicles will pass through traffic lights immediately at green traffic signals. Actually, a vehicle may still experience a delay to pass a green traffic light due to a vehicle waiting queue in front of the traffic light. Also, as velocity optimization is for individual vehicles, previous methods cannot avoid rear-end collisions. That is, a vehicle following its optimal velocity profile may experience rear-end collisions with its frontal vehicle on the road. In this article, for the first time, we propose a velocity optimization system that enables EVs to immediately pass green traffic lights without delay and to avoid rear-end collisions to ensure driving safety when EVs follow optimal velocity profiles on the road. We collected real driving data on road sections of US-25 highway (with two driving lanes in each direction and relatively low traffic volume) to conduct extensive trace-driven simulation studies. Results show that our velocity optimization system reduces energy consumption by up to 17.5% compared with real driving patterns without increasing trip time. Also, it helps EVs to avoid possible collisions compared with existing collision avoidance methods.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"109 1","pages":"1 - 24"},"PeriodicalIF":2.7,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82491871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}