首页 > 最新文献

ACM Transactions on Internet of Things最新文献

英文 中文
A Comprehensive Performance Comparison of IEEE 802.15.4 DSME and TSCH in a Realistic IoT Scenario for Industrial Applications IEEE 802.15.4 DSME和TSCH在工业应用物联网场景中的综合性能比较
IF 2.7 Pub Date : 2023-05-01 DOI: 10.1145/3595188
Ivonne Andrea Mantilla Gonzalez, Florian Meyer, V. Turau
In the Industrial Internet of Things (i.e., IIoT), the standardization of open technologies and protocols has achieved seamless data exchange between machines and other physical systems from different manufacturers. At the MAC sublayer, the industry-standard protocols IEEE 802.15.4 Time Slot Channel Hopping (TSCH) and Deterministic and Synchronous Multi-channel Extension (DSME) show promising properties for high adaptability and dynamically changing traffic. However, performance comparison between these MAC protocols rarely has gone beyond a simulation phase. This work presents the results of such a comparison on physically deployed networks using the facilities of the FIT-IoTLab. The evaluation includes fully implementing an IIoT protocol stack based on MQTT in Contiki-NG. It comprises the integration of DSME as part of Contiki-NG’s software stack through OpenDSME, the only publicly available implementation of DSME. Results show that both protocols suit IIoT applications, particularly for data collection. The comparison between TSCH and DSME also includes an evaluation of distributed schedulers for both MAC modes and one autonomous scheduler for TSCH within a UDP protocol stack.
在工业物联网(即IIoT)中,开放技术和协议的标准化实现了机器与来自不同制造商的其他物理系统之间的无缝数据交换。在MAC子层,行业标准协议IEEE 802.15.4时隙信道跳变(TSCH)和确定性和同步多信道扩展(DSME)显示出高适应性和动态变化流量的良好特性。然而,这些MAC协议之间的性能比较很少超出仿真阶段。这项工作展示了使用FIT-IoTLab设施对物理部署网络进行比较的结果。评估包括在Contiki-NG中完全实现基于MQTT的IIoT协议栈。它通过OpenDSME将DSME集成为Contiki-NG软件堆栈的一部分,OpenDSME是唯一公开可用的DSME实现。结果表明,这两种协议都适合工业物联网应用,特别是数据收集。TSCH和DSME之间的比较还包括对MAC模式的分布式调度器和UDP协议栈中TSCH的一个自治调度器的评估。
{"title":"A Comprehensive Performance Comparison of IEEE 802.15.4 DSME and TSCH in a Realistic IoT Scenario for Industrial Applications","authors":"Ivonne Andrea Mantilla Gonzalez, Florian Meyer, V. Turau","doi":"10.1145/3595188","DOIUrl":"https://doi.org/10.1145/3595188","url":null,"abstract":"In the Industrial Internet of Things (i.e., IIoT), the standardization of open technologies and protocols has achieved seamless data exchange between machines and other physical systems from different manufacturers. At the MAC sublayer, the industry-standard protocols IEEE 802.15.4 Time Slot Channel Hopping (TSCH) and Deterministic and Synchronous Multi-channel Extension (DSME) show promising properties for high adaptability and dynamically changing traffic. However, performance comparison between these MAC protocols rarely has gone beyond a simulation phase. This work presents the results of such a comparison on physically deployed networks using the facilities of the FIT-IoTLab. The evaluation includes fully implementing an IIoT protocol stack based on MQTT in Contiki-NG. It comprises the integration of DSME as part of Contiki-NG’s software stack through OpenDSME, the only publicly available implementation of DSME. Results show that both protocols suit IIoT applications, particularly for data collection. The comparison between TSCH and DSME also includes an evaluation of distributed schedulers for both MAC modes and one autonomous scheduler for TSCH within a UDP protocol stack.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85202341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pi-ViMo: Physiology-inspired Robust Vital Sign Monitoring using mmWave Radars Pi-ViMo:使用毫米波雷达的生理启发的鲁棒生命体征监测
IF 2.7 Pub Date : 2023-03-24 DOI: 10.1145/3589347
Bo-yan Zhang, Boyu Jiang, Rong Zheng, Xiaoping Zhang, Jun Yu Li, Q. Xu
Continuous monitoring of human vital signs using non-contact mmWave radars is attractive due to their ability to penetrate garments and operate under different lighting conditions. Unfortunately, most prior research requires subjects to stay at a fixed distance from radar sensors and to remain still during monitoring. These restrictions limit the applications of radar vital sign monitoring in real life scenarios. In this article, we address these limitations and present Pi-ViMo, a non-contact Physiology-inspired Robust Vital Sign Monitoring system, using mmWave radars. We first derive a multi-scattering point model for the human body, and introduce a coherent combining of multiple scatterings to enhance the quality of estimated chest-wall movements. It enables vital sign estimations of subjects at any location in a radar’s field of view (FoV). We then propose a template matching method to extract human vital signs by adopting physical models of respiration and cardiac activities. The proposed method is capable to separate respiration and heartbeat in the presence of micro-level random body movements (RBM) when a subject is at any location within the field of view of a radar. Experiments in a radar testbed show average respiration rate errors of 6% and heart rate errors of 11.9% for the stationary subjects, and average errors of 13.5% for respiration rate and 13.6% for heart rate for subjects under different RBMs.
使用非接触式毫米波雷达连续监测人体生命体征是有吸引力的,因为它们能够穿透衣服并在不同的照明条件下工作。不幸的是,大多数先前的研究要求受试者与雷达传感器保持固定距离,并在监测期间保持静止。这些限制限制了雷达生命体征监测在现实生活场景中的应用。在本文中,我们解决了这些限制,并提出了Pi-ViMo,一种使用毫米波雷达的非接触式生理启发的鲁棒生命体征监测系统。我们首先推导了人体的多散射点模型,并引入了多个散射点的相干组合来提高估计胸壁运动的质量。它可以在雷达视野(FoV)的任何位置对目标进行生命体征估计。然后,我们提出了一种模板匹配方法,通过采用呼吸和心脏活动的物理模型来提取人体生命体征。当受试者处于雷达视野范围内的任何位置时,该方法能够在微观随机身体运动(RBM)存在的情况下分离呼吸和心跳。在雷达测试台上进行的实验表明,静止状态下受试者的呼吸速率误差平均为6%,心率误差平均为11.9%,不同rbm下受试者的呼吸速率误差平均为13.5%,心率误差平均为13.6%。
{"title":"Pi-ViMo: Physiology-inspired Robust Vital Sign Monitoring using mmWave Radars","authors":"Bo-yan Zhang, Boyu Jiang, Rong Zheng, Xiaoping Zhang, Jun Yu Li, Q. Xu","doi":"10.1145/3589347","DOIUrl":"https://doi.org/10.1145/3589347","url":null,"abstract":"Continuous monitoring of human vital signs using non-contact mmWave radars is attractive due to their ability to penetrate garments and operate under different lighting conditions. Unfortunately, most prior research requires subjects to stay at a fixed distance from radar sensors and to remain still during monitoring. These restrictions limit the applications of radar vital sign monitoring in real life scenarios. In this article, we address these limitations and present Pi-ViMo, a non-contact Physiology-inspired Robust Vital Sign Monitoring system, using mmWave radars. We first derive a multi-scattering point model for the human body, and introduce a coherent combining of multiple scatterings to enhance the quality of estimated chest-wall movements. It enables vital sign estimations of subjects at any location in a radar’s field of view (FoV). We then propose a template matching method to extract human vital signs by adopting physical models of respiration and cardiac activities. The proposed method is capable to separate respiration and heartbeat in the presence of micro-level random body movements (RBM) when a subject is at any location within the field of view of a radar. Experiments in a radar testbed show average respiration rate errors of 6% and heart rate errors of 11.9% for the stationary subjects, and average errors of 13.5% for respiration rate and 13.6% for heart rate for subjects under different RBMs.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89614177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
HyEdge: A Cooperative Edge Computing Framework for Provisioning Private and Public Services HyEdge:用于提供私有和公共服务的协作边缘计算框架
IF 2.7 Pub Date : 2023-03-13 DOI: 10.1145/3585078
Siyuan Gu, Deke Guo, Guoming Tang, Lailong Luo, Yuchen Sun, Xueshan Luo
With the widespread use of Internet of Things (IoT) devices and the arrival of the 5G era, edge computing has become an attractive paradigm to serve end-users and provide better QoS. Many efforts have been paid to provision some merging public network services at the network edge. We reveal that it is very common that specific users call for private and isolated edge services to preserve data privacy and enable other security intentions. However, it still remains open to fulfill such kind of mixed requests in edge computing. In this article, we propose a cooperative edge computing framework, i.e., HyEdge, to offer both public and private edge services systematically. To fully exploit the benefits of this novel framework, we define the problem of optimal request scheduling over a given placement solution of hybrid edge servers to minimize the response delay. This problem is further modeled as a mixed integer non-linear programming problem (MINLP), which is typically NP-hard. Accordingly, we propose the partition-based optimization method, which can efficiently solve this NP-hard problem via the problem decomposition and the branch and bound strategies. We finally conduct extensive evaluations with a real-world dataset to measure the performance of our method. The results indicate that the proposed method achieves elegant performance with low computation complexity.
随着物联网(IoT)设备的广泛使用和5G时代的到来,边缘计算已经成为服务最终用户和提供更好QoS的有吸引力的范式。在网络边缘提供一些合并的公共网络服务已经付出了许多努力。我们发现,特定用户通常会要求私有和隔离的边缘服务来保护数据隐私并实现其他安全意图。然而,在边缘计算中,它仍然可以满足这种混合请求。在本文中,我们提出了一个协作边缘计算框架,即HyEdge,以系统地提供公共和私有边缘服务。为了充分利用这种新框架的优势,我们定义了在混合边缘服务器的给定放置解决方案上的最优请求调度问题,以最大限度地减少响应延迟。该问题进一步建模为混合整数非线性规划问题(MINLP),这是典型的np困难问题。因此,我们提出了基于分区的优化方法,通过问题分解和分支定界策略有效地解决了这一NP-hard问题。最后,我们使用真实世界的数据集进行了广泛的评估,以衡量我们的方法的性能。结果表明,该方法具有较好的性能和较低的计算复杂度。
{"title":"HyEdge: A Cooperative Edge Computing Framework for Provisioning Private and Public Services","authors":"Siyuan Gu, Deke Guo, Guoming Tang, Lailong Luo, Yuchen Sun, Xueshan Luo","doi":"10.1145/3585078","DOIUrl":"https://doi.org/10.1145/3585078","url":null,"abstract":"With the widespread use of Internet of Things (IoT) devices and the arrival of the 5G era, edge computing has become an attractive paradigm to serve end-users and provide better QoS. Many efforts have been paid to provision some merging public network services at the network edge. We reveal that it is very common that specific users call for private and isolated edge services to preserve data privacy and enable other security intentions. However, it still remains open to fulfill such kind of mixed requests in edge computing. In this article, we propose a cooperative edge computing framework, i.e., HyEdge, to offer both public and private edge services systematically. To fully exploit the benefits of this novel framework, we define the problem of optimal request scheduling over a given placement solution of hybrid edge servers to minimize the response delay. This problem is further modeled as a mixed integer non-linear programming problem (MINLP), which is typically NP-hard. Accordingly, we propose the partition-based optimization method, which can efficiently solve this NP-hard problem via the problem decomposition and the branch and bound strategies. We finally conduct extensive evaluations with a real-world dataset to measure the performance of our method. The results indicate that the proposed method achieves elegant performance with low computation complexity.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76548224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Rubik's Cube Cryptosystem-based Authentication and Session Key Generation Model Driven in Blockchain Environment for IoT Security 基于魔方密码系统的区块链环境下物联网安全认证与会话密钥生成模型
IF 2.7 Pub Date : 2023-03-06 DOI: 10.1145/3586578
Ankit Attkan, V. Ranga, Priyanka Ahlawat
Over the past decade, IoT has gained huge momentum in terms of technological exploration, integration, and its various applications even after having a resource-bound architecture. It is challenging to run any high-end security protocol(s) on Edge devices. These devices are highly vulnerable toward numerous cyber-attacks. IoT network nodes need peer-to-peer security, which is possible if there exists proper mutual authentication among network devices. A secure session key needs to be established among source and destination nodes before sending the sensitive data. To generate these session keys, a strong cryptosystem is required to share parameters securely over a wireless network. In this article, we utilize a Rubik's cube puzzle-based cryptosystem to exchange parameters among peers and generate session key(s). Blockchain technology is incorporated in the proposed model to provide anonymity of token transactions, on the basis of which the network devices exchange services. A session key pool randomizer is used to avoid network probabilistic attacks. Our hybrid model is capable of generating secure session keys that can be used for mutual authentication and reliable data transferring tasks. Cyber-attacks resistance and performance results were verified using standard tools, which gave industry level promising results in terms of efficiency, light weightiness, and practical applications.
在过去的十年中,物联网在拥有资源绑定架构的情况下,在技术探索、集成和各种应用方面都取得了巨大的发展势头。在Edge设备上运行任何高端安全协议都是一项挑战。这些设备极易受到众多网络攻击。物联网网络节点需要点对点安全,如果网络设备之间存在适当的相互认证,这是可能的。在发送敏感数据之前,需要在源节点和目的节点之间建立安全会话密钥。为了生成这些会话密钥,需要一个强大的密码系统来通过无线网络安全地共享参数。在本文中,我们利用基于魔方谜题的密码系统在对等体之间交换参数并生成会话密钥。区块链技术被纳入提议的模型中,以提供令牌交易的匿名性,网络设备在此基础上交换服务。使用会话密钥池随机化器来避免网络概率攻击。我们的混合模型能够生成可用于相互身份验证和可靠数据传输任务的安全会话密钥。使用标准工具验证了抗网络攻击和性能结果,在效率、轻量化和实际应用方面提供了行业级的有希望的结果。
{"title":"A Rubik's Cube Cryptosystem-based Authentication and Session Key Generation Model Driven in Blockchain Environment for IoT Security","authors":"Ankit Attkan, V. Ranga, Priyanka Ahlawat","doi":"10.1145/3586578","DOIUrl":"https://doi.org/10.1145/3586578","url":null,"abstract":"Over the past decade, IoT has gained huge momentum in terms of technological exploration, integration, and its various applications even after having a resource-bound architecture. It is challenging to run any high-end security protocol(s) on Edge devices. These devices are highly vulnerable toward numerous cyber-attacks. IoT network nodes need peer-to-peer security, which is possible if there exists proper mutual authentication among network devices. A secure session key needs to be established among source and destination nodes before sending the sensitive data. To generate these session keys, a strong cryptosystem is required to share parameters securely over a wireless network. In this article, we utilize a Rubik's cube puzzle-based cryptosystem to exchange parameters among peers and generate session key(s). Blockchain technology is incorporated in the proposed model to provide anonymity of token transactions, on the basis of which the network devices exchange services. A session key pool randomizer is used to avoid network probabilistic attacks. Our hybrid model is capable of generating secure session keys that can be used for mutual authentication and reliable data transferring tasks. Cyber-attacks resistance and performance results were verified using standard tools, which gave industry level promising results in terms of efficiency, light weightiness, and practical applications.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73622741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Channel-aware FL Approach for Virtual Machine Placement in 6G Edge Intelligent Ecosystems 6G边缘智能生态系统中虚拟机放置的通道感知FL方法
IF 2.7 Pub Date : 2023-02-17 DOI: 10.1145/3584705
Benedetta Picano, R. Fantacci
This article deals with an artificial intelligence (AI) framework to support Internet-of-everything (IoE) applications over sixth-generation wireless (6G) networks. An integrated IoE-Edge Intelligence ecosystem is designed to effectively face the problems of Virtual Machines (VMs) placement based on their popularity, computation offloading optimization, and system reliability improvement predicting compute nodes faults. The main objective of the article is to increase performance in terms of minimization of worst end-to-end (e2e) delay, percentage of requests in outage, and the enhancement of reliability. The article focuses on the following main issues: (i) proposal of a channel-aware federated learning (FL) approach to forecast the popularity of the VMs required by IoE devices; (ii) use of an AI-based channel conditions forecasting module at the benefits of the FL process; (iii) development of a suitable VMs placement on the basis of their popularity and of an efficient tasks allocation technique based on a modified version of the auction theory (AT) and a proper matching game; (iv) enhancement of the system reliability by an echo-state-network (ESN), located on each computation node and running in the background to predict failures and anticipate tasks migration. Numerical results validate the effectiveness of the proposed strategy for IoE applications over 6G networks.
本文讨论了通过第六代无线(6G)网络支持万物互联(IoE)应用程序的人工智能(AI)框架。基于虚拟机的普及程度、优化计算负载、提高系统可靠性、预测计算节点故障,设计集成的IoE-Edge智能生态系统,有效应对虚拟机的布局问题。本文的主要目标是通过最小化最差端到端(e2e)延迟、中断请求的百分比和增强可靠性来提高性能。本文重点关注以下主要问题:(i)提出一种通道感知联邦学习(FL)方法来预测物联网设备所需虚拟机的普及程度;(ii)利用FL过程的优势,使用基于人工智能的通道状况预测模块;(iii)根据虚拟机的受欢迎程度,发展合适的虚拟机位置,并根据改良的拍卖理论和适当的配对游戏,发展有效的任务分配技术;(iv)通过回声状态网络(ESN)提高系统可靠性,回声状态网络位于每个计算节点上,并在后台运行,以预测故障和预测任务迁移。数值结果验证了该策略在6G网络上物联网应用的有效性。
{"title":"A Channel-aware FL Approach for Virtual Machine Placement in 6G Edge Intelligent Ecosystems","authors":"Benedetta Picano, R. Fantacci","doi":"10.1145/3584705","DOIUrl":"https://doi.org/10.1145/3584705","url":null,"abstract":"This article deals with an artificial intelligence (AI) framework to support Internet-of-everything (IoE) applications over sixth-generation wireless (6G) networks. An integrated IoE-Edge Intelligence ecosystem is designed to effectively face the problems of Virtual Machines (VMs) placement based on their popularity, computation offloading optimization, and system reliability improvement predicting compute nodes faults. The main objective of the article is to increase performance in terms of minimization of worst end-to-end (e2e) delay, percentage of requests in outage, and the enhancement of reliability. The article focuses on the following main issues: (i) proposal of a channel-aware federated learning (FL) approach to forecast the popularity of the VMs required by IoE devices; (ii) use of an AI-based channel conditions forecasting module at the benefits of the FL process; (iii) development of a suitable VMs placement on the basis of their popularity and of an efficient tasks allocation technique based on a modified version of the auction theory (AT) and a proper matching game; (iv) enhancement of the system reliability by an echo-state-network (ESN), located on each computation node and running in the background to predict failures and anticipate tasks migration. Numerical results validate the effectiveness of the proposed strategy for IoE applications over 6G networks.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80955899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IDIoT: Multimodal Framework for Ubiquitous Identification and Assignment of Human-carried Wearable Devices 白痴:人类携带的可穿戴设备的普遍识别和分配的多模态框架
IF 2.7 Pub Date : 2023-01-12 DOI: 10.1145/3579832
Adeola Bannis, Shijia Pan, Carlos Ruiz, John Shen, Hae Young Noh, Pei Zhang
IoT (Internet of Things) devices, such as network-enabled wearables, are carried by increasingly more people throughout daily life. Information from multiple devices can be aggregated to gain insights into a person’s behavior or status. For example, an elderly care facility could monitor patients for falls by combining fitness bracelet data with video of the entire class. For this aggregated data to be useful to each person, we need a multi-modality association of the devices’ physical ID (i.e., location, the user holding it, visual appearance) with a virtual ID (e.g., IP address/available services). Existing approaches for multi-modality association often require intentional interaction or direct line-of-sight to the device, which is infeasible for a large number of users or when the device is obscured by clothing. We present IDIoT, a calibration-free passive sensing approach that fuses motion sensor information with camera footage of an area to estimate the body location of motion sensors carried by a user. We characterize results across three baselines to highlight how different fusing methodology results better than earlier IMU-vision fusion algorithms. From this characterization, we determine IDIoT is more robust to errors such as missing frames or miscalibration that frequently occur in IMU-vision matching systems.
物联网(Internet of Things)设备,如支持网络的可穿戴设备,越来越多的人在日常生活中携带。来自多个设备的信息可以聚合起来,以了解一个人的行为或状态。例如,一家老年护理机构可以通过将健身手环数据与整个课程的视频相结合来监测患者的跌倒情况。为了使这些聚合数据对每个人都有用,我们需要将设备的物理ID(例如,位置,持有它的用户,视觉外观)与虚拟ID(例如,IP地址/可用服务)进行多模态关联。现有的多模态关联方法通常需要有意的交互或设备的直接视线,这对于大量用户或设备被衣服遮挡时是不可行的。我们提出了一种无需校准的被动传感方法IDIoT,它将运动传感器信息与一个区域的摄像机镜头融合在一起,以估计用户携带的运动传感器的身体位置。我们描述了三个基线的结果,以突出不同的融合方法如何比早期的imu -视觉融合算法效果更好。根据这一特性,我们确定IDIoT对imu -视觉匹配系统中经常出现的缺失帧或校准错误等错误具有更强的鲁棒性。
{"title":"IDIoT: Multimodal Framework for Ubiquitous Identification and Assignment of Human-carried Wearable Devices","authors":"Adeola Bannis, Shijia Pan, Carlos Ruiz, John Shen, Hae Young Noh, Pei Zhang","doi":"10.1145/3579832","DOIUrl":"https://doi.org/10.1145/3579832","url":null,"abstract":"IoT (Internet of Things) devices, such as network-enabled wearables, are carried by increasingly more people throughout daily life. Information from multiple devices can be aggregated to gain insights into a person’s behavior or status. For example, an elderly care facility could monitor patients for falls by combining fitness bracelet data with video of the entire class. For this aggregated data to be useful to each person, we need a multi-modality association of the devices’ physical ID (i.e., location, the user holding it, visual appearance) with a virtual ID (e.g., IP address/available services). Existing approaches for multi-modality association often require intentional interaction or direct line-of-sight to the device, which is infeasible for a large number of users or when the device is obscured by clothing. We present IDIoT, a calibration-free passive sensing approach that fuses motion sensor information with camera footage of an area to estimate the body location of motion sensors carried by a user. We characterize results across three baselines to highlight how different fusing methodology results better than earlier IMU-vision fusion algorithms. From this characterization, we determine IDIoT is more robust to errors such as missing frames or miscalibration that frequently occur in IMU-vision matching systems.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81888394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
LSR: Energy-Efficient Multi-Modulation Communication for Inhomogeneous Wireless IoT Networks LSR:非同构无线物联网网络的高能效多调制通信
IF 2.7 Pub Date : 2023-01-10 DOI: 10.1145/3579366
Roman Trüb, Reto Da Forno, Andreas Biri, J. Beutel, L. Thiele
In many real-world wireless IoT networks, the application dictates the location of the nodes and therefore the link characteristics are inhomogeneous. Furthermore, nodes may in many scenarios only communicate with the Internet-attached gateway via multiple hops. If an energy-efficient short-range modulation scheme is used, nodes that are reachable only via high-path-loss links cannot communicate. Using a more energy-demanding long-range modulation allows connecting more nodes but would be inefficient for nodes that are easily reachable via low-path-loss links. Combining multiple modulations is challenging, as low-power radios usually only support the use of a single modulation at a time. In this article, we present the Long-Short-Range (LSR) protocol which supports low-power multi-hop communication using multiple modulations and is suited for networks with inhomogeneous link characteristics. To reduce the inherent redundancy of long-range modulations, we present a method to determine the connectivity graph of the network during regular data communication without adding significant overhead. In simulations, we show that LSR allows for reducing power consumption significantly for many scenarios when compared to a state-of-the-art multi-hop communication protocol using a single long-range modulation. We demonstrate the applicability of LSR with an implementation on real hardware and a testbed with long-range links.
在许多现实世界的无线物联网网络中,应用程序决定了节点的位置,因此链路特征是不均匀的。此外,在许多情况下,节点可能仅通过多个跃点与连接internet的网关通信。如果使用节能的短程调制方案,则只能通过高路径损耗链路可达的节点无法通信。使用能量要求更高的远程调制允许连接更多节点,但对于通过低路径损耗链路容易到达的节点来说,效率低下。结合多种调制是具有挑战性的,因为低功率无线电通常只支持一次使用一种调制。在本文中,我们提出了长短距离(LSR)协议,该协议支持使用多种调制的低功耗多跳通信,适用于具有非均匀链路特性的网络。为了减少远程调制的固有冗余,我们提出了一种在不增加大量开销的情况下确定常规数据通信过程中网络连接图的方法。在模拟中,我们表明,与使用单一远程调制的最先进的多跳通信协议相比,LSR允许在许多情况下显着降低功耗。我们通过在实际硬件和具有远程链路的测试平台上的实现来证明LSR的适用性。
{"title":"LSR: Energy-Efficient Multi-Modulation Communication for Inhomogeneous Wireless IoT Networks","authors":"Roman Trüb, Reto Da Forno, Andreas Biri, J. Beutel, L. Thiele","doi":"10.1145/3579366","DOIUrl":"https://doi.org/10.1145/3579366","url":null,"abstract":"In many real-world wireless IoT networks, the application dictates the location of the nodes and therefore the link characteristics are inhomogeneous. Furthermore, nodes may in many scenarios only communicate with the Internet-attached gateway via multiple hops. If an energy-efficient short-range modulation scheme is used, nodes that are reachable only via high-path-loss links cannot communicate. Using a more energy-demanding long-range modulation allows connecting more nodes but would be inefficient for nodes that are easily reachable via low-path-loss links. Combining multiple modulations is challenging, as low-power radios usually only support the use of a single modulation at a time. In this article, we present the Long-Short-Range (LSR) protocol which supports low-power multi-hop communication using multiple modulations and is suited for networks with inhomogeneous link characteristics. To reduce the inherent redundancy of long-range modulations, we present a method to determine the connectivity graph of the network during regular data communication without adding significant overhead. In simulations, we show that LSR allows for reducing power consumption significantly for many scenarios when compared to a state-of-the-art multi-hop communication protocol using a single long-range modulation. We demonstrate the applicability of LSR with an implementation on real hardware and a testbed with long-range links.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82699432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Upscaling Fog Computing in Oceans for Underwater Pervasive Data Science Using Low-Cost Micro-Clouds 基于低成本微云的水下普适数据科学的海洋雾计算升级
IF 2.7 Pub Date : 2022-12-08 DOI: 10.1145/3575801
Farooq Dar, M. Liyanage, Marko Radeta, Zhigang Yin, Agustin Zuniga, Sokol Kosta, S. Tarkoma, P. Nurmi, Huber Flores
Underwater environments are emerging as a new frontier for data science thanks to an increase in deployments of underwater sensor technology. Challenges in operating computing underwater combined with a lack of high-speed communication technology covering most aquatic areas means that there is a significant delay between the collection and analysis of data. This in turn limits the scale and complexity of the applications that can operate based on these data. In this article, we develop underwater fog computing support using low-cost micro-clouds and demonstrate how they can be used to deliver cost-effective support for data-heavy underwater applications. We develop a proof-of-concept micro-cloud prototype and use it to perform extensive benchmarks that evaluate the suitability of underwater micro-clouds for diverse underwater data science scenarios. We conduct rigorous tests in both controlled and field deployments, using river and sea waters. We also address technical challenges in enabling underwater fogs, evaluating the performance of different communication interfaces and demonstrating how accelerometers can be used to detect the likelihood of communication failures and determine which communication interface to use. Our work offers a cost-effective way to increase the scale and complexity of underwater data science applications, and demonstrates how off-the-shelf devices can be adopted for this purpose.
由于水下传感器技术部署的增加,水下环境正在成为数据科学的新前沿。在水下操作计算的挑战,加上缺乏覆盖大多数水域的高速通信技术,意味着数据的收集和分析之间存在显着的延迟。这反过来限制了可以基于这些数据操作的应用程序的规模和复杂性。在本文中,我们使用低成本的微云开发水下雾计算支持,并演示如何使用它们为数据量大的水下应用程序提供经济高效的支持。我们开发了一个概念验证微云原型,并使用它来执行广泛的基准测试,以评估水下微云对各种水下数据科学场景的适用性。我们在控制和现场部署中使用河流和海水进行严格的测试。我们还解决了实现水下雾的技术挑战,评估了不同通信接口的性能,并演示了如何使用加速度计来检测通信故障的可能性并确定使用哪种通信接口。我们的工作提供了一种经济有效的方法来增加水下数据科学应用的规模和复杂性,并展示了如何采用现成的设备来实现这一目的。
{"title":"Upscaling Fog Computing in Oceans for Underwater Pervasive Data Science Using Low-Cost Micro-Clouds","authors":"Farooq Dar, M. Liyanage, Marko Radeta, Zhigang Yin, Agustin Zuniga, Sokol Kosta, S. Tarkoma, P. Nurmi, Huber Flores","doi":"10.1145/3575801","DOIUrl":"https://doi.org/10.1145/3575801","url":null,"abstract":"Underwater environments are emerging as a new frontier for data science thanks to an increase in deployments of underwater sensor technology. Challenges in operating computing underwater combined with a lack of high-speed communication technology covering most aquatic areas means that there is a significant delay between the collection and analysis of data. This in turn limits the scale and complexity of the applications that can operate based on these data. In this article, we develop underwater fog computing support using low-cost micro-clouds and demonstrate how they can be used to deliver cost-effective support for data-heavy underwater applications. We develop a proof-of-concept micro-cloud prototype and use it to perform extensive benchmarks that evaluate the suitability of underwater micro-clouds for diverse underwater data science scenarios. We conduct rigorous tests in both controlled and field deployments, using river and sea waters. We also address technical challenges in enabling underwater fogs, evaluating the performance of different communication interfaces and demonstrating how accelerometers can be used to detect the likelihood of communication failures and determine which communication interface to use. Our work offers a cost-effective way to increase the scale and complexity of underwater data science applications, and demonstrates how off-the-shelf devices can be adopted for this purpose.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89231177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Flexible and Modular Architecture for Edge Digital Twin: Implementation and Evaluation 边缘数字孪生的灵活模块化架构:实现与评估
IF 2.7 Pub Date : 2022-12-06 DOI: 10.1145/3573206
Marco Picone, M. Mamei, F. Zambonelli
IoT systems based on Digital Twins (DTs) — virtual copies of physical objects and systems — can be very effective to enable data-driven services and promote better control and decisions, in particular by exploiting distributed approaches where cloud and edge computing cooperate effectively. In this context, digital twins deployed on the edge represents a new strategic element to design a new wave of distributed cyber-physical applications. Existing approaches are generally focused on fragmented and domain-specific monolithic solutions and are mainly associated to model-driven, simulative or descriptive visions. The idea of extending the DTs role to support last-mile digitalization and interoperability through a set of general purpose and well-defined properties and capabilities is still underinvestigated. In this paper, we present the novel Edge Digital Twins (EDT) architectural model and its implementation, enabling the lightweight replication of physical devices providing an efficient digital abstraction layer to support the autonomous and standard collaboration of things and services. We model the core capabilities with respect to the recent definition of the state of the art, present the software architecture and a prototype implementation. Extensive experimental analysis shows the obtained performance in multiple IoT application contexts and compares them with that of state-of-the-art approaches.
基于数字孪生(dt)(物理对象和系统的虚拟副本)的物联网系统可以非常有效地实现数据驱动的服务,并促进更好的控制和决策,特别是通过利用云计算和边缘计算有效合作的分布式方法。在这种背景下,部署在边缘的数字孪生代表了设计新一波分布式网络物理应用程序的新战略要素。现有的方法通常集中在碎片化和特定于领域的整体解决方案上,并且主要与模型驱动的、模拟的或描述性的愿景相关联。通过一组通用的和定义良好的属性和功能来扩展dt角色以支持最后一英里的数字化和互操作性的想法仍然没有得到充分的研究。在本文中,我们提出了新的边缘数字孪生(EDT)体系结构模型及其实现,实现了物理设备的轻量级复制,提供了一个有效的数字抽象层,以支持事物和服务的自治和标准协作。我们根据最新的技术状态定义对核心功能进行建模,展示软件架构和原型实现。广泛的实验分析显示了在多种物联网应用环境中获得的性能,并将其与最先进的方法进行了比较。
{"title":"A Flexible and Modular Architecture for Edge Digital Twin: Implementation and Evaluation","authors":"Marco Picone, M. Mamei, F. Zambonelli","doi":"10.1145/3573206","DOIUrl":"https://doi.org/10.1145/3573206","url":null,"abstract":"IoT systems based on Digital Twins (DTs) — virtual copies of physical objects and systems — can be very effective to enable data-driven services and promote better control and decisions, in particular by exploiting distributed approaches where cloud and edge computing cooperate effectively. In this context, digital twins deployed on the edge represents a new strategic element to design a new wave of distributed cyber-physical applications. Existing approaches are generally focused on fragmented and domain-specific monolithic solutions and are mainly associated to model-driven, simulative or descriptive visions. The idea of extending the DTs role to support last-mile digitalization and interoperability through a set of general purpose and well-defined properties and capabilities is still underinvestigated. In this paper, we present the novel Edge Digital Twins (EDT) architectural model and its implementation, enabling the lightweight replication of physical devices providing an efficient digital abstraction layer to support the autonomous and standard collaboration of things and services. We model the core capabilities with respect to the recent definition of the state of the art, present the software architecture and a prototype implementation. Extensive experimental analysis shows the obtained performance in multiple IoT application contexts and compares them with that of state-of-the-art approaches.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79084546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
VioLinn: Proximity-aware Edge Placementwith Dynamic and Elastic Resource Provisioning 动态和弹性资源配置的邻近感知边缘放置
IF 2.7 Pub Date : 2022-12-05 DOI: 10.1145/3573125
Klervie Toczé, Ali J. Fahs, G. Pierre, S. Nadjm-Tehrani
Deciding where to handle services and tasks, as well as provisioning an adequate amount of computing resources for this handling, is a main challenge of edge computing systems. Moreover, latency-sensitive services constrain the type and location of edge devices that can provide the needed resources. When available resources are scarce there is a possibility that some resource allocation requests are denied. In this work, we propose the VioLinn system to tackle the joint problems of task placement, service placement, and edge device provisioning. Dealing with latency-sensitive services is achieved through proximity-aware algorithms that ensure the tasks are handled close to the end-user. Moreover, the concept of spare edge device is introduced to handle sudden load variations in time and space without having to continuously overprovision. Several spare device selection algorithms are proposed with different cost/performance tradeoffs. Evaluations are performed both in a Kubernetes-based testbed and using simulations and show the benefit of using spare devices for handling localized load spikes with higher quality of service (QoS) and lower computing resource usage. The study of the different algorithms shows that it is possible to achieve this increase in QoS with different tradeoffs against cost and performance.
决定在哪里处理服务和任务,以及为这种处理提供足够的计算资源,是边缘计算系统的主要挑战。此外,对延迟敏感的服务限制了能够提供所需资源的边缘设备的类型和位置。当可用资源稀缺时,一些资源分配请求可能会被拒绝。在这项工作中,我们提出VioLinn系统来解决任务放置、服务放置和边缘设备供应的联合问题。处理对延迟敏感的服务是通过邻近感知算法实现的,该算法确保任务在靠近最终用户的地方处理。此外,引入了备用边缘设备的概念,以处理时间和空间上的突然负载变化,而不必持续过度供应。提出了几种具有不同成本/性能权衡的备用设备选择算法。评估在基于kubernetes的测试平台和模拟中执行,并显示了使用备用设备处理局部负载峰值的好处,具有更高的服务质量(QoS)和更低的计算资源使用。对不同算法的研究表明,通过对成本和性能的不同权衡来实现QoS的增加是可能的。
{"title":"VioLinn: Proximity-aware Edge Placementwith Dynamic and Elastic Resource Provisioning","authors":"Klervie Toczé, Ali J. Fahs, G. Pierre, S. Nadjm-Tehrani","doi":"10.1145/3573125","DOIUrl":"https://doi.org/10.1145/3573125","url":null,"abstract":"Deciding where to handle services and tasks, as well as provisioning an adequate amount of computing resources for this handling, is a main challenge of edge computing systems. Moreover, latency-sensitive services constrain the type and location of edge devices that can provide the needed resources. When available resources are scarce there is a possibility that some resource allocation requests are denied. In this work, we propose the VioLinn system to tackle the joint problems of task placement, service placement, and edge device provisioning. Dealing with latency-sensitive services is achieved through proximity-aware algorithms that ensure the tasks are handled close to the end-user. Moreover, the concept of spare edge device is introduced to handle sudden load variations in time and space without having to continuously overprovision. Several spare device selection algorithms are proposed with different cost/performance tradeoffs. Evaluations are performed both in a Kubernetes-based testbed and using simulations and show the benefit of using spare devices for handling localized load spikes with higher quality of service (QoS) and lower computing resource usage. The study of the different algorithms shows that it is possible to achieve this increase in QoS with different tradeoffs against cost and performance.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83501019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACM Transactions on Internet of Things
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1