Pub Date : 2024-07-15DOI: 10.1016/j.crmeth.2024.100821
Matthew R Pawlak, Adam T Smiley, Wendy R Gordon
Molecular tension sensors are central tools for mechanobiology studies but have limitations in interpretation. Reporting in Cell Reports Methods, Shoyer et al. discover that fluorescent protein photoswitching in concert with sensor extension may expand the use and interpretation of common force-sensing tools.
{"title":"\"Forcing\" new interpretations of molecular tension sensor studies.","authors":"Matthew R Pawlak, Adam T Smiley, Wendy R Gordon","doi":"10.1016/j.crmeth.2024.100821","DOIUrl":"10.1016/j.crmeth.2024.100821","url":null,"abstract":"<p><p>Molecular tension sensors are central tools for mechanobiology studies but have limitations in interpretation. Reporting in Cell Reports Methods, Shoyer et al. discover that fluorescent protein photoswitching in concert with sensor extension may expand the use and interpretation of common force-sensing tools.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 7","pages":"100821"},"PeriodicalIF":4.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15Epub Date: 2024-07-02DOI: 10.1016/j.crmeth.2024.100803
Weiwei Lin, Fatemeh Mousavi, Benjamin C Blum, Christian F Heckendorf, Matthew Lawton, Noah Lampl, Ryan Hekman, Hongbo Guo, Mark McComb, Andrew Emili
High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.
{"title":"PANAMA-enabled high-sensitivity dual nanoflow LC-MS metabolomics and proteomics analysis.","authors":"Weiwei Lin, Fatemeh Mousavi, Benjamin C Blum, Christian F Heckendorf, Matthew Lawton, Noah Lampl, Ryan Hekman, Hongbo Guo, Mark McComb, Andrew Emili","doi":"10.1016/j.crmeth.2024.100803","DOIUrl":"10.1016/j.crmeth.2024.100803","url":null,"abstract":"<p><p>High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100803"},"PeriodicalIF":4.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15Epub Date: 2024-07-09DOI: 10.1016/j.crmeth.2024.100820
Iñaki Odriozola, Jacob A Rasmussen, M Thomas P Gilbert, Morten T Limborg, Antton Alberdi
Holo-omics refers to the joint study of non-targeted molecular data layers from host-microbiota systems or holobionts, which is increasingly employed to disentangle the complex interactions between the elements that compose them. We navigate through the generation, analysis, and integration of omics data, focusing on the commonalities and main differences to generate and analyze the various types of omics, with a special focus on optimizing data generation and integration. We advocate for careful generation and distillation of data, followed by independent exploration and analyses of the single omic layers to obtain a better understanding of the study system, before the integration of multiple omic layers in a final model is attempted. We highlight critical decision points to achieve this aim and flag the main challenges to address complex biological questions regarding the integrative study of host-microbiota relationships.
{"title":"A practical introduction to holo-omics.","authors":"Iñaki Odriozola, Jacob A Rasmussen, M Thomas P Gilbert, Morten T Limborg, Antton Alberdi","doi":"10.1016/j.crmeth.2024.100820","DOIUrl":"10.1016/j.crmeth.2024.100820","url":null,"abstract":"<p><p>Holo-omics refers to the joint study of non-targeted molecular data layers from host-microbiota systems or holobionts, which is increasingly employed to disentangle the complex interactions between the elements that compose them. We navigate through the generation, analysis, and integration of omics data, focusing on the commonalities and main differences to generate and analyze the various types of omics, with a special focus on optimizing data generation and integration. We advocate for careful generation and distillation of data, followed by independent exploration and analyses of the single omic layers to obtain a better understanding of the study system, before the integration of multiple omic layers in a final model is attempted. We highlight critical decision points to achieve this aim and flag the main challenges to address complex biological questions regarding the integrative study of host-microbiota relationships.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100820"},"PeriodicalIF":4.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17Epub Date: 2024-06-10DOI: 10.1016/j.crmeth.2024.100792
Antonella Raffo-Romero, Lydia Ziane-Chaouche, Sophie Salomé-Desnoulez, Nawale Hajjaji, Isabelle Fournier, Michel Salzet, Marie Duhamel
3D tumoroids have revolutionized in vitro/ex vivo cancer biology by recapitulating the complex diversity of tumors. While tumoroids provide new insights into cancer development and treatment response, several limitations remain. As the tumor microenvironment, especially the immune system, strongly influences tumor development, the absence of immune cells in tumoroids may lead to inappropriate conclusions. Macrophages, key players in tumor progression, are particularly challenging to integrate into the tumoroids. In this study, we established three optimized and standardized methods for co-culturing human macrophages with breast cancer tumoroids: a semi-liquid model and two matrix-embedded models tailored for specific applications. We then tracked interactions and macrophage infiltration in these systems using flow cytometry and light sheet microscopy and showed that macrophages influenced not only tumoroid molecular profiles but also chemotherapy response. This underscores the importance of increasing the complexity of 3D models to more accurately reflect in vivo conditions.
{"title":"A co-culture system of macrophages with breast cancer tumoroids to study cell interactions and therapeutic responses.","authors":"Antonella Raffo-Romero, Lydia Ziane-Chaouche, Sophie Salomé-Desnoulez, Nawale Hajjaji, Isabelle Fournier, Michel Salzet, Marie Duhamel","doi":"10.1016/j.crmeth.2024.100792","DOIUrl":"10.1016/j.crmeth.2024.100792","url":null,"abstract":"<p><p>3D tumoroids have revolutionized in vitro/ex vivo cancer biology by recapitulating the complex diversity of tumors. While tumoroids provide new insights into cancer development and treatment response, several limitations remain. As the tumor microenvironment, especially the immune system, strongly influences tumor development, the absence of immune cells in tumoroids may lead to inappropriate conclusions. Macrophages, key players in tumor progression, are particularly challenging to integrate into the tumoroids. In this study, we established three optimized and standardized methods for co-culturing human macrophages with breast cancer tumoroids: a semi-liquid model and two matrix-embedded models tailored for specific applications. We then tracked interactions and macrophage infiltration in these systems using flow cytometry and light sheet microscopy and showed that macrophages influenced not only tumoroid molecular profiles but also chemotherapy response. This underscores the importance of increasing the complexity of 3D models to more accurately reflect in vivo conditions.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100792"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.crmeth.2024.100801
Matthew D Lycas, Suliana Manley
Multiplexed super-resolution imaging offers a route to spatial proteomics; however, time-efficient mapping of many protein species has been challenging. Two recent works in Cell highlight SUM-PAINT and FLASH-PAINT, methods that leverage adaptor DNA strand design to combine advances in multiplexing with increases in speed of label exchange. These advances permit unbiased omics-style analyses to advance biological insights from super-resolution images.
{"title":"DNA-PAINT adaptors make for efficient multiplexing.","authors":"Matthew D Lycas, Suliana Manley","doi":"10.1016/j.crmeth.2024.100801","DOIUrl":"10.1016/j.crmeth.2024.100801","url":null,"abstract":"<p><p>Multiplexed super-resolution imaging offers a route to spatial proteomics; however, time-efficient mapping of many protein species has been challenging. Two recent works in Cell highlight SUM-PAINT and FLASH-PAINT, methods that leverage adaptor DNA strand design to combine advances in multiplexing with increases in speed of label exchange. These advances permit unbiased omics-style analyses to advance biological insights from super-resolution images.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 6","pages":"100801"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17Epub Date: 2024-06-06DOI: 10.1016/j.crmeth.2024.100791
Xinyue Ma, Loïs S Miraucourt, Haoyi Qiu, Mengyi Xu, Erik P Cook, Arjun Krishnaswamy, Reza Sharif-Naeini, Anmar Khadra
Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.
{"title":"ElecFeX is a user-friendly toolbox for efficient feature extraction from single-cell electrophysiological recordings.","authors":"Xinyue Ma, Loïs S Miraucourt, Haoyi Qiu, Mengyi Xu, Erik P Cook, Arjun Krishnaswamy, Reza Sharif-Naeini, Anmar Khadra","doi":"10.1016/j.crmeth.2024.100791","DOIUrl":"10.1016/j.crmeth.2024.100791","url":null,"abstract":"<p><p>Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100791"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17Epub Date: 2024-06-10DOI: 10.1016/j.crmeth.2024.100795
Christoph Stingl, Martijn M VanDuijn, Thomas Dejoie, Peter A E Sillevis Smitt, Theo M Luider
The polyclonal repertoire of circulating antibodies potentially holds valuable information about an individual's humoral immune state. While bottom-up proteomics is well suited for serum proteomics, the vast number of antibodies and dynamic range of serum challenge this analysis. To acquire the serum proteome more comprehensively, we incorporated high-field asymmetric waveform ion-mobility spectrometry (FAIMS) or two-dimensional chromatography into standard trypsin-based bottom-up proteomics. Thereby, the number of variable region (VR)-related spectra increased 1.7-fold with FAIMS and 10-fold with chromatography fractionation. To match antibody VRs to spectra, we combined de novo searching and BLAST alignment. Validation of this approach showed that, as peptide length increased, the de novo accuracy decreased and BLAST performance increased. Through in silico calculations on antibody repository sequences, we determined the uniqueness of tryptic VR peptides and their suitability as antibody surrogate. Approximately one-third of these peptides were unique, and about one-third of all antibodies contained at least one unique peptide.
{"title":"Improved detection of tryptic immunoglobulin variable region peptides by chromatographic and gas-phase fractionation techniques.","authors":"Christoph Stingl, Martijn M VanDuijn, Thomas Dejoie, Peter A E Sillevis Smitt, Theo M Luider","doi":"10.1016/j.crmeth.2024.100795","DOIUrl":"10.1016/j.crmeth.2024.100795","url":null,"abstract":"<p><p>The polyclonal repertoire of circulating antibodies potentially holds valuable information about an individual's humoral immune state. While bottom-up proteomics is well suited for serum proteomics, the vast number of antibodies and dynamic range of serum challenge this analysis. To acquire the serum proteome more comprehensively, we incorporated high-field asymmetric waveform ion-mobility spectrometry (FAIMS) or two-dimensional chromatography into standard trypsin-based bottom-up proteomics. Thereby, the number of variable region (VR)-related spectra increased 1.7-fold with FAIMS and 10-fold with chromatography fractionation. To match antibody VRs to spectra, we combined de novo searching and BLAST alignment. Validation of this approach showed that, as peptide length increased, the de novo accuracy decreased and BLAST performance increased. Through in silico calculations on antibody repository sequences, we determined the uniqueness of tryptic VR peptides and their suitability as antibody surrogate. Approximately one-third of these peptides were unique, and about one-third of all antibodies contained at least one unique peptide.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100795"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17Epub Date: 2024-06-11DOI: 10.1016/j.crmeth.2024.100796
Katherine R Martin, Ha T Le, Ahmed Abdelgawad, Canyuan Yang, Guotao Lu, Jessica L Keffer, Xiaohui Zhang, Zhihao Zhuang, Papa Nii Asare-Okai, Clara S Chan, Mona Batish, Yanbao Yu
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.
{"title":"Development of an efficient, effective, and economical technology for proteome analysis.","authors":"Katherine R Martin, Ha T Le, Ahmed Abdelgawad, Canyuan Yang, Guotao Lu, Jessica L Keffer, Xiaohui Zhang, Zhihao Zhuang, Papa Nii Asare-Okai, Clara S Chan, Mona Batish, Yanbao Yu","doi":"10.1016/j.crmeth.2024.100796","DOIUrl":"10.1016/j.crmeth.2024.100796","url":null,"abstract":"<p><p>We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100796"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.crmeth.2024.100800
Benjamin N Ostendorf
The tumor microenvironment harbors a variety of different cell types that differentially impact tumor biology. In this issue of Cell Reports Methods, Raffo-Romero et al. standardized and optimized 3D tumor organoids to model the interactions between tumor-associated macrophages and tumor cells in vitro.
{"title":"Recapitulating the tumor microenvironment in a dish, one cell type at a time.","authors":"Benjamin N Ostendorf","doi":"10.1016/j.crmeth.2024.100800","DOIUrl":"10.1016/j.crmeth.2024.100800","url":null,"abstract":"<p><p>The tumor microenvironment harbors a variety of different cell types that differentially impact tumor biology. In this issue of Cell Reports Methods, Raffo-Romero et al. standardized and optimized 3D tumor organoids to model the interactions between tumor-associated macrophages and tumor cells in vitro.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 6","pages":"100800"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17Epub Date: 2024-05-16DOI: 10.1016/j.crmeth.2024.100779
Peter N Nwokoye, Oscar J Abilez
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
{"title":"Bioengineering methods for vascularizing organoids.","authors":"Peter N Nwokoye, Oscar J Abilez","doi":"10.1016/j.crmeth.2024.100779","DOIUrl":"10.1016/j.crmeth.2024.100779","url":null,"abstract":"<p><p>Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100779"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}